JP3538667B2 - Control device for inverter-controlled vehicle - Google Patents

Control device for inverter-controlled vehicle

Info

Publication number
JP3538667B2
JP3538667B2 JP36215097A JP36215097A JP3538667B2 JP 3538667 B2 JP3538667 B2 JP 3538667B2 JP 36215097 A JP36215097 A JP 36215097A JP 36215097 A JP36215097 A JP 36215097A JP 3538667 B2 JP3538667 B2 JP 3538667B2
Authority
JP
Japan
Prior art keywords
vehicle
inverter
speed
estimated
idling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36215097A
Other languages
Japanese (ja)
Other versions
JPH11178107A (en
Inventor
棚町  徳之助
鈴木  優人
安藤  武
豊田  瑛一
筒井  義雄
仲田  清
安田  高司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP36215097A priority Critical patent/JP3538667B2/en
Publication of JPH11178107A publication Critical patent/JPH11178107A/en
Application granted granted Critical
Publication of JP3538667B2 publication Critical patent/JP3538667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インバータ制御車
両の制御装置に係り、特に、空転量の推定と再粘着制御
の技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an inverter-controlled vehicle, and more particularly, to a technique for estimating an idling amount and controlling re-adhesion.

【0002】[0002]

【従来の技術】インバータ制御車両では、駆動輪が空転
すると、再粘着するように、駆動輪を駆動する誘導電動
機のトルクを制御することがよく知られている。空転検
出方法としては、空転している駆動輪の回転数(速度換
算値)と車両速度の偏差に基づいて求めるが、この際、
空転量を正確に検出できれば、再粘着制御が理想的に実
行できる。このためには、車両速度を正確に知る必要が
ある。車両速度は、付随車の非駆動輪の回転数より検出
できるが、そのためには、非駆動輪の回転数検出手段を
取り付ける必要があり、また、空転量の検出誤差を小さ
くするためには、非駆動輪と駆動輪の車輪径の差を補正
する必要がある。非駆動輪が利用できない場合、車両速
度の推定法として、「インバータ車両の空転滑走制御」
(平成2年電気学会産業応用部門全国大会の講演論文集
…以下、文献と称す。)に、同一インバータによって
制御される複数の誘導電動機の回転周波数(速度換算
値)を比較して基準速度を決め、この基準速度とその一
階微分値から推定することが記載されている。また、
「VVVFインバータ駆動制御電気機関車の再粘着制
御」(平成2年電気学会産業応用部門全国大会の講演論
文集…以下、文献と称す。)に、誘導電動機の回転周
波数(速度換算値)と前回の車両推定速度との偏差を計
算し、その偏差をリミッタを通して積分することによ
り、今回の車両推定速度を得ることが記載されている。
2. Description of the Related Art In an inverter-controlled vehicle, it is well known that the torque of an induction motor that drives a drive wheel is controlled so that the drive wheel re-adheres when the drive wheel idles. As a method of detecting the idling, it is obtained based on a deviation between the rotational speed (speed conversion value) of the idling driving wheel and the vehicle speed.
If the idling amount can be accurately detected, the readhesion control can be ideally performed. For this purpose, it is necessary to know the vehicle speed accurately. The vehicle speed can be detected from the rotation speed of the non-driving wheels of the accompanying vehicle.To that end, it is necessary to attach a rotation speed detection means for the non-driving wheels, and to reduce the detection error of the idling amount, It is necessary to correct the difference in wheel diameter between the non-driven wheels and the driven wheels. When the non-driving wheels are not available, the method of estimating the vehicle speed is "slip control of inverter vehicle"
(The collection of lectures of the National Conference of the Industrial Applications Division of the Institute of Electrical Engineers of Japan in 1991, hereinafter referred to as the literature) compares the rotation frequency (converted speed value) of multiple induction motors controlled by the same inverter to determine the reference speed. It is described that the value is determined and estimated from this reference speed and its first derivative. Also,
"VVVF inverter drive control Re-adhesion control of electric locomotive" (collection of lectures of the National Institute of Electrical and Industrial Engineers of Japan in 1990. Hereinafter referred to as literature), the rotation frequency (speed conversion value) of the induction motor and the previous It is described that a deviation from the estimated vehicle speed is calculated, and the deviation is integrated through a limiter to obtain a current estimated vehicle speed.

【0003】[0003]

【発明が解決しようとする課題】文献の車両速度の推
定法では、複数の誘導電動機つまり各駆動輪が全部空転
した場合、車両推定速度は実際値より大きくなる。すな
わち、推定空転量は実際値より小さくなり、推定空転量
の誤差が大きくなる。文献の車両速度の推定法では、
リミッタが作動しない通常の加速時(非空転)に、誘導
電動機の回転周波数の変化率(加速度換算値)に応じて
車両推定速度に誤差が生じる。また、空転が発生し、リ
ミッタが作動しても、そのリミット値が一定のため、リ
ミット値と車両の実加速度の差が大きいと、車両推定速
度は実際値より大きくなる。すなわち、推定空転量は実
際値より小さくなり、推定空転量の誤差が大きくなる。
以上のように、上記の車両速度の推定法では、推定空転
量の誤差が大きくなる可能性が高い、という課題があ
る。従って、この推定空転量に基づいてトルクを制御し
ても、粘着性能を向上させることは困難である。
According to the vehicle speed estimating method described in the literature, when a plurality of induction motors, that is, all the driving wheels are idle, the vehicle estimated speed becomes larger than the actual value. That is, the estimated idling amount becomes smaller than the actual value, and the error of the estimated idling amount increases. In the vehicle speed estimation method in the literature,
During normal acceleration (non-slip) in which the limiter does not operate, an error occurs in the estimated vehicle speed according to the rate of change (acceleration converted value) of the rotation frequency of the induction motor. Further, even if the slip occurs and the limiter is activated, the limit value is constant. Therefore, if the difference between the limit value and the actual acceleration of the vehicle is large, the estimated vehicle speed becomes larger than the actual value. That is, the estimated idling amount becomes smaller than the actual value, and the error of the estimated idling amount increases.
As described above, the above-described method of estimating the vehicle speed has a problem that the error in the estimated slip amount is likely to be large. Therefore, it is difficult to improve the adhesion performance even if the torque is controlled based on the estimated slip amount.

