JP3127033B2 - Electric car - Google Patents

Electric car

Info

Publication number
JP3127033B2
JP3127033B2 JP04035490A JP3549092A JP3127033B2 JP 3127033 B2 JP3127033 B2 JP 3127033B2 JP 04035490 A JP04035490 A JP 04035490A JP 3549092 A JP3549092 A JP 3549092A JP 3127033 B2 JP3127033 B2 JP 3127033B2
Authority
JP
Japan
Prior art keywords
battery
motor
current
torque command
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04035490A
Other languages
Japanese (ja)
Other versions
JPH05236607A (en
Inventor
一雄 名取
隆彦 山本
正 足利
孝行 水野
義則 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Co Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP04035490A priority Critical patent/JP3127033B2/en
Publication of JPH05236607A publication Critical patent/JPH05236607A/en
Application granted granted Critical
Publication of JP3127033B2 publication Critical patent/JP3127033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車に係り、特
に直流ブラシレスモータを駆動源とする電気自動車のト
ルク制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle, and more particularly to a torque control device for an electric vehicle driven by a DC brushless motor.

【0002】[0002]

【従来の技術】電気自動車は、バッテリを直流電源と
し、直流モータ又は交流モータの駆動力を車輪に直結で
又はギヤを介在して伝達し、モータの速度制御又はトル
ク制御によって所期の駆動力を得るようにしている。
2. Description of the Related Art In an electric vehicle, a battery is used as a DC power source, and the driving force of a DC motor or an AC motor is transmitted directly to wheels or through a gear, and the desired driving force is controlled by controlling the speed or torque of the motor. I'm trying to get

【0003】例えば、図7に示す電気自動車は、4つの
車輪11〜14に夫々モータ21〜24を直結する4輪ダイ
レクト駆動型にされ、各モータ21〜24にはインバータ
1〜34から電流又は電圧制御された交流電力を供給
し、各インバータ31〜34の出力制御にはアクセルペダ
ル4の踏み角に連動するポテンショメータ5からトルク
指令又は速度指令を与える。6は各インバータ31〜34
に必要な直流電力を供給するバッテリである。
For example, an electric vehicle shown in FIG. 7, four is the wheel 1 1 to 1 4-wheel direct drive type to directly connect the respective motor 21 to 24 in 4, each motor 21 to 24 inverter 3 1 to 3 4 AC power supply that is a current or voltage control from the output control of the inverters 3 1 to 3 4 gives a torque command or speed command from the potentiometer 5 interlocked with the depression angle of the accelerator pedal 4. 6 is each inverter 3 1 to 3 4
Is a battery that supplies DC power necessary for the battery.

【0004】ところで、永久磁石により界磁磁束を得る
直流ブラシレスモータは、回転子に永久磁石の界磁を使
用し、その回転子の磁極位置を検出して、その位置信号
により固定子の電流(電機子電流)と磁束が常に直交す
るように電流を制御している。即ち、モータの電機子電
流とモータ誘起電圧とが同位相になるように制御するこ
とにより直流機と同様な特性を実現している。
A DC brushless motor that obtains a field magnetic flux by using a permanent magnet uses a field of a permanent magnet as a rotor, detects the position of a magnetic pole of the rotor, and outputs a current (current) of a stator based on the position signal. The current is controlled so that the armature current and the magnetic flux are always orthogonal. That is, by controlling the armature current of the motor and the motor induced voltage to have the same phase, characteristics similar to those of the DC machine are realized.

【0005】このような直流ブラシレスモータを電気自
動車の駆動源とする場合の制御装置は、ポテンショメー
タ5からトルク指令を得てインバータ31〜34の出力電
流を制御する構成にされる。
[0005] controller in the case of such a DC brushless motor as a drive source of an electric vehicle is the configuration for controlling the output current of the inverter 3 1 to 3 4 to obtain a torque command from the potentiometer 5.

【0006】この制御装置は例えば図8に示す構成にさ
れる。直流電源11からの直流電力はインバータ主回路
12によって制御されたPWM波形の電力出力に変換さ
れ、DCブラシレスモータ13の電機子電流として供給
される。モータ13の回転子位置はアブソリュートエン
コーダ14によって位相信号θとして検出される。指令
1refは乗算器151,152の乗数にされ、これら乗算
器151,152の被乗数には正弦波発生器16からの互
いに120度移相した正弦波信号にされる。この正弦波
位相はエンコーダ14び位相信号θに従って制御され
る。
This control device has, for example, the configuration shown in FIG. The DC power from the DC power supply 11 is converted into a power output of a PWM waveform controlled by the inverter main circuit 12 and supplied as an armature current of the DC brushless motor 13. The rotor position of the motor 13 is detected by the absolute encoder 14 as a phase signal θ. Command I 1ref is the multiplier of the multiplier 15 1, 15 2, the multiplicand of the multiplier 15 1, 15 2 are sinusoidal signals 120 ° phase-shifted from one another from the sine wave generator 16. The sine wave phase is controlled according to the encoder 14 and the phase signal θ.

