JP3127225B2 - Low temperature sintering aid for silicon nitride and sintering method - Google Patents

Low temperature sintering aid for silicon nitride and sintering method

Info

Publication number
JP3127225B2
JP3127225B2 JP09334912A JP33491297A JP3127225B2 JP 3127225 B2 JP3127225 B2 JP 3127225B2 JP 09334912 A JP09334912 A JP 09334912A JP 33491297 A JP33491297 A JP 33491297A JP 3127225 B2 JP3127225 B2 JP 3127225B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintering
nitride ceramics
temperature
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09334912A
Other languages
Japanese (ja)
Other versions
JPH11157939A (en
Inventor
素弘 鳥山
喜代司 平尾
渡利  広司
イー ブリト マヌエル
正行 廣田
バレシロス マリア
Original Assignee
工業技術院長
新エネルギー・産業技術総合開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 新エネルギー・産業技術総合開発機構 filed Critical 工業技術院長
Priority to JP09334912A priority Critical patent/JP3127225B2/en
Publication of JPH11157939A publication Critical patent/JPH11157939A/en
Application granted granted Critical
Publication of JP3127225B2 publication Critical patent/JP3127225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ケイ素セラミ
ックスのマイクロ波焼結用焼結助剤および焼結方法に関
するものであり、さらに詳しくは、窒化ケイ素セラミッ
クスの焼結温度を低下させるとともに、窒化ケイ素柱状
結晶の成長を促進する作用を有する窒化ケイ素セラミッ
クスのマイクロ波焼結用焼結助剤および当該焼結助剤を
用いて窒化ケイ素セラミックスを低温焼結する方法に関
するものである。本発明は、ガソリンエンジン、ヂィー
ゼルエンジン等の熱機関や線引きダイス等の強度と靱性
が要求される機械構造用部材となる窒化ケイ素セラミッ
クスのマイクロ波焼結による製造方法として有用であ
る。本発明は、従来の窒化ケイ素セラミックスの高靱化
法であるガス圧焼結法や種結晶添加法と比較して、簡便
で、経済的に優れた窒化ケイ素セラミックスの高靱化方
法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintering aid and a sintering method for microwave sintering of silicon nitride ceramics. The present invention relates to a sintering aid for microwave sintering of silicon nitride ceramics having an action of promoting the growth of silicon columnar crystals, and a method of sintering silicon nitride ceramics at a low temperature using the sintering aid. INDUSTRIAL APPLICABILITY The present invention is useful as a method for producing a silicon nitride ceramics by microwave sintering which is a member for a mechanical structure requiring strength and toughness such as a heat engine such as a gasoline engine or a diesel engine or a drawing die. The present invention provides a simple and economical method for increasing the toughness of silicon nitride ceramics, which is simpler and more economical than conventional gas pressure sintering and seed crystal addition methods, which are methods for increasing the toughness of silicon nitride ceramics. Things.

【0002】[0002]

【従来の技術】エンジニアリングセラミックスは、耐熱
性や耐食性の観点から高温構造材料や摺動用部材として
利用されている。エンジニアリングセラミックスをより
広く、一般的な機械構造用材料として普及させるために
は、製造コストの低減と微構造制御による特性の向上を
図ることが必要である。従来、高靱化窒化ケイ素セラミ
ックスの焼結は、窒化ケイ素粉末に、酸化アルミニウム
と酸化イットリウム等の希土類酸化物からなる焼結助剤
を加え、10気圧以上の窒素雰囲気下で、1850℃以
上の温度で焼結されてきた。
2. Description of the Related Art Engineering ceramics are used as high-temperature structural materials and sliding members from the viewpoint of heat resistance and corrosion resistance. In order to spread engineering ceramics more widely and as a general material for mechanical structures, it is necessary to reduce manufacturing costs and improve characteristics by controlling microstructure. Conventionally, sintering of toughened silicon nitride ceramics is performed by adding a sintering aid composed of a rare earth oxide such as aluminum oxide and yttrium oxide to silicon nitride powder, and heating the mixture to 1850 ° C. or more under a nitrogen atmosphere of 10 atm or more. Sintered at temperatures.

【0003】一般に、窒化ケイ素セラミックスの破壊靱
性を高めるためには、100気圧以上の高い窒素ガス圧
を加えて窒化ケイ素の分解を抑制しながら1900℃以
上の高温で焼結することにより、柱状に発達した窒化ケ
イ素結晶から成る組織を形成させるガス圧焼結法、ある
いは微細な窒化ケイ素粉末に1から2μmの窒化ケイ素
単結晶を加え焼結する種結晶添加法が知られている。
In general, in order to increase the fracture toughness of silicon nitride ceramics, a high nitrogen gas pressure of 100 atm or more is applied to suppress the decomposition of silicon nitride while sintering at a high temperature of 1900 ° C. or more. A gas pressure sintering method for forming a structure composed of developed silicon nitride crystals and a seed crystal addition method for sintering by adding a silicon nitride single crystal of 1 to 2 μm to fine silicon nitride powder are known.