【0004】本発明の課題は、空転量の推定精度を高
め、この推定空転量に基づいてトルク制御つまり再粘着
制御を行うことにより、レール状態に見合ったトルクに
よって車両を加速するに好適なインバータ制御車両の制
御装置を提供することにある。
An object of the present invention is to increase the accuracy of estimating the amount of idling and perform torque control, that is, re-adhesion control based on the estimated amount of idling, so that an inverter suitable for accelerating the vehicle with a torque corresponding to the rail condition. An object of the present invention is to provide a control device for a control vehicle.

【0005】[0005]

【課題を解決するための手段】上記課題は、車両駆動用
誘導電動機を駆動するインバータと、このインバータを
制御するインバータ制御手段と、このインバータ制御手
段に与えるトルク指令若しくはこれに相当する指令を発
生する電流指令発生手段と、車両の実加速度より大きい
値で設定される基準加速度信号と前記電動機の回転周波
数を速度換算した信号とに基づいて車両速度を推定する
手段と、この車両推定速度と前記回転周波数の速度換算
信号との偏差に応じて前記基準加速度信号を調整する手
段と、前記偏差に基づいてインバータ制御手段に作用し
て前記電動機が発生するトルクを制御する再粘着制御手
段とを備えたインバータ制御車両の制御装置において、
基準加速度信号の調整手段は、通常時(非空転時)に
は、車両速度を推定する手段に与える加速度信号が車両
の実加速度と等しくなるように、車両の実加速度より大
きい基準加速度信号の調整量を出力し、空転時には、空
転前の基準加速度信号の調整量を保持する手段を有し、
該基準加速度信号の調整量は、前記電動機の回転周波数
の速度換算値から車両推定速度を減算して得た推定空転
量が負になるとき、この負の推定空転量を係数倍した値
とこの係数倍した値を一次遅れ要素を介して得た値とを
比較し、小さい方の値を選択して調整量として求める
とによって、解決される。
SUMMARY OF THE INVENTION The above object is for a vehicle drive.
An inverter that drives the induction motor and this inverter
An inverter control means for controlling the inverter;
Issues a torque command given to the gear or an equivalent command.
Generated current command generation means, and greater than the actual acceleration of the vehicle
Reference acceleration signal set by value and rotation frequency of the motor
Estimate vehicle speed based on speed converted signal
Means and a speed conversion between the estimated vehicle speed and the rotation frequency.
A means for adjusting the reference acceleration signal according to a deviation from the signal.
And acting on the inverter control means based on the deviation.
Re-adhesion control means for controlling the torque generated by the electric motor
And a control device for an inverter-controlled vehicle comprising
The adjustment means for the reference acceleration signal is normally used (during non-idling).
Means that the acceleration signal given to the means for estimating the vehicle speed
Greater than the actual acceleration of the vehicle so that it is equal to the actual acceleration of the vehicle.
Outputs the reference acceleration signal adjustment amount.
Means for holding the adjustment amount of the reference acceleration signal before turning,
The adjustment amount of the reference acceleration signal is determined by the rotation frequency of the electric motor.
Estimated slip obtained by subtracting the estimated vehicle speed from the speed conversion value of
When the amount becomes negative, the value obtained by multiplying this negative estimated amount of slip by a factor
And the value obtained by multiplying this coefficient by the first order lag element
The problem is solved by comparing and selecting the smaller value to obtain the adjustment value .