【0007】乗算器151,152の出力にはモータ13
への3相入力のうちのu相とw相の正弦波電流指令
u,Iwが取り出され、これら電流指令Iu,Iwはモー
タ電流Iu′,Iw′をフィードバック信号とする電流制
御アンプ171,172によって比例・積分演算され、u
相とw相の電圧指令Vu,Vwとして取り出される。
The outputs of the multipliers 15 1 and 15 2 are connected to the motor 13.
Sine-wave current commands I u , I w of the three-phase input to the motor are extracted, and these current commands I u , I w use the motor currents I u ′, I w ′ as feedback signals. The proportional and integral calculations are performed by the current control amplifiers 17 1 and 17 2 , and u
Voltage command V u phase and w-phase, it is taken out as V w.

【0008】電圧指令Vu,Vwは加算器18によって加
算されることで該加算器19の出力にv相の電圧指令V
vが生成される。これら電圧指令Vu,Vw,VvはPWM
発生回路としてのコンパレータ191,192,193
比較入力にされ、比較基準に搬送波発生器20からの三
角波信号が与えられることで該コンパレータ191〜1
3の出力に正弦波近似のPWM波形が取り出され、こ
れらPWM波形がインバータ主回路12の各相ゲート信
号にされ、ゲート回路21によって増幅されてインバー
タ主回路12の各相スイッチ素子のドライブ信号にされ
る。
The voltage commands V u and V w are added by an adder 18 so that the output of the adder 19 provides a v-phase voltage command V
v is generated. These voltage commands V u , V w , V v are PWM
It is the comparison input of the comparator 19 1, 19 2, 19 3 as generating circuit, the comparator 19 1 to 1 by the triangular wave signal from the carrier generator 20 is provided to compare the reference
9 is PWM waveform of sine wave approximation retrieved third output, these PWM waveform is in phase gate signals of the inverter main circuit 12, the drive signal of each phase switching element is amplified by the gate circuit 21 inverter main circuit 12 To be.

【0009】[0009]

【発明が解決しようとする課題】直流ブラシレスモータ
を駆動源とする従来の電気自動車において、トルク指令
値はアクセルペダル4の踏み角に比例して上昇するポテ
ンショメータ5の出力になる。
In a conventional electric vehicle driven by a DC brushless motor, a torque command value is output from a potentiometer 5 which increases in proportion to the depression angle of an accelerator pedal 4.

【0010】一方、直流ブラシレスモータは、その回転
数が高くなるほどその誘起電圧も高くなる。このため、
同トルク指令を与えるもそのときのモータ回転数(電気
自動車の走行速度)によっては正常なトルク電流が供給
できなくなる。
On the other hand, the DC brushless motor has a higher induced voltage as its rotation speed increases. For this reason,
Even if the same torque command is given, a normal torque current cannot be supplied depending on the motor rotation speed (travel speed of the electric vehicle) at that time.

【0011】即ち、ポテンショメータから与えられるト
ルク指令値は、モータの低速域での最大トルクに対応づ
けられるため、高速域ではトルク指令に応じた電流を供
給するために必要な電源電圧を確保できなくなり、電流
をフィードバック制御する電流制御系ではアンプ1
1,172の出力が飽和し、この飽和出力は正弦波近似
のPWM制御では台形波に近くなると共に3相電流が不
均衡となり、正常なトルク電流供給ができなくなる。
That is, since the torque command value given from the potentiometer is associated with the maximum torque of the motor in a low speed range, it is impossible to secure a power supply voltage required to supply a current corresponding to the torque command in a high speed range. In the current control system for feedback control of the current, the amplifier 1
The outputs of 7 1 and 17 2 are saturated. In the PWM control of the sine wave approximation, the saturated output becomes close to a trapezoidal wave and the three-phase current becomes unbalanced, so that a normal torque current cannot be supplied.

【0012】上述の問題を解消するにはモータ回転数に
応じてトルク指令値を制限することが考えられるが、回
転数に応じた単なる制限では不適切な制限になる。
To solve the above-mentioned problem, it is conceivable to limit the torque command value according to the motor rotation speed. However, a mere limitation according to the rotation speed is inappropriate.

【0013】例えば、トルク指令値の過大な制限はアク
セルペダルの踏み角変更にも出力トルク制限によってト
ルク出力に変化が無くなり、電気自動車の加減速に違和
感を与えると共に加速性能,出力性能を悪くする。逆
に、トルク指令値の不足制限は上述の問題を起す。
For example, when the torque command value is excessively limited, the torque output does not change due to the output torque limitation even when the accelerator pedal is depressed, so that the acceleration / deceleration of the electric vehicle is uncomfortable and the acceleration performance and output performance are deteriorated. . Conversely, the shortage limitation of the torque command value causes the above-described problem.

【0014】また、最大出力トルクは直流電源としての
バッテリの放電深度による開放電圧変動や内部抵抗変化
によって生じる電圧ドロップ分が大きく影響し、トルク
指令値の単なる制限では不適切なものになる。
Further, the maximum output torque is greatly affected by the voltage drop caused by the open voltage fluctuation and the internal resistance change due to the depth of discharge of the battery as a DC power supply, and the mere limitation of the torque command value is inappropriate.