【0004】例えば、Am. Ceram. Soc. Bull., 65[9]13
11-1315(1986) においては、α−Si3 4 原料にアル
ミナ−希土類酸化物を焼結助剤として添加し、20〜4
0気圧窒素中、2000℃で焼成を行うことにより、破
壊靱性9MPa・m1/2 程度の窒化ケイ素焼結体を、ま
た、J. Am. Ceram. Soc., 76[7]1892-1894(1993)におい
ては、β−Si3 4 原料にY2 3 −Nd2 3 を焼
結助剤とし添加し、100気圧の窒素中、2000℃で
2〜8時間焼成を行うことにより、破壊靱性8.5〜1
0.3MPa・m1/2 の窒化ケイ素焼結体を得ている。
また、J. Am. Ceram. Soc., 77[7]1857-1862(1994)にお
いては、予め形態を制御した単結晶β−窒化ケイ素柱状
粒子を窒化ケイ素原料に種結晶として添加し、異方粒成
長するβ−窒化ケイ素柱状粒子の形と大きさを制御する
ことを試みて、強度900〜1000MPa、破壊靱性
8.2〜8.6MPa・m1/2 の比較的高強度、高靱性
の窒化ケイ素焼結体を得ることに成功している。
For example, Am. Ceram. Soc. Bull., 65 [9] 13
In 11-1315 (1986), alumina-rare earth oxide was added as a sintering aid to α-Si 3 N 4
By sintering at 2000 ° C. in nitrogen at 0 atm, a silicon nitride sintered body having a fracture toughness of about 9 MPa · m 1/2 can be obtained. J. Am. Ceram. Soc., 76 [7] 1892-1894 ( 1993), by adding Y 2 O 3 —Nd 2 O 3 to a β-Si 3 N 4 raw material as a sintering aid and performing calcination at 2000 ° C. for 2 to 8 hours in nitrogen at 100 atm. Fracture toughness 8.5-1
A silicon nitride sintered body of 0.3 MPa · m 1/2 is obtained.
In J. Am. Ceram. Soc., 77 [7] 1857-1862 (1994), single-crystal β-silicon nitride columnar particles whose morphology is controlled in advance are added as seed crystals to a silicon nitride raw material, and anisotropically added. An attempt was made to control the shape and size of the β-silicon nitride columnar particles that grew, resulting in relatively high strength and high toughness of 900 to 1000 MPa in strength and 8.2 to 8.6 MPa · m 1/2 in fracture toughness. We have succeeded in obtaining a silicon nitride sintered body.

【0005】さらに、例えば、窒化ケイ素粉末に、長軸
と短軸のアスペクト比の平均が1.5以上10以下で短
軸の平均径が0.5μm以上10μm以下のβ型窒化ケ
イ素種結晶を0.1重量%以上20重量%以下添加し、
これに、酸化物あるいは窒化物の焼結助剤を添加して混
合粉末を作り、成形後、1600℃以上2100℃以下
の温度で焼結する窒化ケイ素焼結体の製造方法(特開平
8−34670号公報)、等が提案されている。
Further, for example, a β-type silicon nitride seed crystal having an average aspect ratio of the major axis and the minor axis of 1.5 to 10 and an average diameter of the minor axis of 0.5 μm to 10 μm is added to silicon nitride powder. 0.1% by weight or more and 20% by weight or less,
To this, a mixed powder is prepared by adding a sintering aid of an oxide or a nitride, and after molding, a method for producing a silicon nitride sintered body which is sintered at a temperature of 1600 ° C. to 2100 ° C. No. 34670), and the like.

【0006】しかしながら、ガス圧焼結法では、高い窒
素ガス圧下で焼結を行うために複雑で高価なガス圧焼結
炉を使用しなければならないのみならず、製造される窒
化ケイ素セラミックスの破壊靱性は向上するものの強度
が低下する欠点がある。また、種結晶添加法は、10気
圧程度の窒素ガス圧下で焼結する通常の雰囲気焼結炉を
用いて製造できるものの、特殊な方法で合成された窒化
ケイ素単結晶を添加して製造しなければならず、いずれ
の方法も窒化ケイ素セラミックスの破壊靱性を高める簡
便な方法とは言い難い。
[0006] However, in the gas pressure sintering method, not only must a complicated and expensive gas pressure sintering furnace be used to perform sintering under a high nitrogen gas pressure, but also the destruction of the manufactured silicon nitride ceramics. Although the toughness is improved, there is a disadvantage that the strength is reduced. Although the seed crystal addition method can be manufactured using a normal atmosphere sintering furnace that sinters under a nitrogen gas pressure of about 10 atm, it must be manufactured by adding a silicon nitride single crystal synthesized by a special method. However, none of these methods is a simple method for increasing the fracture toughness of silicon nitride ceramics.