【0006】本発明の構成によれば、非空転時おいて、
基準加速度信号は車両の実加速度より大きいため、車両
推定速度は誘導電動機の回転周波数(速度換算値)より
大きくなろうとするが、両者が等しくなるように、車両
推定速度は誘導電動機の回転周波数(速度換算値)を上
回る量に応じて、基準加速度信号が調整される。すなわ
ち、調整後の基準加速度信号は車両の実加速度とほぼ等
しくなる。空転が発生すると、車両推定速度は、しばら
くの間、空転前の車両の実加速度に近い値(調整された
基準加速度信号)で変化するので、推定空転量の精度は
高められる。従って、この推定空転量に基づいて、トル
ク制御つまり再粘着制御を行うことにより、レール状態
に見合ったトルクによって車両を加速できる。
According to the configuration of the present invention, during non-idling,
Since the reference acceleration signal is larger than the actual acceleration of the vehicle, the estimated vehicle speed tends to be higher than the rotation frequency (speed converted value) of the induction motor, but the estimated vehicle speed is equal to the rotation frequency of the induction motor ( The reference acceleration signal is adjusted according to the amount exceeding the speed conversion value. That is, the adjusted reference acceleration signal becomes substantially equal to the actual acceleration of the vehicle. When the slip occurs, the estimated vehicle speed changes for a while at a value close to the actual acceleration of the vehicle before the slip (adjusted reference acceleration signal), so that the accuracy of the estimated slip amount is increased. Therefore, by performing torque control, that is, re-adhesion control based on the estimated amount of idling, the vehicle can be accelerated with a torque corresponding to the rail state.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の一実施形態によるイ
ンバータ制御車両の制御装置を示す。図1において、1
は直流架線、2は架線1から供給される直流電力を3相
交流電力に変換するPWM(パルス幅変調)インバー
タ、3はインバータ2によって駆動される車両駆動用誘
導電動機、4はインバータ2の出力電圧及び出力周波数
を制御するインバータ制御手段、5は応荷重指令、ノッ
チ指令及び誘導電動機3の回転周波数Frに基づいて、
トルク電流指令Iqpoと励磁電流指令Idpoを発生
する電流指令発生手段である。インバータ制御手段4に
は、トルク電流指令Iqpoから後述する再粘着制御手
段9の出力△Iqpを減算手段107によって減算した
トルク電流指令Iqpが与えられ、また、励磁電流指令
Idpoがそのまま与えられる。ここで、インバータ制
御手段4の動作について述べる。インバータ制御手段4
では、トルク電流指令Iqpが与えられると、このトル
ク電流指令Iqpから検出手段101により検出したト
ルク電流Iqを減算手段41によって減算し、この電流
偏差を電流制御手段42に与える。電流制御手段42
は、その電流偏差が0となるように、トルク電流指令I
qpの調整量△Iqを出力する。この調整量△Iqをト
ルク電流指令Iqpに加算手段43によって加算し、ト
ルク電流指令Iq*を得る。ベクトル演算手段44で
は、トルク電流指令Iq*と励磁電流指令Idpo及び
検出手段102により検出した誘導電動機3の回転周波
数Frを受けて、インバータ2の出力周波数指令Fin
とインバータ2の出力電圧指令Vm及びこのVmの位相
指令θを出力する。そして、これらの指令を受けて、P
WM制御手段45はインバータ2を構成するスイッチン
グ素子が所定の動作を行うような信号を出力する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a control device for an inverter-controlled vehicle according to an embodiment of the present invention. In FIG. 1, 1
Is a DC overhead line, 2 is a PWM (pulse width modulation) inverter for converting DC power supplied from the overhead line 1 into three-phase AC power, 3 is a vehicle driving induction motor driven by the inverter 2, and 4 is an output of the inverter 2 Inverter control means 5 for controlling the voltage and the output frequency, based on the adaptive load command, the notch command and the rotation frequency Fr of the induction motor 3,
It is a current command generating means for generating a torque current command Iqpo and an exciting current command Idpo. The inverter control means 4 is provided with a torque current command Iqp obtained by subtracting the output △ Iqp of the re-adhesion control means 9 described later from the torque current command Iqpo by the subtraction means 107, and is provided with the excitation current command Idpo as it is. Here, the operation of the inverter control means 4 will be described. Inverter control means 4
Then, when the torque current command Iqp is given, the torque current Iq detected by the detecting means 101 is subtracted from the torque current command Iqp by the subtracting means 41, and this current deviation is given to the current control means 42. Current control means 42
Is the torque current command I such that the current deviation becomes zero.
Output the adjustment amount △ Iq of qp. This adjustment amount △ Iq is added to the torque current command Iqp by the adding means 43 to obtain a torque current command Iq *. The vector calculation means 44 receives the torque current command Iq *, the excitation current command Idpo, and the rotation frequency Fr of the induction motor 3 detected by the detection means 102, and outputs the output frequency command Fin of the inverter 2.
And an output voltage command Vm of the inverter 2 and a phase command θ of this Vm. Then, in response to these commands, P
The WM control means 45 outputs a signal such that a switching element constituting the inverter 2 performs a predetermined operation.