【0015】本発明の目的は、トルク指令値の過不足を
無くし、またアクセルペダルの踏み角に調和したトルク
指令値を得ることができる電気自動車を提供することに
ある。
An object of the present invention is to provide an electric vehicle capable of eliminating an excess and deficiency of a torque command value and obtaining a torque command value harmonized with the depression angle of an accelerator pedal.

【0016】[0016]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、車輪の駆動源になる直流ブラシレスモー
タと、アクセルペダルの踏み角をトルク指令TACCとし
該トルク指令に応じた電流指令に従って該モータの電機
子電流を制御するインバータと、該インバータの直流電
源になるバッテリとを備えた電気自動車において、前記
モータの回転数nとバッテリの開放電圧Voから前記ト
ルク指令の制限値Tmを次式
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a DC brushless motor serving as a driving source for a wheel, a step angle of an accelerator pedal being a torque command TACC, and a current corresponding to the torque command. an inverter for controlling the armature current of the motor according to the command, an electric vehicle that includes a battery composed of a DC power supply of the inverter, the torque command limit value from the open voltage V o of the speed n and the battery of the motor T m is given by

【0017】[0017]

【数2】 (Equation 2)

【0018】 但し、KT:トルク指令−電流指令変換係数 K1,K2:インバータ損失係数 KN:誘起電圧定数 Ra′:(1+Kf)Raa:モータ等価巻線抵抗 Kf:漂遊損失係数 Ri:バッテリ内部抵抗 Ko:モータ無負荷損失係数 に従って求めるリミッタ値演算部と、前記トルク指令T
ACCを前記制限値Tmで制限するリミッタ回路とを備えた
ことを特徴とする。
[0018] However, K T: Torque command - current command conversion coefficient K 1, K 2: inverter loss factor K N: induced voltage constant R a ': (1 + K f) R a R a: equivalent motor winding resistance K f : Stray loss coefficient R i : battery internal resistance K o : motor no-load loss coefficient
Characterized in that a limiter circuit for limiting the ACC with the limit value T m.

【0019】[0019]

【作用】直流ブラシレスモータの電機子電流をインバー
タで制御し、該インバータの直流電源をバッテリとする
ときの最大出力特性を図1を参照して説明する。
The maximum output characteristics when the armature current of the DC brushless motor is controlled by an inverter and the DC power supply of the inverter is a battery will be described with reference to FIG.

【0020】図1はモータ駆動系の1相分を示し、バッ
テリとインバータ及び直流ブラシレスモータの各定数は
次の通りである。
FIG. 1 shows one phase of the motor drive system. The constants of the battery, the inverter and the DC brushless motor are as follows.

【0021】 Vo:バッテリ開放電圧 Ri:バッテリ内部抵抗 ED、ID:インバータの直流入力電圧、電流 Va、Ia:インバータの交流出力電圧、電流 Eo:モータ誘起電圧(相電圧) Ra:モータ等価巻線抵抗(1相分) 図1の構成において、インバータの損失はWINVは、定
常損失及びスイッチング損失からなり、これを交流出力
電流Iaの関数として表わせば次式となる。
[0021] V o: the battery open voltage R i: battery internal resistance E D, I D: DC input voltage of the inverter, the current V a, I a: an AC output voltage of the inverter, the current E o: motor induced voltage (phase voltage ) R a : Motor equivalent winding resistance (for one phase) In the configuration of FIG. 1, the inverter loss W INV is a steady loss and a switching loss. If this is expressed as a function of the AC output current Ia , Becomes

【0022】WINV=K1a 2+K2a …(1) 但し、K1、K2:インバータ損失係数 次に、モータの全損失WIMは、一次銅損WCUと無負荷損
o及び漂遊負荷損Waを次式 WCU=3Raa 2 …(2−1) Wo=Ko・n1・6 …(2−2) Wa=KfCU …(2−3) とすれば、 WIM=WCU+Wo+Wa =(1+Kf)Raa 2+Ko・n1・6 =Ra′Ia 2+Ko1・6 …(3) となる。
W INV = K 1 Ia 2 + K 2 Ia (1) where K 1 and K 2 are inverter loss coefficients. Next, the total loss W IM of the motor is the primary copper loss W CU and the no-load loss. W o and the following equation stray load loss W a W CU = 3R a I a 2 ... (2-1) W o = K o · n 1 · 6 ... (2-2) W a = K f W CU ... ( if 2-3), W IM = W CU + W o + W a = (1 + K f) R a I a 2 + K o · n 1 · 6 = R a 'I a 2 + K o n 1 · 6 ... (3 ).

【0023】次に、インバータの直流入力側には図1の
関係より、 Vo−RiD=ED …(4) また、EDとVaの間に
Next, the DC input side of the inverter from the relation of FIG. 1, V o -R i I D = E D ... (4) In addition, between E D and V a

【0024】[0024]

【数3】 (Equation 3)

【0025】但し、μ:インバータ制御率 なる関係があり、さらに EDD=3Vaa …(6) なる関係が成立するものとすると、(5)〜(6)式か
[0025] However, mu: There is an inverter control rate relationship, further E D I D = 3V a I a ... (6) the relationship is assumed to be satisfied, from (5) - (6)

【0026】[0026]

【数4】 (Equation 4)

【0027】が成立する。Holds.