【0007】マイクロ波による焼結は、外部加熱法式の
従来の焼結技術と比較して、成形体自身がマイクロ波に
よって発熱し、直接加熱されることから、焼成プロセス
におけるエネルギー効率の向上のみならず、成形体を構
成する原料のマイクロ波吸収特性の差異を利用した選択
的な加熱を行うことができ、微構造制御が可能な焼結技
術となることが期待される。
[0007] The sintering by microwaves, compared with the conventional sintering technology of the external heating method, generates heat by microwaves and is directly heated. Instead, it is possible to perform selective heating using the difference in the microwave absorption characteristics of the raw materials constituting the molded body, and it is expected to be a sintering technology capable of controlling the microstructure.

【0008】[0008]

【発明が解決しようとする課題】このような状況の中
で、焼結温度を低下させ製造設備や製造コストを低減さ
せるために、低温で液相を生成する種々の焼結助剤が検
討されてきたが、焼結温度の低下によって窒化ケイ素柱
状結晶の成長が十分に進まないために、製造された焼結
体は強度は高いものの、窒化ケイ素セラミックスの特徴
である破壊靱性が高いものは製造できなかった。
In such a situation, various sintering aids that generate a liquid phase at a low temperature have been studied in order to lower the sintering temperature and reduce the production equipment and production cost. However, since the growth of silicon nitride columnar crystals does not proceed sufficiently due to the decrease in sintering temperature, the manufactured sintered body has high strength, but the one with high fracture toughness characteristic of silicon nitride ceramics is manufactured. could not.

【0009】本発明者らは、代表的なエンジニアリング
セラミックスである窒化ケイ素セラミックスについて、
マイクロ波加熱による組織制御と機械特性の向上につい
て鋭意研究を進める中で、マイクロ波加熱法により、従
来の雰囲気炉による処理と比較してマトリックス中のβ
−窒化ケイ素柱状結晶が良く発達し、ガス圧焼結法や種
結晶添加法等の既存の高靱性窒化ケイ素セラミックスの
合成より簡便に靱性の高い焼結体が得られることを見出
した。かかる状況の中で、発明者らは、マイクロ波によ
って拡散律速となっている結晶面の成長が促進されると
の発明者らの発見をもとに、さらに、マイクロ波加熱に
適した低温焼結助剤の探索を行い、通常の窒化ケイ素セ
ラミックス用焼結助剤にマグネシアを特定の割合で混合
することで焼結温度が低下し、しかも、強度、破壊靱性
ともに高い窒化ケイ素セラミックスが得られることを見
出し、本発明を完成させるに至った。すなわち、焼結助
剤として、一般的な窒化ケイ素の焼結助剤である酸化ア
ルミニウムと酸化イットリウムから形成される液相の生
成温度を低下させる酸化マグネシウムの添加およびマイ
クロ波による窒化ケイ素長柱状結晶成長の促進を行わせ
ることによって、焼結温度が従来の方法と比較して10
0から350℃低いにもかかわらず強度、破壊靱性とも
に高い、窒化ケイ素セラミックスの焼結方法を確立し
た。本発明の目的は、窒化ケイ素セラミックスの焼結温
度を低下させると共に、窒ケイ素柱状結晶の成長を促進
する焼結助剤ならびに焼結方法を提供することにある。
The present inventors have proposed silicon nitride ceramics as a typical engineering ceramics.
In the course of intensive research on microstructure control and mechanical property improvement by microwave heating, the microwave heating method has shown that β
-It has been found that silicon nitride columnar crystals are well developed, and a sintered body having high toughness can be obtained more easily than the synthesis of existing high toughness silicon nitride ceramics such as a gas pressure sintering method or a seed crystal addition method. Under these circumstances, based on the inventors' discovery that the growth of crystal planes, which are diffusion-controlled by microwaves, is promoted, the inventors have further developed low-temperature firing suitable for microwave heating. By searching for binders and mixing magnesia in a specific ratio with ordinary sintering aids for silicon nitride ceramics, the sintering temperature is reduced, and silicon nitride ceramics with both high strength and high fracture toughness can be obtained. This led to the completion of the present invention. That is, as a sintering aid, addition of magnesium oxide, which lowers the generation temperature of a liquid phase formed from aluminum oxide and yttrium oxide, which are general sintering aids for silicon nitride, and silicon nitride long columnar crystals by microwave By promoting the growth, the sintering temperature can be reduced by 10 times compared with the conventional method.
A method for sintering silicon nitride ceramics having high strength and high fracture toughness despite being 0 to 350 ° C. was established. An object of the present invention is to provide a sintering aid and a sintering method which lower the sintering temperature of silicon nitride ceramics and promote the growth of silicon nitride columnar crystals.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明は、以下の技術的手段から構成される。 (1)酸化アルミニウムと酸化イットリウムの重量比が
2:3から1:4の範囲にあり、かつ酸化アルミニウム
と酸化マグネシウムの重量比が1:1から4:1の範囲
で混合されたマイクロ波焼結用窒化ケイ素セラミックス
焼結助剤。 (2)酸化アルミニウム、酸化イットリウム、酸化マグ
ネシウムが重量比で2:5:1を最適とする割合で混合
された上記(1)のマイクロ波焼結用窒化ケイ素セラミ
ックス焼結助剤。 (3)低い焼結温度で、窒化ケイ素柱状結晶を成長させ
て、強度、破壊靱性ともに高い、窒化ケイ素セラミック
スを製造する方法であって、上記(1)の焼結助剤を窒
化ケイ素粉末に3から15重量%加え、適宜の方法で成
型した成形体を、常圧窒素雰囲気下、1500から17
50℃の温度でマイクロ波を用いて焼結することを特徴
とする窒化ケイ素セラミックスの製造方法。
The present invention for solving the above problems comprises the following technical means. (1) Microwave firing in which the weight ratio of aluminum oxide to yttrium oxide is in the range of 2: 3 to 1: 4 and the weight ratio of aluminum oxide to magnesium oxide is in the range of 1: 1 to 4: 1. Silicon nitride ceramic sintering aid. (2) The silicon nitride ceramic sintering aid for microwave sintering according to the above (1), wherein aluminum oxide, yttrium oxide, and magnesium oxide are mixed at an optimal ratio of 2: 5: 1 by weight. (3) A method of producing silicon nitride ceramics having high strength and high fracture toughness by growing silicon nitride columnar crystals at a low sintering temperature, wherein the sintering aid of the above (1) is added to silicon nitride powder. 3 to 15% by weight, and a molded article molded by an appropriate method was placed in a nitrogen atmosphere at normal pressure from 1500 to 17%.
A method for producing silicon nitride ceramics, comprising sintering using microwaves at a temperature of 50 ° C.