【0008】次に、車両速度推定手段6は、誘導電動機
3の回転周波数Fr(速度換算値)と加速度信号αtに
基づいて車両速度を推定する機能を有する。図2
(A)、図2(B)に、この車両速度推定手段6の構成
例を示す。図2(A)において、誘導電動機3の回転周
波数Fr(速度換算値)が車両の実加速度と等しい加速
度信号αtで加速されているとした場合、誘導電動機3
の回転周波数Fr(速度換算値)を時定数がTrの一次
遅れ要素63に直接与えると、その一次遅れ要素63の
出力つまり車両推定速度Ftは、定常的に、Frよりα
t・Trだけ小さい値となる。この定常誤差をなくする
ため、加速度信号αtを係数器61によって一次遅れ要
素63の時定数Tr倍し、このαt・Trと誘導電動機
3の回転周波数Fr(速度換算値)を加算手段62によ
って加算し、一次遅れ要素63に与える。この結果、図
2(A)の構成例では、空転が発生し、誘導電動機3の
回転周波数Fr(速度換算値)が車両の実速度より大き
くなっても、一次遅れ要素63の作用のため、しばらく
の間は、車両推定速度Ftは車両の実速度より多少大き
くなる程度で、車両の実速度にほぼ等しい。図2(B)
は、図2(A)を改良した構成例である。すなわち、図
2(B)では、加算手段62の出力(Fr+αt・T
r)から車両推定速度Ftを減算手段64によって減算
し、その減算結果をリミット値がαt・Trのリミッタ
65を介して積分時定数がTrの積分要素66により積
分し、車両推定速度Ftを得るようにした。その結果、
図2(B)の構成例では、空転が発生し、誘導電動機3
の回転周波数Fr(速度換算値)が車両の実速度より大
きくなっても、減算手段64の出力はリミット値αt・
Trに制限され、車両推定速度Ftは車両の実加速度α
tで加速されるため、車両の実速度に等しくなる。な
お、減算手段64の出力がリミッタ65のリミット値よ
り小さい場合、加算手段62の出力に対する車両推定速
度Ftは、時定数がTrの一次遅れ要素と同じ、つま
り、図2(A)と同じになる。以上のように、車両速度
推定手段6(図2(B))に与える加速度信号αtが車
両の実加速度に等しければ、空転が発生し、誘導電動機
3の回転周波数Fr(速度換算値)が車両の実速度より
大きくなっても、車両の実速度に等しい車両推定速度F
tが得られる。すなわち、空転量つまり誘導電動機3の
回転周波数Fr(速度換算値)と車両の実速度の偏差を
正確に推定することができる。
Next, the vehicle speed estimating means 6 has a function of estimating the vehicle speed based on the rotation frequency Fr (converted value of speed) of the induction motor 3 and the acceleration signal αt. FIG.
2A and 2B show a configuration example of the vehicle speed estimating means 6. In FIG. 2A, when the rotation frequency Fr (speed conversion value) of the induction motor 3 is accelerated by an acceleration signal αt equal to the actual acceleration of the vehicle, the induction motor 3
Is given directly to the primary delay element 63 whose time constant is Tr, the output of the primary delay element 63, that is, the estimated vehicle speed Ft, is steadily higher than Fr by α
The value becomes smaller by t · Tr. To eliminate this steady error, the acceleration signal αt is multiplied by the time constant Tr of the first-order lag element 63 by the coefficient unit 61, and the αt · Tr and the rotation frequency Fr (speed conversion value) of the induction motor 3 are added by the addition means 62. Then, it is given to the primary delay element 63. As a result, in the configuration example of FIG. 2A, even if idling occurs and the rotational frequency Fr (converted value of speed) of the induction motor 3 becomes higher than the actual speed of the vehicle, the primary delay element 63 operates. For a while, the estimated vehicle speed Ft is slightly higher than the actual speed of the vehicle, and is substantially equal to the actual speed of the vehicle. FIG. 2 (B)
Is a configuration example in which FIG. 2A is improved. That is, in FIG. 2B, the output of the adding means 62 (Fr + αt · T
r), the estimated vehicle speed Ft is subtracted by the subtracting means 64, and the result of the subtraction is integrated by the integration element 66 with the integration time constant of Tr via the limiter 65 having the limit value αt · Tr to obtain the estimated vehicle speed Ft. I did it. as a result,
In the configuration example of FIG. 2B, idling occurs and the induction motor 3
Even if the rotation frequency Fr (converted value of speed) becomes larger than the actual speed of the vehicle, the output of the subtracting means 64 is limited to the limit value αt ·
Tr, the estimated vehicle speed Ft is equal to the actual acceleration α of the vehicle.
Since it is accelerated at t, it becomes equal to the actual speed of the vehicle. When the output of the subtracting means 64 is smaller than the limit value of the limiter 65, the estimated vehicle speed Ft with respect to the output of the adding means 62 has the same time constant as the primary delay element of Tr, that is, the same as FIG. Become. As described above, if the acceleration signal αt given to the vehicle speed estimating means 6 (FIG. 2 (B)) is equal to the actual acceleration of the vehicle, idling occurs, and the rotation frequency Fr (speed conversion value) of the induction motor 3 is changed to the vehicle speed. Vehicle speed F equal to the actual speed of the vehicle even if
t is obtained. That is, it is possible to accurately estimate a deviation between the idling amount, that is, the rotation frequency Fr (converted value of speed) of the induction motor 3 and the actual speed of the vehicle.

【0009】次に、車両速度推定手段6に与える加速度
信号αtの発生方法について、以下に述べる。基準加速
度信号発生手段7は、車両の実加速度より大きい基準加
速度信号αpを発生する機能を有する。例えば、基準加
速度信号発生手段7では、図示していないが、電流指令
発生手段5の出力であるトルク電流指令Iqpoを係数
倍して、車両の実加速度を推定し、この推定値に係数を
掛けるか若しくは一定値を加算して、車両の実加速度よ
り大きい基準加速度信号αpを発生する。なお、車両の
実加速度は、インバータ制御手段4に与えられるトルク
電流指令Iqp、または、誘導電動機3のトルクの演算
値を係数倍して推定してもよい。これらいづれの場合で
も、応荷重指令を考慮して、車両の実加速度を推定すれ
ば、推定精度を高めることができる。もちろん、車両の
実加速度は推定でなく、付随車の非駆動輪の回転数より
検出(演算)してもよいことは云うまでもない。
Next, a method of generating the acceleration signal αt to be given to the vehicle speed estimating means 6 will be described below. The reference acceleration signal generating means 7 has a function of generating a reference acceleration signal αp larger than the actual acceleration of the vehicle. For example, in the reference acceleration signal generating means 7, although not shown, the actual acceleration of the vehicle is estimated by multiplying the torque current command Iqpo output from the current command generating means 5 by a coefficient, and the estimated value is multiplied by a coefficient. Alternatively, a reference acceleration signal αp larger than the actual acceleration of the vehicle is generated by adding a constant value. Note that the actual acceleration of the vehicle may be estimated by multiplying the torque current command Iqp given to the inverter control means 4 or the calculated value of the torque of the induction motor 3 by a coefficient. In any of these cases, if the actual acceleration of the vehicle is estimated in consideration of the adaptive load command, the estimation accuracy can be improved. Of course, it goes without saying that the actual acceleration of the vehicle may be detected (calculated) from the rotation speed of the non-driven wheels of the accompanying vehicle, instead of being estimated.