【0028】また、インバータの入出力とモータ損失の
関係から、 EDD=WINV+WIM+3Iao =K1a 2+K2a+Ra a 2 +3Iao =(K1+Ra′)Ia 2+(K2+3Eo)Ia …(8) が求まる。但し、(3)式中の無負荷損Wo(=Ko・n
1.6)は無視しており、これは最終的なトルクより無負
荷トルクとして差引くことにする。
Further, the relationship between the input and output and motor loss of the inverter, E D I D = W INV + W IM + 3I a E o = K 1 I a 2 + K 2 I a + R a 'I a 2 + 3I a E o = (K 1 + R a ′) I a 2 + (K 2 + 3E o ) I a (8) is obtained. However, the no-load loss W o in equation (3) (= K o · n
1.6 ) is neglected, and this will be deducted from the final torque as no-load torque.

【0029】上記(8)式に(4)式及び(7)式を代
入すると
By substituting equations (4) and (7) into equation (8),

【0030】[0030]

【数5】 (Equation 5)

【0031】となり、これを整理すると、[0031] When this is arranged,

【0032】[0032]

【数6】 (Equation 6)

【0033】となる。## EQU1 ##

【0034】従って、(10)式において、インバータ
制御率μを最大値の1とし、また Eo=KN・n …(11) T=KT・Ia …(12) 但し、T:モータトルク と表わされるため、回転数nに対する最大出力トルクT
mは下記式となる。
Therefore, in the equation (10), the inverter control rate μ is set to the maximum value of 1, and E o = K N · n (11) T = K T · I a (12) where T: motor , The maximum output torque T for the rotation speed n
m is given by the following equation.

【0035】[0035]

【数7】 (Equation 7)

【0036】上記(13)式により、バッテリのパラメ
ータ(Vo、Ri)とインバータのパラメータ(K1
2)及びモータのパラメータ(KT、KN、Ra′)は既
知の値であるから、回転数n毎の出力可能な最大トルク
mを求めることができる。
According to the above equation (13), the battery parameters (V o , R i ) and the inverter parameters (K 1 ,
Since K 2 ) and the parameters of the motor (K T , K N , R a ′) are known values, the maximum outputtable torque T m for each rotation speed n can be obtained.

【0037】より厳密には、無負荷損失Wo(=Ko・n
1・6)分のトルクを(13)式から減ずることにより
More precisely, the no-load loss W o (= K o · n
By subtracting 1-6) content of the torque from (13)

【0038】[0038]

【数8】 (Equation 8)

【0039】によって最大トルクTmが求められる。As a result, the maximum torque Tm is obtained.

【0040】この最大トルクTmは図2に例示するよう
になり、領域Aはインバータの最大許容電流で制限され
ることを示し、領域Bが回転数nに応じて決まる最大ト
ルクTmによる制限値になる。
[0040] The maximum torque the T m is as illustrated in FIG. 2, region A indicates that it is limited by the maximum allowable current of the inverter, limited by the maximum torque T m of region B is determined depending on the rotational speed n Value.

【0041】以上までのことから、本発明ではモータの
回転数nとバッテリの開放電圧Voから出力し得る最大
トルクTmにトルク指令値を制限し、過不足の生じない
トルク制御ができるようにする。
[0041] Since up to this, in the present invention limits the torque command value to the maximum torque T m which can be output from the open-circuit voltage V o of the speed n and the battery of the motor, so that it is torque control causing no excess and deficiency To

【0042】[0042]

【実施例】図3は本発明の一実施例を示す装置構成図で
あり、1組のトルク制御装置を示す。インバータ21は
例えば図8の制御装置構成にされ、電流指令値I1ref
応じた交流出力を直流ブラシレスモータ13に供給する
電流制御系を備える。ポテンショメータ5の出力になる
トルク指令TACCはリミッタ回路22による制限が加え
られてトルク信号Tにされ、このトルク信号Tはトルク
−電流変換演算器23によりトルクと電流の変換係数1
/KTが乗せられてインバータ21への電流指令I1ref
にされる。
FIG. 3 is a diagram showing the construction of an apparatus according to an embodiment of the present invention, showing a set of torque control devices. The inverter 21 has, for example, the control device configuration of FIG. 8 and includes a current control system that supplies an AC output corresponding to the current command value I 1ref to the DC brushless motor 13. The torque command T ACC to be output from the potentiometer 5 is limited by the limiter circuit 22 and is converted into a torque signal T. The torque signal T is converted by the torque-current conversion calculator 23 into a torque-current conversion coefficient 1.
/ K T and the current command I 1ref to the inverter 21
To be.

【0043】ここで、リミッタ回路22のリミッタ値T
mはリミッタ値演算部24により与えられる。この演算
には直流ブラシレスモータ13の回転数n及びバッテリ
11の開放電圧Voからリミッタ値Tmが前述の(14)
式又は(13)式から求められる。
Here, the limiter value T of the limiter circuit 22
m is given by the limiter value calculator 24. Limiter value T m from the open voltage V o of the rotational speed n and the battery 11 in this operation DC brushless motor 13 of the aforementioned (14)
It is obtained from the equation or the equation (13).