【0011】[0011]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。本発明により窒化ケイ素焼結体を作製する
に、まず、窒化ケイ素原料粉末に所定量の焼結助剤を添
加する。窒化ケイ素原料はα型、β型、あるいは非晶質
のいずれの結晶系のものを用いても良いが、平均粒径
0.5μm以下の微粉末を用いることが望ましい。焼結
助剤としては、Al2 3 、Y2 3 、MgOが使用さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In producing a silicon nitride sintered body according to the present invention, first, a predetermined amount of a sintering aid is added to silicon nitride raw material powder. As the silicon nitride raw material, any of α-type, β-type, and amorphous crystalline systems may be used, but it is preferable to use fine powder having an average particle size of 0.5 μm or less. Al 2 O 3 , Y 2 O 3 , and MgO are used as sintering aids.

【0012】これら焼結助剤の組み合わせは、これら
を、酸化アルミニウムと酸化イットリウムの重量比が
2:3から1:4の範囲にあり、かつ酸化アルミニウム
と酸化マグネシウムの重量比が1:1から4:1の範囲
で混合すること、好適には、Al2 3 、Y2 3 、M
gOを重量比で2:5:1を最適とする割合で混合する
ことが望ましく、また、添加量は、試料が相対密度97
%以上に緻密化されるように選択されることが望まし
く、好適には、焼結中に窒化ケイ素を柱状に異方粒成長
させるために、焼結助剤を窒化ケイ素粉末に3から15
重量%加えることが望ましい。
The combination of these sintering aids is such that the weight ratio of aluminum oxide to yttrium oxide is in the range from 2: 3 to 1: 4 and the weight ratio of aluminum oxide to magnesium oxide is from 1: 1. Mixing in the range of 4: 1, preferably Al 2 O 3 , Y 2 O 3 , M
It is desirable to mix gO in a weight ratio of 2: 5: 1 at an optimum ratio.
%, And preferably, 3 to 15 sintering aids are added to the silicon nitride powder in order to grow silicon nitride into columnar anisotropic grains during sintering.
It is desirable to add wt%.