【0010】通常時(非空転時)において、車両速度推
定手段6に車両の実加速度より大きい基準加速度信号α
pが加速度信号αtとして与えられると、その出力つま
り車両推定速度Ftは車両の実速度より大きくなる。す
なわち、誘導電動機3の回転周波数Fr(速度換算値)
から車両推定速度Ftを減算手段104によって減算し
た値つまり推定空転量は負となる。この負の推定空転量
Vαを負信号抽出手段105により抽出し、基準加速度
信号調整手段8に与える。
In a normal state (non-idling), the vehicle speed estimating means 6 supplies a reference acceleration signal α larger than the actual acceleration of the vehicle.
When p is given as the acceleration signal αt, its output, that is, the estimated vehicle speed Ft becomes larger than the actual speed of the vehicle. That is, the rotation frequency Fr (speed conversion value) of the induction motor 3
Is subtracted from the estimated vehicle speed Ft by the subtraction means 104, that is, the estimated slip amount is negative. The negative estimated slip amount Vα is extracted by the negative signal extracting means 105 and is provided to the reference acceleration signal adjusting means 8.

【0011】基準加速度信号調整手段8は、通常時(非
空転時)には、車両速度推定手段6に与える加速度信号
αtが車両の実加速度と等しくなるように、車両の実加
速度より大きい基準加速度信号αpの調整量Δαpを出
力し、空転時には、空転前の基準加速度信号αpの調整
量Δαpを保持する機能を有する。図3に、この基準加
速度信号調整手段8の構成例を示す。図3では、負の推
定空転量Vαを係数器81によりKa倍し、このVα・
Kaと、Vα・Kaの一次遅れ要素82(時定数Ta)
を介した値の小さい方の値を最小値選択手段83により
選択して出力(Δαp)する。この基準加速度信号調整
手段8の出力Δαp(負)と基準加速度信号αpとを加
算手段103によって加算し、加速度信号αtとして、
車両速度推定手段6に与える。その結果、基準加速度信
号調整手段8は、通常時(非空転時)には、負の推定空
転量Vα(負信号抽出手段105の出力)が0に近づく
ように、つまり、加速度信号αt(=αp+Δαp
(負))が車両の実加速度にほば等しくなるように、基
準加速度信号αpの調整量Δαp(負)を出力する。そ
して、空転が発生して、負の推定空転量Vα(負信号抽
出手段105の出力)が0になると、一次遅れ要素82
の作用により、空転前の基準加速度信号αpの調整量Δ
αp(負)が緩やかに変化(負の値が減少)する。この
ため、しばらくの間、加速度信号αt(=αp+Δαp
(負))は、車両の実加速度にほば等しく、つまり、車
両推定速度Ftは車両の実速度より多少大きくなるが、
車両の実速度にほば等しい。従って、空転して、しばら
くの間は、空転量つまり誘導電動機3の回転周波数Fr
(速度換算値)と車両の実速度の偏差をほぼ正確に推定
することができる。
The reference acceleration signal adjusting means 8 operates in a normal (non-idling) state so that the acceleration signal αt applied to the vehicle speed estimating means 6 becomes equal to the actual acceleration of the vehicle. It has a function of outputting the adjustment amount Δαp of the signal αp and holding the adjustment amount Δαp of the reference acceleration signal αp before idling at the time of idling. FIG. 3 shows a configuration example of the reference acceleration signal adjusting means 8. In FIG. 3, the negative estimated slippage amount Vα is multiplied by Ka by a coefficient unit 81, and this Vα ·
Ka and first order delay element 82 of Vα · Ka (time constant Ta)
Is selected by the minimum value selecting means 83 and output (Δαp). The output Δαp (negative) of the reference acceleration signal adjusting means 8 and the reference acceleration signal αp are added by the adding means 103 to obtain an acceleration signal αt.
It is given to the vehicle speed estimating means 6. As a result, the reference acceleration signal adjusting means 8 determines that the estimated negative slip amount Vα (the output of the negative signal extracting means 105) approaches 0 during normal times (non-slip), that is, the acceleration signal αt (= αp + Δαp
An adjustment amount Δαp (negative) of the reference acceleration signal αp is output so that (negative) is substantially equal to the actual acceleration of the vehicle. Then, when the slip occurs and the estimated negative slip amount Vα (the output of the negative signal extracting means 105) becomes 0, the first-order lag element 82
The adjustment amount Δ of the reference acceleration signal αp before idling.
αp (negative) changes slowly (negative values decrease). Therefore, for a while, the acceleration signal αt (= αp + Δαp
(Negative)) is substantially equal to the actual acceleration of the vehicle, that is, the estimated vehicle speed Ft is slightly larger than the actual vehicle speed.
It is almost equal to the actual speed of the vehicle. Therefore, the motor spins, and for a while, the amount of slip, that is, the rotation frequency Fr of the induction motor 3
The deviation between the (speed conversion value) and the actual speed of the vehicle can be almost accurately estimated.