【0044】このように、トルク指令値TACCをリミッ
タ回路22とリミッタ値演算部24により最大トルクT
mに制限することにより、回転数に応じた最適なトルク
指令値以内に制限し、スムーズな駆動かつ安定した駆動
が可能となる。
As described above, the torque command value T ACC is converted into the maximum torque T ACC by the limiter circuit 22 and the limiter value calculator 24.
By limiting to m , the torque is limited to within an optimal torque command value according to the number of revolutions, and smooth driving and stable driving can be performed.

【0045】なお、リミッタ値演算部24は、インバー
タの最大許容電流で制限される領域A(図2参照)では
最大トルクTmをアクセルストローク100%時のトル
ク指令値Tmaxに制限する。この演算は IF Tm>Tmax THEN Tm=Tmax の条件式によって実現される。
The limiter value calculator 24 limits the maximum torque Tm to the torque command value Tmax when the accelerator stroke is 100% in a region A (see FIG. 2) limited by the maximum allowable current of the inverter. This calculation is realized by a conditional expression of IF Tm > Tmax THEN Tm = Tmax .

【0046】図4は本発明の他の実施例を示す装置構成
図である。同図が図3と異なる部分は、リミッタ回路2
2に代えて、フルスケール調整部25を設けた点にあ
る。
FIG. 4 is a diagram showing the configuration of an apparatus according to another embodiment of the present invention. 3 is different from FIG. 3 in that the limiter circuit 2
2 in that a full scale adjustment unit 25 is provided.

【0047】フルスケール調整部25は、トルク指令値
ACCに対し次式からトルク指令Tを求める。
The full-scale adjusting unit 25 obtains a torque command T from the following equation for the torque command value TACC .

【0048】T=TACC×(Tm/Tmax) …(15) 本実施例の作用効果を説明する。まず、前述の実施例で
はリミッタ値演算部24によってトルク指令値TACC
最大トルクTmに制限される。このときの制限特性は図
2に示すようにモータ回転数nに応じて最大トルクTm
が決まる。
T = T ACC × (T m / T max ) (15) The operation and effect of this embodiment will be described. First, the torque command value T ACC is restricted to a maximum torque T m by limiter value calculating unit 24 in the embodiment described above. The limiting characteristic at this time is, as shown in FIG. 2, the maximum torque T m according to the motor speed n.
Is determined.

【0049】この制限特性において、領域Bではアクセ
ルを最大に踏み混むも最大トルクTmに制限され、アク
セルの踏み角変更にもトルク指令Tが変化しない「あそ
び領域」が生ずる。
In this limiting characteristic, in the area B, the accelerator pedal is depressed to the maximum, but the torque is limited to the maximum torque Tm , so that there is an "play area" in which the torque command T does not change even when the accelerator pedal angle is changed.

【0050】例えば、モータ回転数n90ではそのときの
最大トルクTm90に制限され、あそび領域Cの範囲内で
はアクセル踏み角変更にも最大トルクTm90で制限され
る。このため、あそび領域Cではアクセルの踏込み、戻
しにも電気自動車の加減速が無く、運転者に違和感を与
える。特に、モータ回転数100%付近ではアクセルを
少し踏込むだけで指令値Tが最大トルクTmになって該
値に制限されてしまう。
[0050] For example, it is limited to a maximum torque T m90 at the time the motor rotational speed n 90, in a range of play region C is limited by the maximum torque T m90 to the accelerator depression angle changes. For this reason, in the play area C, there is no acceleration or deceleration of the electric vehicle even when the accelerator is depressed or returned, which gives the driver an uncomfortable feeling. In particular, in the vicinity of 100% of the motor rotation speed, the command value T becomes the maximum torque Tm and is limited to the maximum torque Tm even if the accelerator is slightly depressed.

【0051】上述のあそび領域Cによるアクセル踏込み
の違和感を無くすため、本実施例ではフルスケール調整
部25によりモータ回転数に応じてアクセルのフルスト
ロークに対するトルク指令を調整する。
In this embodiment, the torque command for the full stroke of the accelerator is adjusted by the full-scale adjusting unit 25 in accordance with the motor speed in order to eliminate the uncomfortable feeling of stepping on the accelerator due to the play area C.

【0052】例えば、モータ回転数n90では最大トルク
mがTm90として与えられ、アクセルフルストローク時
のトルク指令値Tmaxとの比Tm90/Tmaxによってトル
ク指令値TACCが比例配分され、トルク指令Tは T=TACC×(Tm90/Tmax) となる。
For example, at the motor rotation speed n 90 , the maximum torque T m is given as T m90 , and the torque command value T ACC is proportionally distributed according to the ratio T m90 / T max to the torque command value T max at the time of the accelerator full stroke. , And the torque command T is T = T ACC × (T m90 / T max ).