【0013】これらの原料の混合に当たっては、粉体の
混合あるいは混練に用いられる通常の機械を使用するこ
とができる。この場合は、湿式、乾式のどちらでもよい
が、望ましくは湿式において混合される。湿式混合にお
いては、水、メタノール、エタノール、トルエンなどの
溶剤が用いられるが、窒化ケイ素の酸化を抑えるために
有機溶媒を用いることが望ましい。有機溶剤を用いた場
合はソルビタンモノオレートなどの分散剤を用いること
により効果的に混合を行うことができる。
In mixing these raw materials, an ordinary machine used for mixing or kneading powder can be used. In this case, either of a wet type or a dry type may be used, but the mixing is desirably performed in a wet type. In the wet mixing, a solvent such as water, methanol, ethanol, and toluene is used, and it is preferable to use an organic solvent to suppress oxidation of silicon nitride. When an organic solvent is used, mixing can be performed effectively by using a dispersant such as sorbitan monooleate.

【0014】次に、上述のようにして得られた混合スラ
リーは、適量の有機バインダーを添加混合した後、ドク
ターブレード法等によるシート成形、あるいは押出し成
形を用いて生成形体に成形される。また、混合スラリー
を乾燥して得た混合粉末から金型成形法や静水圧成形法
等によっても生成形体が作製される。次に、上記成形体
は、必要により、通常の焼成方法、すなわち、まず60
0〜800℃程度の温度で仮焼を行い、成形バインダー
を加熱除去した後、マイクロ波焼結炉で熱処理を行い、
焼結体を作製する。
Next, the mixed slurry obtained as described above is mixed with an appropriate amount of an organic binder, and then formed into a formed product by sheet forming by a doctor blade method or the like or by extrusion. Further, a molded product is produced from a mixed powder obtained by drying the mixed slurry by a die molding method, an isostatic pressing method, or the like. Next, if necessary, the molded body is subjected to a normal firing method,
After performing calcination at a temperature of about 0 to 800 ° C. and removing the molding binder by heating, heat treatment is performed in a microwave sintering furnace,
A sintered body is produced.

【0015】上記マイクロ波加熱による焼結方法は、焼
結助剤を加えて成形した成形体を常圧窒素雰囲気下で3
0分から2時間、1500℃から1750℃の温度で焼
結する方法が好適なものとして例示される。
In the sintering method using microwave heating, the compact formed by adding a sintering aid is subjected to a 3
A method of sintering at a temperature of 1500 ° C. to 1750 ° C. for 0 minutes to 2 hours is exemplified as a preferable method.

【0016】本発明においては、通常の窒化ケイ素の焼
結が10気圧程度で行われるのに比べて、常圧窒素雰囲
気下、1500℃から1750℃の温度で、マイクロ波
加熱のみで焼結が可能である。
In the present invention, the sintering is performed only by microwave heating at a temperature of 1500 ° C. to 1750 ° C. under a normal pressure nitrogen atmosphere, compared to the normal sintering of silicon nitride at about 10 atm. It is possible.

【0017】窒化ケイ素セラミックスは、焼結助剤の反
応によって生成される液相への溶解−析出過程を経て焼
結が進む。その際に、柱状に発達したβ−窒化ケイ素と
微細なマトリクスβ−窒化ケイ素が互いに絡み合った組
織を形成することで、強度、靱性ともに優れた材料とな
る。
Sintering of silicon nitride ceramics proceeds through a process of dissolution-precipitation in a liquid phase generated by the reaction of a sintering aid. At this time, by forming a structure in which the β-silicon nitride developed in a columnar shape and the fine matrix β-silicon nitride are entangled with each other, the material has excellent strength and toughness.

【0018】本発明の方法により焼結した窒化ケイ素セ
ラミックスは、β−窒化ケイ素の柱状結晶が選択的に成
長し、その結果β−窒化ケイ素の柱状結晶が相互に絡み
合った繊維を形成することから、強度を低下させること
なく窒化ケイ素セラミックスの破壊靱性を高めることが
できる。本発明の方法は、従来の窒化ケイ素セラミック
スの高靱化法であるガス圧焼結法や種結晶添加法と比較
して、簡便で、経済的に優れた窒化ケイ素セラミックス
の高靱化方法である。本発明の方法によれば、焼結温度
を低下させることで焼結に要するエネルギーコストが低
減されるのみならず、高温焼結では窒化ケイ素の分解を
防ぐために不可欠な高圧窒素ガス雰囲気を必要とせず、
常圧窒素ガス雰囲気で焼結できることから加圧焼結炉等
の設備を用いることなく、高強度・高靱性窒化ケイ素セ
ラミックスが製造できる。
In the silicon nitride ceramics sintered by the method of the present invention, β-silicon nitride columnar crystals are selectively grown, and as a result, β-silicon nitride columnar crystals form fibers entangled with each other. In addition, the fracture toughness of silicon nitride ceramics can be increased without lowering the strength. The method of the present invention is a simple, economically superior method for increasing the toughness of silicon nitride ceramics, compared to conventional gas pressure sintering and seeding methods, which are methods for increasing the toughness of silicon nitride ceramics. is there. According to the method of the present invention, lowering the sintering temperature not only reduces the energy cost required for sintering, but also requires high-pressure nitrogen gas atmosphere which is indispensable to prevent decomposition of silicon nitride in high-temperature sintering. Without
Since it can be sintered in a nitrogen gas atmosphere at normal pressure, high-strength and high-toughness silicon nitride ceramics can be manufactured without using equipment such as a pressure sintering furnace.