【0012】一方、空転が発生して、誘導電動機3の回
転周波数Fr(速度換算値)から車両推定速度Ftを減
算手段104によって減算した値つまり推定空転量が正
になると、この正の推定空転量Vsを正信号抽出手段1
06により抽出し、再粘着制御手段9に与える。再粘着
制御手段9は、正の推定空転量Vsに基づいてトルク電
流指令Iqpoを調整し、再粘着させる機能を有する。
図4に、再粘着制御手段9の構成例を示す。図4におい
て、空転再粘着判断手段91は、正の推定空転量Vsが
空転判断レベルより大きければ、”1”を出力し、ま
た、正の推定空転量Vsが再粘着判断レベル(<空転判
断レベル)より小さければ、”0”を出力する。この出
力と正の推定空転量Vsを掛け算手段92によって掛け
算し、一次遅れ要素93(時定数Ts、利得Ks)に与
える。一次遅れ要素93は、正の推定空転量Vsに応じ
てトルク電流指令Iqpoの調整量ΔIqp1を出力す
る。また、、空転再粘着判断手段91の出力はトルク電
流絞りパターン発生手段94に与えられ、トルク電流絞
りパターン発生手段94は、正の推定空転量Vsに依存
しないで、所定のパターンによってトルク電流指令Iq
poの調整量ΔIqp2を出力する。すなわち、空転再
粘着判断手段91の出力が1になると、調整量ΔIqp
2を所定の時定数で増加させ、空転再粘着判断手段91
の出力が0になると、そのときの調整量ΔIqp2をし
ばらく保持した後、所定の時定数で緩やかに減少させ
る。そして、調整量ΔIqp1と調整量ΔIqp2を加
算手段95によって加算し、トルク電流指令Iqpoの
調整量ΔIqpを得、この調整量ΔIqpをトルク電流
指令Iqpoから減算手段107によって減算し、トル
ク電流指令Iqpとしてインバータ制御手段4に与え
る。その結果、トルク電流指令Iqpは、推定空転量V
sに応じて調整され、かつ、再粘着したと判断されたと
きの値がしばらく保持されるので、レール状態に見合っ
たトルクにより確実に再粘着させることができる。
On the other hand, when the slip occurs and the value obtained by subtracting the estimated vehicle speed Ft from the rotational frequency Fr (converted value of speed) of the induction motor 3 by the subtracting means 104, that is, the estimated slip amount, becomes positive, the positive estimated slip is obtained. The amount Vs is converted to the positive signal extracting means 1.
06 and is given to the re-adhesion control means 9. The re-adhesion control means 9 has a function of adjusting the torque current command Iqpo based on the positive estimated slip amount Vs to cause re-adhesion.
FIG. 4 shows a configuration example of the readhesion control means 9. In FIG. 4, the slip / re-adhesion determining means 91 outputs "1" if the positive estimated slip amount Vs is larger than the slip determination level, and outputs the positive estimated slip amount Vs at the read-stick determination level (<idling determination). If it is smaller than (level), “0” is output. This output is multiplied by the estimated positive slip amount Vs by the multiplying means 92 to give a first-order lag element 93 (time constant Ts, gain Ks). The primary delay element 93 outputs an adjustment amount ΔIqp1 of the torque current command Iqpo according to the positive estimated slip amount Vs. Further, the output of the slip / re-adhesion determining means 91 is given to a torque current throttle pattern generating means 94, and the torque current throttle pattern generating means 94 does not depend on the estimated positive slip amount Vs but outputs a torque current command according to a predetermined pattern. Iq
The po adjustment amount ΔIqp2 is output. That is, when the output of the idling re-adhesion determining means 91 becomes 1, the adjustment amount ΔIqp
2 is increased by a predetermined time constant, and the idling readhesion determining means 91 is increased.
Becomes zero, the adjustment amount ΔIqp2 at that time is held for a while, and then gradually decreased with a predetermined time constant. Then, the adjusting amount ΔIqp1 and the adjusting amount ΔIqp2 are added by the adding means 95 to obtain the adjusting amount ΔIqp of the torque current command Iqpo, and the adjusting amount ΔIqp is subtracted from the torque current command Iqpo by the subtracting means 107 to obtain the torque current command Iqp. This is given to the inverter control means 4. As a result, the torque current command Iqp is
Since it is adjusted according to s and the value when it is determined that re-adhesion has been performed is maintained for a while, re-adhesion can be reliably performed with a torque suitable for the rail state.