【0053】このとき、フルスケール調整部25による
制限特性は図2の最大トルクTmとトルクTm90の線で囲
まれた範囲になり、アクセル踏み角最大時のトルク指令
値TmaxがTm90になる。従って、アクセル踏み角の変更
に応じて出力トルクが変化し、アクセルの踏込み量に調
和した電気自動車の加減速を得ることができる。
At this time, the limiting characteristic of the full scale adjusting unit 25 is in a range surrounded by a line between the maximum torque Tm and the torque Tm90 in FIG. 2, and the torque command value Tmax at the maximum accelerator pedal depression angle is Tm90. become. Therefore, the output torque changes in accordance with the change in the accelerator pedal depression angle, and acceleration / deceleration of the electric vehicle that matches the accelerator pedal depression amount can be obtained.

【0054】図5は本発明の他の実施例を示す装置構成
図である。同図が図4と異なる部分は、バッテリパラメ
ータ推定部26を設けた点にある。
FIG. 5 is a block diagram of the apparatus showing another embodiment of the present invention. 4 differs from FIG. 4 in that a battery parameter estimating unit 26 is provided.

【0055】バッテリパラメータ推定部26は、リミッ
タ値演算部24の演算に必要なバッテリパラメータ
o、Riを推定し、この推定値を最大トルクTmの演算
に供する。
[0055] battery parameter estimating unit 26, a battery parameter V o required for the operation of the limiter value calculation unit 24, estimates the R i, subjecting the estimated value in the calculation of the maximum torque T m.

【0056】バッテリパラメータVo、Riは、前述の実
施例では既知のもの又は一部検出値として最大トルクT
mを求めるが、バッテリの放電深度に対して図6に示す
特性のように変化し、また特性はバッテリの種類等によ
って異なる。
[0056] Battery parameters V o, R i is the maximum torque T as or part detection value is known in the above-described embodiment
Although m is obtained, the characteristic varies with the depth of discharge of the battery as shown in FIG. 6, and the characteristic differs depending on the type of the battery.

【0057】そこで、本実施例ではバッテリパラメータ
推定部26によってバッテリパラメータを推定すること
で一層適切なトルク制限を行なう。
Therefore, in this embodiment, the torque is more appropriately limited by estimating the battery parameter by the battery parameter estimator 26.

【0058】バッテリパラメータ推定部26による推定
には、次の何れかの方式にされる。
The estimation by the battery parameter estimating unit 26 is performed by any of the following methods.

【0059】(1)放電電流量からバッテリの放電深度
を求め、この放電深度とバッテリ特性からパラメータを
求める方式。
(1) A method of obtaining the depth of discharge of a battery from the amount of discharge current and obtaining parameters from the depth of discharge and battery characteristics.

【0060】(2)モータ制御の停止時にインバータの
入力電圧EDと入力電流IDからパラメータを求める方
式。
(2) A method for obtaining parameters from the input voltage E D and input current I D of the inverter when the motor control is stopped.

【0061】上述の(1)の方式では、まずインバータ
入力電流IDを検出し、この時間積分演算によって放電
電流量AH(アンペアアワー)を求める。
In the above method (1), first, the inverter input current ID is detected, and the discharge current amount AH (ampere hour) is obtained by this time integration operation.

【0062】[0062]

【数9】 (Equation 9)

【0063】放電深度DODは、バッテリの満充電時の
充電電流量AHoと上記放電電流量AHから次式によっ
て求められる。
The depth of discharge DOD is obtained from the charge current amount AH o when the battery is fully charged and the discharge current amount AH by the following equation.

【0064】[0064]

【数10】 (Equation 10)

【0065】この放電深度DODと予め測定されるバッ
テリの開放電圧Vo特性及び内部抵抗Ri特性からパラメ
ータVo、Riをオンライン推定する。なお、バッテリ特
性はテーブルデータとしてROM等に書込んでおくこと
ができる。
Parameters V o and R i are estimated online from the depth of discharge DOD and the previously measured open circuit voltage V o characteristics and internal resistance R i characteristics of the battery. The battery characteristics can be written as table data in a ROM or the like.

【0066】次に、(2)の方式を説明する。開放電圧
oは、バッテリの無負荷状態の出力電圧であるから、
電気自動車が停止した時点や惰行運転時などモータ制御
の停止時の電圧検出によって得ることができる。
Next, the method (2) will be described. Open-circuit voltage V o, since the output voltage of the no-load state of the battery,
It can be obtained by voltage detection when the motor control is stopped, such as when the electric vehicle stops or during coasting operation.

【0067】これにより、インバータの入力電圧ED
電流IDを適当な時間間隔でサンプリングし、電流ID
0のときの電圧EDを検出し開放電圧Voとする。次に、
電流ID>0になるモータ駆動時の電圧EDと電流ID
検出値と前述の(4)式から内部抵抗Riを Ri=(ED−Vo)/ID …(18) として求めることができる。これら演算はサンプリング
周期毎に行ない、オンラインで推定値を求める。
As a result, the input voltage E D of the inverter,
The current ID is sampled at appropriate time intervals, and the current ID =
It detects the voltage E D at the time of the 0 and the open-circuit voltage V o. next,
Current I D> detection value of the voltage E D and the current I D at the time of motor drive becomes 0 and the internal resistance R i from the above equation (4) R i = (E D -V o ) / I D ... (18 ). These calculations are performed for each sampling period, and an estimated value is obtained online.