【0019】[0019]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は当該実施例によって何ら限定される
ものではない。 実施例1 α−窒化ケイ素粉末に5wt%の酸化イットリウムと2
wt%の酸化アルミニウム、1wt%酸化マグネシウム
を加え成形した成形体を、1気圧窒素雰囲気下で、28
GHzのマイクロ波により1600℃で2時間焼結し
た。このものは、破壊靱性8MPa・m1/2 、強度82
0MPaの窒化ケイ素焼結体であった。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Example 1 α-silicon nitride powder and 5 wt% yttrium oxide and 2
A molded body obtained by adding aluminum oxide of 1 wt% and magnesium oxide of 1 wt% under a nitrogen atmosphere of 1 atm.
It was sintered at 1600 ° C. for 2 hours by microwaves of GHz. It has a fracture toughness of 8 MPa · m 1/2 and a strength of 82
It was a silicon nitride sintered body of 0 MPa.

【0020】実施例2 実施例1と同様にして作製した成形体を、1気圧窒素雰
囲気下で、28GHzのマイクロ波により1700℃で
2時間焼結した。このものは、破壊靱性9MPa・m
1/2 、強度920MPaの窒化ケイ素焼結体であった。
Example 2 A compact produced in the same manner as in Example 1 was sintered at 1700 ° C. for 2 hours by a microwave of 28 GHz under a nitrogen atmosphere of 1 atm. It has a fracture toughness of 9 MPa · m
It was a silicon nitride sintered body having a strength of 1/2 and a strength of 920 MPa.

【0021】参考例1 実施例1と同様にして作製した成形体を、1気圧の窒素
雰囲気下、1600℃で抵抗加熱雰囲気炉により2時間
焼結した。このものは、気孔が残留し緻密質窒化ケイ素
焼結体とならなかった。
REFERENCE EXAMPLE 1 A compact produced in the same manner as in Example 1 was sintered at 1600 ° C. for 2 hours in a resistance heating atmosphere furnace under a nitrogen atmosphere at 1 atm. In this product, pores remained and a dense silicon nitride sintered body was not obtained.

【0022】参考例2 参考例1と同様にして、1気圧の窒素雰囲気下、175
0℃で抵抗加熱雰囲気炉により2時間焼結した。このも
のは、破壊靱性5MPa・m1/2 、強度850MPaの
窒化ケイ素焼結体であった。
REFERENCE EXAMPLE 2 In the same manner as in Reference Example 1, 175
Sintering was performed at 0 ° C. in a resistance heating atmosphere furnace for 2 hours. This was a silicon nitride sintered body having a fracture toughness of 5 MPa · m 1/2 and a strength of 850 MPa.

【0023】参考例3 参考例1と同様にして、10気圧の窒素雰囲気下、18
50℃で抵抗加熱雰囲気炉により2時間焼結した。この
ものは、破壊靱性7MPa・m1/2 、強度700MPa
の窒化ケイ素焼結体であった。
REFERENCE EXAMPLE 3 In the same manner as in Reference Example 1, under a nitrogen atmosphere of 10 atm.
Sintering was performed at 50 ° C. in a resistance heating atmosphere furnace for 2 hours. It has a fracture toughness of 7 MPa · m 1/2 and a strength of 700 MPa.
Was obtained.

【0024】[0024]

【発明の効果】本発明によれば、焼結温度を低下させる
ことで焼結に要するエネルギーコストが低減されるのみ
ならず、高温焼結では窒化ケイ素の分解を防ぐために不
可欠な高圧窒素ガス雰囲気を必要とせず、常圧窒素ガス
雰囲気で焼結できることから加圧焼結炉等の設備を用い
ることなく、高強度・高靱性窒化ケイ素セラミックスが
製造できる。さらに、粒界相が選択的に加熱されること
から、常圧における窒化ケイ素の分解温度以下でも窒化
ケイ素結晶の結晶成長が起こるために、高い窒素ガス圧
を加えて窒化ケイ素の分解を防いだり、結晶成長の核と
なる窒化ケイ素単結晶を加えることなく、柱状に発達し
た窒化ケイ素セラミックス組織を形成させることができ
る。
According to the present invention, not only the energy cost required for sintering is reduced by lowering the sintering temperature, but also a high-pressure nitrogen gas atmosphere which is indispensable for preventing decomposition of silicon nitride in high-temperature sintering. Therefore, high-strength and high-toughness silicon nitride ceramics can be manufactured without using equipment such as a pressure sintering furnace since sintering can be performed in a nitrogen gas atmosphere at normal pressure without the need for sintering. Furthermore, since the grain boundary phase is selectively heated, the silicon nitride crystal grows even at a temperature lower than the decomposition temperature of silicon nitride at normal pressure, so that a high nitrogen gas pressure is applied to prevent the decomposition of silicon nitride. In addition, a silicon nitride ceramics structure developed in a columnar shape can be formed without adding a silicon nitride single crystal serving as a nucleus for crystal growth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の実施例2に示した方法でマ
イクロ波焼結を行った窒化ケイ素の焼結組織を示す。
FIG. 1 shows a sintered structure of silicon nitride subjected to microwave sintering by the method shown in Example 2 of one embodiment of the present invention.

【図2】マイクロ波焼結による破壊靱性の変化を示す。FIG. 2 shows a change in fracture toughness due to microwave sintering.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡利 広司 愛知県小牧市城山1丁目5番地の1 サ ンハイツF棟306 (72)発明者 マヌエル イー ブリト 愛知県名古屋市千種区北千種3丁目2番 地の4 千種東住宅 17−302号 (72)発明者 廣田 正行 愛知県名古屋市北区平手町1丁目31番地 の1 リバーパレス101号 (72)発明者 マリア バレシロス 愛知県名古屋市千種区北千種3丁目2番 地の4 千種東住宅 17−302号 審査官 三崎 仁 (56)参考文献 特開 平10−226577(JP,A) 特開 平10−226576(JP,A) 特開 平9−30867(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/584 C04B 35/64 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Hiroshi Watari 1-5-5 Shiroyama, Komaki-shi, Aichi Prefecture 1 San Heights F Building 306 (72) Inventor Manuel E Brito 3-2-2 Kita Chikusa, Chikusa-ku, Nagoya-shi, Aichi Prefecture No. 4 Chikusa Higashi House 17-302 (72) Inventor Masayuki Hirota 1-31 Hiratecho, Kita-ku, Nagoya City, Aichi Prefecture 1-1 River Palace 101 (72) Inventor Maria Baresiros Kita Chikusa, Chikusa-ku, Nagoya City, Aichi Prefecture Examiner Hitoshi Misaki, No. 17-302, 4,000 kinds of east housing at 3-chome-2 (56) Reference JP-A-10-226577 (JP, A) JP-A-10-226576 (JP, A) JP-A-9- 30867 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/584 C04B 35/64

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化アルミニウムと酸化イットリウムの
重量比が2:3から1:4の範囲にあり、かつ酸化アル
ミニウムと酸化マグネシウムの重量比が1:1から4:
1の範囲で混合されたマイクロ波焼結用窒化ケイ素セラ
ミックス焼結助剤。
1. The weight ratio of aluminum oxide to yttrium oxide is in the range of 2: 3 to 1: 4, and the weight ratio of aluminum oxide to magnesium oxide is 1: 1 to 4:
Silicon nitride ceramics sintering aid for microwave sintering mixed in range 1.
【請求項2】 酸化アルミニウム、酸化イットリウム、
酸化マグネシウムが重量比で2:5:1を最適とする割
合で混合されたマイクロ波焼結用窒化ケイ素セラミック
ス焼結助剤。
2. An aluminum oxide, a yttrium oxide,
A silicon nitride ceramics sintering aid for microwave sintering in which magnesium oxide is mixed at a weight ratio of 2: 5: 1 to be optimal.
【請求項3】 低い焼結温度で、窒化ケイ素柱状結晶を
成長させて、強度、破壊靱性ともに高い、窒化ケイ素セ
ラミックスを製造する方法であって、請求項1の焼結助
剤を窒化ケイ素粉末に3から15重量%加え、適宜の方
法で成型した成形体を、常圧窒素雰囲気下、1500か
ら1750℃の温度でマイクロ波を用いて焼結すること
を特徴とする窒化ケイ素セラミックスの製造方法。
3. A method for producing silicon nitride ceramics having a high strength and high fracture toughness by growing silicon nitride columnar crystals at a low sintering temperature, wherein the sintering aid according to claim 1 is a silicon nitride powder. A method for producing silicon nitride ceramics, comprising: sintering a molded body formed by an appropriate method by adding 3 to 15% by weight to a mixture at a temperature of 1500 to 1750 ° C. using a microwave in a normal pressure nitrogen atmosphere. .
JP09334912A 1997-11-18 1997-11-18 Low temperature sintering aid for silicon nitride and sintering method Expired - Lifetime JP3127225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09334912A JP3127225B2 (en) 1997-11-18 1997-11-18 Low temperature sintering aid for silicon nitride and sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09334912A JP3127225B2 (en) 1997-11-18 1997-11-18 Low temperature sintering aid for silicon nitride and sintering method

Publications (2)

Publication Number Publication Date
JPH11157939A JPH11157939A (en) 1999-06-15
JP3127225B2 true JP3127225B2 (en) 2001-01-22

Family

ID=18282635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09334912A Expired - Lifetime JP3127225B2 (en) 1997-11-18 1997-11-18 Low temperature sintering aid for silicon nitride and sintering method

Country Status (1)

Country Link
JP (1) JP3127225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661518A (en) * 2020-12-25 2021-04-16 中材高新氮化物陶瓷有限公司 High-thermal-conductivity silicon nitride ceramic insulating plate and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473727B2 (en) * 2002-07-19 2010-06-02 ヴィタ・ツァーンファブリック・ハー・ラウテル・ ゲーエムベーハー・ウント・コー・カーゲー Method for manufacturing ceramic parts and container therefor
JP4652255B2 (en) * 2006-03-08 2011-03-16 株式会社トクヤマ Repair method for sintered ceramics
CN102875153B (en) * 2012-09-27 2013-11-27 宁波伏尔肯机械密封件制造有限公司 Spray drying granulation method of silicon nitride ceramic powder used for mechanical sealing
CN113135760B (en) * 2021-04-20 2022-03-08 中材高新氮化物陶瓷有限公司 Preparation method of silicon nitride optical fiber structural member
CN113429211B (en) * 2021-08-27 2021-11-02 中南大学湘雅医院 Silicon nitride ceramic material and preparation method thereof
CN115196973B (en) * 2022-06-29 2023-10-17 苏州玄陶商务咨询有限公司 Multilayer silicon nitride ceramic implant and method for making same
CN115536403A (en) * 2022-09-22 2022-12-30 衡阳凯新特种材料科技有限公司 High-toughness silicon nitride ceramic material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661518A (en) * 2020-12-25 2021-04-16 中材高新氮化物陶瓷有限公司 High-thermal-conductivity silicon nitride ceramic insulating plate and preparation method thereof
CN112661518B (en) * 2020-12-25 2022-03-25 中材高新氮化物陶瓷有限公司 High-thermal-conductivity silicon nitride ceramic insulating plate and preparation method thereof

Also Published As

Publication number Publication date
JPH11157939A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
Eom et al. Processing and properties of macroporous silicon carbide ceramics: A review
Bahloul et al. Preparation of silicon carbonitrides from an organosilicon polymer: II, thermal behavior at high temperatures under argon
JP3127225B2 (en) Low temperature sintering aid for silicon nitride and sintering method
Guo et al. Effects of B4C on the microstructure and phase transformation of porous SiC ceramics
JP2882575B2 (en) High thermal conductive silicon nitride ceramics and method for producing the same
JP2615437B2 (en) High strength and high toughness silicon nitride sintered body and method for producing the same
Hirata et al. Synthesis of β-Si3N4 particles from α-Si3N4 particles
JPH01301565A (en) Sintered sialon having high strength and high oxidation resistance
CN109574680A (en) A kind of method that gas-solid reaction combination lqiuid phase sintering method prepares porous silicon nitride ceramic
Semen et al. Structural ceramics derived from a preceramic polymer
Wittmer et al. Development of β-Si 3 N 4 for Self-Reinforced Composites
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JP3810183B2 (en) Silicon nitride sintered body
JPH10226577A (en) Highly toughened silicon nitride sintered compact and its production
JPH10226576A (en) Method for increasing toughness of silicon nitride sintered compact
US5294574A (en) Production of nonoxide monolithic ceramic shaped articles
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2980342B2 (en) Ceramic sintered body
JP4796717B2 (en) Method for producing Si3N4-SiC composite sintered body
RU2117066C1 (en) Silicon carbide based powder material
JPH08208317A (en) Alumina sintered body and production thereof
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPH0672052B2 (en) High strength / high toughness sintered body and method for producing the same
JPS6346029B2 (en)
CN109467452B (en) Method for preparing porous nano silicon nitride ceramic by gas-solid reaction combined with liquid phase sintering method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term