【0013】以上のように、本実施形態では、空転量の
推定精度が高められ、この推定空転量に基づいてトルク
制御つまり再粘着制御が行われるので、レール状態に見
合ったトルクにより車両を加速することができる。な
お、以上の説明では、加速時の空転について述べたが、
減速時(回生制動時)の滑走についても、本発明を適用
できることは云うまでもない。
As described above, in the present embodiment, the accuracy of the estimation of the amount of idling is improved, and the torque control, that is, the re-adhesion control is performed based on the estimated amount of idling, so that the vehicle is accelerated by the torque corresponding to the rail condition. can do. In the above description, idling during acceleration has been described.
It goes without saying that the present invention can also be applied to the sliding at the time of deceleration (at the time of regenerative braking).

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
空転が発生したとき、車両推定速度は、しばらくの間、
空転前の車両の実加速度に近い値(調整された基準加速
度信号)で変化するので、誘導電動機の回転周波数(速
度換算値)と車両の実速度の偏差をほぼ正確に推定する
ことができ、空転量の推定精度を高めることができる。
また、この推定精度の高い空転量に基づいてトルク制御
つまり再粘着制御を行うので、レール状態に見合ったト
ルクにより車両を加速することができる。
As described above, according to the present invention,
When the slip occurs, the estimated vehicle speed is
Since it changes at a value (adjusted reference acceleration signal) close to the actual acceleration of the vehicle before idling, the deviation between the rotation frequency (speed conversion value) of the induction motor and the actual speed of the vehicle can be estimated almost accurately, It is possible to improve the estimation accuracy of the slip amount.
Further, since the torque control, that is, the re-adhesion control is performed based on the idling amount having high estimation accuracy, the vehicle can be accelerated by the torque corresponding to the rail state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態によるインバータ制御車両
の制御装置
FIG. 1 is a control apparatus for an inverter-controlled vehicle according to an embodiment of the present invention.

【図2】本発明の車両速度推定手段の構成例FIG. 2 is a configuration example of a vehicle speed estimating unit according to the present invention;

【図3】本発明の基準加速度信号調整手段の構成例FIG. 3 is a configuration example of a reference acceleration signal adjusting unit of the present invention.

【図4】本発明の再粘着制御手段の構成例FIG. 4 is a configuration example of a readhesion control unit of the present invention.

【符号の説明】[Explanation of symbols]

1…直流架線、2…PWMインバータ、3…車両駆動用
誘導電動機、4…インバータ制御手段、5…電流指令発
生手段、6…車両速度推定手段、61…係数器、63…
一次遅れ要素、65…リミッタ、66…積分要素、7…
基準加速度信号発生手段、8…基準加速度信号調整手
段、81…係数器、82…一次遅れ要素、83…最小値
選択手段、9…再粘着制御手段、91…空転再粘着判断
手段、93…一次遅れ要素、94…トルク電流絞りパタ
ーン発生手段、105…負信号抽出手段、106…負信
号抽出手段
DESCRIPTION OF SYMBOLS 1 ... DC overhead wire, 2 ... PWM inverter, 3 ... Vehicle drive induction motor, 4 ... Inverter control means, 5 ... Current command generation means, 6 ... Vehicle speed estimation means, 61 ... Coefficient unit, 63 ...
Primary delay element, 65 ... limiter, 66 ... integral element, 7 ...
Reference acceleration signal generation means, 8: Reference acceleration signal adjustment means, 81: Coefficient unit, 82: Primary delay element, 83: Minimum value selection means, 9: Re-adhesion control means, 91: Slip / re-adhesion determination means, 93: Primary Delay element, 94: torque current throttle pattern generating means, 105: negative signal extracting means, 106: negative signal extracting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊田 瑛一 茨城県ひたちなか市市毛1070番地 株式 会社日立製作所 水戸工場内 (72)発明者 筒井 義雄 茨城県ひたちなか市市毛1070番地 株式 会社日立製作所 水戸工場内 (72)発明者 仲田 清 茨城県ひたちなか市市毛1070番地 株式 会社日立製作所 水戸工場内 (72)発明者 安田 高司 茨城県ひたちなか市市毛1070番地 株式 会社日立製作所 水戸工場内 (56)参考文献 特開 平9−149506(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60L 9/00 - 9/32 B60L 15/00 - 15/38 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Eiichi Toyoda 1070 Ma, Hitachinaka-shi, Ibaraki Pref. Hitachi, Ltd. Mito Plant (72) Inventor Yoshio Tsutsui 1070 Ma, Hitachinaka-shi, Ibaraki Pref. Hitachi, Ltd.Mito Inside the plant (72) Inventor Kiyoshi Nakada 1070 Ma, Hitachinaka-shi, Ibaraki Pref.Hitachi, Ltd.Mito plant in Hitachi, Ltd. (72) Inventor Takashi Yasuda 1070 Ma, Hitachinaka-shi, Ibaraki pref.In the Mito plant, Hitachi, Ltd. (56) Reference Document JP-A-9-149506 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B60L 9/00-9/32 B60L 15/00-15/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 車両駆動用誘導電動機を駆動するインバ
ータと、このインバータを制御するインバータ制御手段
と、このインバータ制御手段に与えるトルク指令若しく
はこれに相当する指令を発生する電流指令発生手段と、
車両の実加速度より大きい値で設定される基準加速度信
号と前記電動機の回転周波数を速度換算した信号とに基
づいて車両速度を推定する手段と、この車両推定速度と
前記回転周波数の速度換算信号との偏差に応じて前記基
準加速度信号を調整する手段と、前記偏差に基づいて前
記インバータ制御手段に作用して前記電動機が発生する
トルクを制御する再粘着制御手段とを備えたインバータ
制御車両の制御装置において、 前記基準加速度信号の調整手段は、通常時(非空転時)
には、前記車両速度を推定する手段に与える加速度信号
前記車両の実加速度と等しくなるように、前記車両の
実加速度より大きい基準加速度信号の調整量を出力し、
空転時には、空転前の基準加速度信号の調整量を保持す
手段を有し、該基準加速度信号の調整量は、前記電動
機の回転周波数の速度換算値から前記車両推定速度を減
算して得た推定空転量が負になるとき、この負の推定空
転量を係数倍した値とこの係数倍した値を一次遅れ要素
を介して得た値とを比較し、小さい方の値を選択して調
整量として求めることを特徴とするインバータ制御車両
の制御装置。
An inverter for driving an induction motor for driving a vehicle; an inverter control means for controlling the inverter; a current command generation means for generating a torque command or a command corresponding to the torque command given to the inverter control means;
Reference acceleration signal set with a value larger than the actual acceleration of the vehicle
Means for estimating a vehicle speed based on a signal and a signal obtained by converting the rotation frequency of the electric motor into a speed, and means for adjusting the reference acceleration signal according to a deviation between the estimated vehicle speed and the speed conversion signal of the rotation frequency. When, in the control device of the inverter control vehicle and a re-adhesion control means for controlling the torque which the motor is generated by acting on the inverter control unit based on the deviation, adjusting means of the reference acceleration signal is typically Time (non-idling)
To, as an acceleration signal to be supplied to means for estimating the vehicle speed is equal to the actual acceleration of the vehicle, and outputs the adjustment amount of greater acceleration reference signal from the actual acceleration of the vehicle,
At the time of idling, the vehicle has means for holding an adjustment amount of the reference acceleration signal before idling , and the adjustment amount of the reference acceleration signal is obtained by subtracting the estimated vehicle speed from the speed conversion value of the rotation frequency of the electric motor. when the idling amount is negative, the coefficient multiplied by the value of the coefficient multiplied by the value Toko the negative estimated idling amount is compared with the value obtained through the first-order lag element, the adjustment amount by selecting the smaller value A control device for an inverter-controlled vehicle, characterized in that:
JP36215097A 1997-12-11 1997-12-11 Control device for inverter-controlled vehicle Expired - Fee Related JP3538667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36215097A JP3538667B2 (en) 1997-12-11 1997-12-11 Control device for inverter-controlled vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36215097A JP3538667B2 (en) 1997-12-11 1997-12-11 Control device for inverter-controlled vehicle