【0068】なお、上述までの2つの推定方式におい
て、(1)の方式は長時間に渡る累積計算を行うことに
よる累積誤差が発生することがある。一方、(2)の方
式は連続走行時などモータ制御が続くときに電流ID
0における電圧EDの測定機会が長時間に渡って得られ
ないことがある。このような事実から(1)の方式及び
(2)の方式を併用してバッテリパラメータVo、Ri
推定することで推定誤差を小さくすることができる。
In the two estimation methods described above, the method (1) may cause a cumulative error due to performing a long-time cumulative calculation. On the other hand, in the method (2), when the motor control is continued such as during continuous running, the current ID =
There may be a measurement occasion voltage E D not obtained over a long period of time at 0. From such a fact, the estimation error can be reduced by estimating the battery parameters V o and R i using both the methods (1) and (2).

【0069】[0069]

【発明の効果】以上のとおり、本発明によれば、直流ブ
ラシレスモータの回転数nとバッテリの開放電圧Vo
らモータが出力し得る最大トルクTmにトルク指令値T
ACCを制限するようにしたため、トルク制御に過不足を
無くした適切なモータ制御ができる。
As evident from the foregoing description, according to the present invention, the torque command value to the maximum torque T m of the motor can be outputted from the open-circuit voltage V o of the speed n and the battery of the DC brushless motor T
Since the ACC is limited, it is possible to perform appropriate motor control without excessive or insufficient torque control.

【0070】また、トルク制限にフルスケール調整を付
加することでアクセルの踏込みと出力トルク変化に違和
感を無くすことができ、さらにバッテリのパラメータ推
定を行なうことで一層確実なトルク制限を得ることがで
きる。
Further, by adding full-scale adjustment to the torque limitation, it is possible to eliminate the sense of incongruity in the accelerator pedal depression and the change in the output torque, and it is possible to obtain a more reliable torque limitation by estimating the battery parameters. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】モータ駆動系の回路図。FIG. 1 is a circuit diagram of a motor drive system.

【図2】本発明の制限特性例を示す図。FIG. 2 is a diagram showing an example of a limiting characteristic of the present invention.

【図3】実施例の装置構成図。FIG. 3 is a configuration diagram of an apparatus according to an embodiment.

【図4】他の実施例の装置構成図。FIG. 4 is a device configuration diagram of another embodiment.

【図5】他の実施例の装置構成図。FIG. 5 is an apparatus configuration diagram of another embodiment.

【図6】バッテリの特性図。FIG. 6 is a characteristic diagram of a battery.

【図7】電気自動車の構成図。FIG. 7 is a configuration diagram of an electric vehicle.

【図8】直流ブラシレスモータの制御装置構成図。FIG. 8 is a configuration diagram of a control device of a DC brushless motor.

【符号の説明】[Explanation of symbols]

11…バッテリ、13…直流ブラシレスモータ、22…
リミッタ回路、23…トルク−電流変換演算器、24…
リミッタ値演算部、25…フルスケール調整部、26…
バッテリパラメータ推定部。
11 ... battery, 13 ... DC brushless motor, 22 ...
Limiter circuit, 23 ... torque-current conversion calculator, 24 ...
Limiter value calculation unit, 25 ... full scale adjustment unit, 26 ...
Battery parameter estimation unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 足利 正 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (72)発明者 水野 孝行 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (72)発明者 中野 義則 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (56)参考文献 特開 平1−218376(JP,A) 実開 平1−120702(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60L 1/00 - 15/42 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tadashi Ashikaga 2-1-117 Osaki, Shinagawa-ku, Tokyo, Japan Inside the Meidensha Corporation (72) Inventor Takayuki Mizuno 2-1-117, Osaki, Shinagawa-ku, Tokyo Meidensha Corporation (72) Inventor Yoshinori Nakano 2-1-17-1 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd. (56) References JP-A-1-218376 (JP, A) JP-A-1-120702 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) B60L 1/00-15/42

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 車輪の駆動源になる直流ブラシレスモー
タと、アクセルペダルの踏み角をトルク指令TACCとし
該トルク指令に応じた電流指令に従って該モータの電機
子電流を制御するインバータと、該インバータの直流電
源になるバッテリとを備えた電気自動車において、前記
モータの回転数nとバッテリの開放電圧Voから前記ト
ルク指令の制限値Tmを次式 【数1】 但し、KT:トルク指令−電流指令変換係数 K1,K2:インバータ損失係数 KN:誘起電圧定数 Ra′:(1+Kf)Raa:モータ等価巻線抵抗 Kf:漂遊損失係数 Ri:バッテリ内部抵抗 Ko:モータ無負荷損失係数 に従って求めるリミッタ値演算部と、前記トルク指令T
ACCを前記制限値Tmで制限するリミッタ回路とを備えた
ことを特徴とする電気自動車。
A brushless DC motor serving as a drive source for a wheel; an inverter for controlling an armature current of the motor in accordance with a current command corresponding to a torque command TACC with an accelerator pedal depression angle as a torque command TACC ; in an electric vehicle that includes a battery composed of a DC power source, the rotational speed n and the open circuit voltage following equation ## EQU1 ## the limit value T m of a said torque command from V o of the battery of the motor However, K T: Torque command - current command conversion coefficient K 1, K 2: inverter loss factor K N: induced voltage constant R a ': (1 + K f) R a R a: equivalent motor winding resistance K f: stray loss Coefficient R i : battery internal resistance K o : motor no-load loss coefficient
Electric vehicle is characterized in that a limiter circuit for limiting the ACC with the limit value T m.
【請求項2】 前記リミッタ回路に代えて、前記リミッ
タ値演算部からの制限値Tmと前記インバータの最大許
容電流で制限されるトルク指令値Tmaxとから前記トル
ク指令TACCを T=TACC×(Tm/Tmax) に制限するフルスケール調整部を備えたことを特徴とす
請求項1記載の電気自動車。
2. In place of the limiter circuit, the torque command T ACC is calculated from the limit value T m from the limit value calculation unit and the torque command value T max limited by the maximum allowable current of the inverter, T = T 2. The electric vehicle according to claim 1, further comprising a full-scale adjustment unit for limiting ACC × ( Tm / Tmax ).
【請求項3】 前記バッテリの開放電圧Vo及び内部抵
抗Riをバッテリの放電深度とバッテリ特性から求める
バッテリパラメータ推定部を備えたことを特徴とする
求項1記載の電気自動車。
3. 請, characterized in that the open-circuit voltage V o and the internal resistance R i of the battery with a battery parameter estimating unit for determining the depth of discharge and battery characteristics of the battery
The electric vehicle according to claim 1 .
【請求項4】 前記バッテリの開放電圧Voをモータ制
御の停止時の電圧EDとして求め、モータ制御中の電流
Dと該電圧Vo、EDから内部抵抗Riを求めるバッテリ
パラメータ推定部を備えたことを特徴とする請求項1記
載の電気自動車。
Sought wherein the open-circuit voltage V o of the battery as the voltage E D at a stop motor control, battery parameter estimation current I D and the voltage V o in the motor control, the E D obtains the internal resistance R i 2. The device according to claim 1, further comprising:
Onboard electric car.
JP04035490A 1992-02-24 1992-02-24 Electric car Expired - Lifetime JP3127033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04035490A JP3127033B2 (en) 1992-02-24 1992-02-24 Electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04035490A JP3127033B2 (en) 1992-02-24 1992-02-24 Electric car

Publications (2)

Publication Number Publication Date
JPH05236607A JPH05236607A (en) 1993-09-10
JP3127033B2 true JP3127033B2 (en) 2001-01-22

Family

ID=12443191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04035490A Expired - Lifetime JP3127033B2 (en) 1992-02-24 1992-02-24 Electric car

Country Status (1)

Country Link
JP (1) JP3127033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2481626A3 (en) * 2011-01-26 2016-12-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electric vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984208A (en) * 1995-09-14 1997-03-28 Denso Corp Electric car controller
JP4066914B2 (en) * 2003-08-25 2008-03-26 富士電機システムズ株式会社 Motor drive control device
JP4584687B2 (en) * 2004-11-24 2010-11-24 住友建機株式会社 Swivel control device for construction machinery
JP5353025B2 (en) * 2008-02-20 2013-11-27 パナソニック株式会社 Control device for electric compressor
WO2023032182A1 (en) * 2021-09-06 2023-03-09 三菱電機株式会社 Electric motor monitoring device and electric motor monitoring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2481626A3 (en) * 2011-01-26 2016-12-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electric vehicle

Also Published As

Publication number Publication date
JPH05236607A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
KR950015169B1 (en) Control system for induction motor driven electric car
JP3467961B2 (en) Control device for rotating electric machine
US7006906B2 (en) Electric drive control apparatus, method and program therefor
US5444351A (en) System and method for controlling induction motor applicable to electric motor-driven vehicle
WO2007007387A1 (en) Controller of field winding type synchronous motor, electric drive system, electric four wheel driving vehicle, and hybrid automobile
JPH07163011A (en) Control equipment of automobile
JP2000312496A (en) Control method for induction motor
JPH07212915A (en) Control method for electric vehicle drive motor
JPH0583976A (en) Alternating current motor controller and electric rolling stock controller with this
JP3127033B2 (en) Electric car
US10547261B2 (en) Variable magnetization machine controller
JP3259735B2 (en) Electric car
US11394326B2 (en) Control method and control device for electric vehicle
JP3538667B2 (en) Control device for inverter-controlled vehicle
KR101192199B1 (en) Motor controlling apparatus, electronic vehicle having the apparatus, and motor controlling method of the same
JP3351244B2 (en) Induction motor speed control method
JP3736551B2 (en) Induction motor speed control method
JP6663724B2 (en) Electric motor device
JP4128891B2 (en) Motor control device
JP3525397B2 (en) Control device for traveling vehicles
JP4120503B2 (en) Induction motor control method
JP3331784B2 (en) Induction machine magnetic flux controller
JPH11235075A (en) Flat linear induction motor
JPH0424957B2 (en)
JP2946157B2 (en) Induction motor speed control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12