Publications (2)

Publication Number Publication Date
JPH11178107A JPH11178107A (en) 1999-07-02
JP3538667B2 true JP3538667B2 (en) 2004-06-14

Family

ID=18476076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36215097A Expired - Fee Related JP3538667B2 (en) 1997-12-11 1997-12-11 Control device for inverter-controlled vehicle

Country Status (1)

Country Link
JP (1) JP3538667B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991983B2 (en) 2003-12-19 2007-10-17 日産自動車株式会社 Vehicle drive control device
JP2008182808A (en) * 2007-01-24 2008-08-07 Toshiba Corp Train speed and position detector
JP4486109B2 (en) * 2007-06-18 2010-06-23 株式会社日立製作所 Electric vehicle control device
JP5828452B2 (en) * 2011-11-08 2015-12-09 東洋電機製造株式会社 Electric vehicle control device
JP5752633B2 (en) * 2012-03-28 2015-07-22 公益財団法人鉄道総合技術研究所 Speed detection device, travel position calculation device, and speed calculation method

Also Published As

Publication number Publication date
JPH11178107A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
KR950015169B1 (en) Control system for induction motor driven electric car
AU2007200324B2 (en) Electric drive vehicle
US5936378A (en) Motor controller
CA2157424C (en) Control apparatus for electric vehicles
US20090071735A1 (en) Controller of Field Winding Type Synchronous Motor, Electric Drive System, Electric Four Wheel Driving Vehicle, and Hybrid Automobile
WO2005012026A1 (en) Vehicle slip control system and method
JPH05300606A (en) Electric vehicle controller
JP6589554B2 (en) Control method and control apparatus for electric vehicle
JPH0583976A (en) Alternating current motor controller and electric rolling stock controller with this
US5877607A (en) Electric motor controller capable of performing stable current control during load disturbance and/or a regenerating mode
JP2000312403A (en) Control device for electric rolling stock
JP3538667B2 (en) Control device for inverter-controlled vehicle
JPH10136699A (en) Motor control equipment
JP2009219189A (en) Four-wheel drive vehicle
JP4256238B2 (en) Power converter
JP3127033B2 (en) Electric car
JP2004129459A (en) Speed command control unit and speed controller for electrically-propelled vehicle
JP4120503B2 (en) Induction motor control method
JP3793907B2 (en) Inverter-controlled vehicle control device
US20240270086A1 (en) Electric vehicle control method and electric vehicle control device
JPH07231516A (en) Motor controller for vehicle and control method
JP2000060197A (en) Controller for inverter-controlled vehicle
JP2000224708A (en) Electric rolling stock controller
JPH07212911A (en) Speed controller for electric vehicle
JPH09308006A (en) Controller and control method for electric vehicle

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees