JPH05236607A - Electric automobile - Google Patents

Electric automobile

Info

Publication number
JPH05236607A
JPH05236607A JP4035490A JP3549092A JPH05236607A JP H05236607 A JPH05236607 A JP H05236607A JP 4035490 A JP4035490 A JP 4035490A JP 3549092 A JP3549092 A JP 3549092A JP H05236607 A JPH05236607 A JP H05236607A
Authority
JP
Japan
Prior art keywords
battery
motor
torque command
torque
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4035490A
Other languages
Japanese (ja)
Other versions
JP3127033B2 (en
Inventor
Kazuo Natori
一雄 名取
Takahiko Yamamoto
隆彦 山本
Tadashi Ashikaga
正 足利
Takayuki Mizuno
孝行 水野
Yoshinori Nakano
義則 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP04035490A priority Critical patent/JP3127033B2/en
Publication of JPH05236607A publication Critical patent/JPH05236607A/en
Application granted granted Critical
Publication of JP3127033B2 publication Critical patent/JP3127033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To provide an electric automobile employing a DC brushless motor as a drive source and the armature current of the motor is controlled through an inverter according to a torque command wherein excess and deficiency of torque command value are eliminated and a torque command harmonized with the step angle of accelerator pedal is obtained. CONSTITUTION:Maximum torque Tm of motor is determined at a limiter value operating section 24 based on the number of revolutions of the motor open voltage of battery, and parameters of the motor and the battery, and the like, and a torque command TACC is limited by the maximum torque Tm at a limiter circuit 22. Excess or deficiency of torque command for an inverter 21 is eliminated by limiting the torque command TACC corresponding to the step angle of accelerator pedal by means of the maximum torque Tm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車に係り、特
に直流ブラシレスモータを駆動源とする電気自動車のト
ルク制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle, and more particularly to a torque control device for an electric vehicle using a DC brushless motor as a drive source.

【0002】[0002]

【従来の技術】電気自動車は、バッテリを直流電源と
し、直流モータ又は交流モータの駆動力を車輪に直結で
又はギヤを介在して伝達し、モータの速度制御又はトル
ク制御によって所期の駆動力を得るようにしている。
2. Description of the Related Art An electric vehicle uses a battery as a DC power source, transmits the driving force of a DC motor or an AC motor directly to wheels or through a gear, and controls the motor speed or torque to achieve a desired driving force. Trying to get.

【0003】例えば、図7に示す電気自動車は、4つの
車輪11〜14に夫々モータ21〜24を直結する4輪ダイ
レクト駆動型にされ、各モータ21〜24にはインバータ
1〜34から電流又は電圧制御された交流電力を供給
し、各インバータ31〜34の出力制御にはアクセルペダ
ル4の踏み角に連動するポテンショメータ5からトルク
指令又は速度指令を与える。6は各インバータ31〜34
に必要な直流電力を供給するバッテリである。
For example, an electric vehicle shown in FIG. 7, four is the wheel 1 1 to 1 4-wheel direct drive type to directly connect the respective motor 21 to 24 in 4, each motor 21 to 24 inverter 3 1 to 3 4 AC power supply that is a current or voltage control from the output control of the inverters 3 1 to 3 4 gives a torque command or speed command from the potentiometer 5 interlocked with the depression angle of the accelerator pedal 4. 6 is each inverter 3 1 to 3 4
This is a battery that supplies the necessary DC power to the battery.

【0004】ところで、永久磁石により界磁磁束を得る
直流ブラシレスモータは、回転子に永久磁石の界磁を使
用し、その回転子の磁極位置を検出して、その位置信号
により固定子の電流(電機子電流)と磁束が常に直交す
るように電流を制御している。即ち、モータの電機子電
流とモータ誘起電圧とが同位相になるように制御するこ
とにより直流機と同様な特性を実現している。
By the way, a DC brushless motor which obtains a field magnetic flux by a permanent magnet uses a field of a permanent magnet for a rotor, detects the magnetic pole position of the rotor, and detects the current of the stator by the position signal ( The current is controlled so that the armature current) and the magnetic flux are always orthogonal. That is, the characteristics similar to those of the DC machine are realized by controlling the armature current of the motor and the motor induced voltage so as to have the same phase.

【0005】このような直流ブラシレスモータを電気自
動車の駆動源とする場合の制御装置は、ポテンショメー
タ5からトルク指令を得てインバータ31〜34の出力電
流を制御する構成にされる。
A control device using such a DC brushless motor as a drive source of an electric vehicle is configured to obtain a torque command from the potentiometer 5 and control the output currents of the inverters 3 1 to 3 4 .

【0006】この制御装置は例えば図8に示す構成にさ
れる。直流電源11からの直流電力はインバータ主回路
12によって制御されたPWM波形の電力出力に変換さ
れ、DCブラシレスモータ13の電機子電流として供給
される。モータ13の回転子位置はアブソリュートエン
コーダ14によって位相信号θとして検出される。指令
1refは乗算器151,152の乗数にされ、これら乗算
器151,152の被乗数には正弦波発生器16からの互
いに120度移相した正弦波信号にされる。この正弦波
位相はエンコーダ14び位相信号θに従って制御され
る。
This control device is constructed, for example, as shown in FIG. The DC power from the DC power supply 11 is converted into a PWM waveform power output controlled by the inverter main circuit 12, and is supplied as an armature current of the DC brushless motor 13. The rotor position of the motor 13 is detected by the absolute encoder 14 as a phase signal θ. The command I 1ref is set to a multiplier of the multipliers 15 1 and 15 2 , and the multiplicands of the multipliers 15 1 and 15 2 are sine wave signals from the sine wave generator 16 that are phase-shifted by 120 degrees. This sine wave phase is controlled according to the encoder 14 and the phase signal θ.

【0007】乗算器151,152の出力にはモータ13
への3相入力のうちのu相とw相の正弦波電流指令
u,Iwが取り出され、これら電流指令Iu,Iwはモー
タ電流Iu′,Iw′をフィードバック信号とする電流制
御アンプ171,172によって比例・積分演算され、u
相とw相の電圧指令Vu,Vwとして取り出される。
The output of the multipliers 15 1 and 15 2 is the motor 13
The u-phase and w-phase sine wave current commands I u and I w of the three-phase input to the motor are taken out, and these current commands I u and I w use the motor currents I u ′ and I w ′ as feedback signals. Proportional / integral calculation is performed by the current control amplifiers 17 1 and 17 2 , and u
It is taken out as the voltage commands V u and V w for the phase w and the phase w .

【0008】電圧指令Vu,Vwは加算器18によって加
算されることで該加算器19の出力にv相の電圧指令V
vが生成される。これら電圧指令Vu,Vw,VvはPWM
発生回路としてのコンパレータ191,192,193
比較入力にされ、比較基準に搬送波発生器20からの三
角波信号が与えられることで該コンパレータ191〜1
3の出力に正弦波近似のPWM波形が取り出され、こ
れらPWM波形がインバータ主回路12の各相ゲート信
号にされ、ゲート回路21によって増幅されてインバー
タ主回路12の各相スイッチ素子のドライブ信号にされ
る。
The voltage commands V u and V w are added by the adder 18 so that the output of the adder 19 receives the v-phase voltage command V u .
v is generated. These voltage commands V u , V w , and V v are PWM
The triangular wave signal from the carrier wave generator 20 is supplied to the comparators 19 1 , 19 2 and 19 3 as a generating circuit for comparison, and the comparators 19 1 to 19 1
A PWM waveform of a sine wave approximation is taken out from the output of 9 3 , and these PWM waveforms are converted into gate signals for each phase of the inverter main circuit 12 and amplified by the gate circuit 21 to drive signals for each phase switch element of the inverter main circuit 12. To be

【0009】[0009]

【発明が解決しようとする課題】直流ブラシレスモータ
を駆動源とする従来の電気自動車において、トルク指令
値はアクセルペダル4の踏み角に比例して上昇するポテ
ンショメータ5の出力になる。
In a conventional electric vehicle using a DC brushless motor as a drive source, the torque command value becomes the output of the potentiometer 5 which rises in proportion to the depression angle of the accelerator pedal 4.

【0010】一方、直流ブラシレスモータは、その回転
数が高くなるほどその誘起電圧も高くなる。このため、
同トルク指令を与えるもそのときのモータ回転数(電気
自動車の走行速度)によっては正常なトルク電流が供給
できなくなる。
On the other hand, the DC brushless motor has a higher induced voltage as the rotational speed thereof increases. For this reason,
Even if the same torque command is given, a normal torque current cannot be supplied depending on the motor rotation speed (driving speed of the electric vehicle) at that time.

【0011】即ち、ポテンショメータから与えられるト
ルク指令値は、モータの低速域での最大トルクに対応づ
けられるため、高速域ではトルク指令に応じた電流を供
給するために必要な電源電圧を確保できなくなり、電流
をフィードバック制御する電流制御系ではアンプ1
1,172の出力が飽和し、この飽和出力は正弦波近似
のPWM制御では台形波に近くなると共に3相電流が不
均衡となり、正常なトルク電流供給ができなくなる。
That is, since the torque command value given from the potentiometer is associated with the maximum torque of the motor in the low speed range, it becomes impossible to secure the power supply voltage necessary to supply the current according to the torque command in the high speed range. , Amplifier 1 in the current control system for feedback control of current
The outputs of 7 1 and 17 2 are saturated, and this saturated output becomes close to a trapezoidal wave in the PWM control of the sine wave approximation, and the three-phase current becomes imbalanced, so that normal torque current supply cannot be performed.

【0012】上述の問題を解消するにはモータ回転数に
応じてトルク指令値を制限することが考えられるが、回
転数に応じた単なる制限では不適切な制限になる。
In order to solve the above-mentioned problem, it is conceivable to limit the torque command value according to the number of rotations of the motor, but mere limitation according to the number of rotations is an inappropriate limit.

【0013】例えば、トルク指令値の過大な制限はアク
セルペダルの踏み角変更にも出力トルク制限によってト
ルク出力に変化が無くなり、電気自動車の加減速に違和
感を与えると共に加速性能,出力性能を悪くする。逆
に、トルク指令値の不足制限は上述の問題を起す。
For example, if the torque command value is excessively limited, the torque output will not change even when the accelerator pedal is changed in the depression angle, and the torque output will not change. This will make the electric vehicle feel uncomfortable in acceleration and deceleration, and deteriorate the acceleration performance and output performance. .. On the contrary, limiting the shortage of the torque command value causes the above-mentioned problem.

【0014】また、最大出力トルクは直流電源としての
バッテリの放電深度による開放電圧変動や内部抵抗変化
によって生じる電圧ドロップ分が大きく影響し、トルク
指令値の単なる制限では不適切なものになる。
Further, the maximum output torque is greatly affected by the voltage drop caused by the open circuit voltage fluctuation and the internal resistance change due to the depth of discharge of the battery as the DC power supply, and it becomes unsuitable if the torque command value is simply limited.

【0015】本発明の目的は、トルク指令値の過不足を
無くし、またアクセルペダルの踏み角に調和したトルク
指令値を得ることができる電気自動車を提供することに
ある。
An object of the present invention is to provide an electric vehicle capable of eliminating the excess or deficiency of the torque command value and obtaining the torque command value in harmony with the depression angle of the accelerator pedal.

【0016】[0016]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、車輪の駆動源になる直流ブラシレスモー
タと、アクセルペダルの踏み角をトルク指令TACCとし
該トルク指令に応じた電流指令に従って該モータの電機
子電流を制御するインバータと、該インバータの直流電
源になるバッテリとを備えた電気自動車において、前記
モータの回転数nとバッテリの開放電圧Voから前記ト
ルク指令の制限値Tmを次式
In order to solve the above problems, the present invention uses a DC brushless motor as a drive source for wheels and a pedaling angle of an accelerator pedal as a torque command T ACC and a current corresponding to the torque command. In an electric vehicle including an inverter that controls an armature current of the motor according to a command and a battery that serves as a DC power source of the inverter, a limit value of the torque command based on the rotation speed n of the motor and the open circuit voltage V o of the battery. T m is

【0017】[0017]

【数2】 [Equation 2]

【0018】 但し、KT:トルク指令−電流指令変換係数 K1,K2:インバータ損失係数 KN:誘起電圧定数 Ra′:(1+Kf)Raa:モータ等価巻線抵抗 Kf:漂遊損失係数 Ri:バッテリ内部抵抗 Ko:モータ無負荷損失係数 に従って求めるリミッタ値演算部と、前記トルク指令T
ACCを前記制限値Tmで制限するリミッタ回路とを備えた
ことを特徴とする。
However, K T : torque command-current command conversion coefficient K 1 , K 2 : inverter loss coefficient K N : induced voltage constant R a ′: (1 + K f ) R a R a : motor equivalent winding resistance K f : Stray loss coefficient R i : internal battery resistance K o : motor no-load loss coefficient
A limiter circuit for limiting ACC with the limit value T m is provided.

【0019】[0019]

【作用】直流ブラシレスモータの電機子電流をインバー
タで制御し、該インバータの直流電源をバッテリとする
ときの最大出力特性を図1を参照して説明する。
The maximum output characteristic when the armature current of a DC brushless motor is controlled by an inverter and the DC power source of the inverter is a battery will be described with reference to FIG.

【0020】図1はモータ駆動系の1相分を示し、バッ
テリとインバータ及び直流ブラシレスモータの各定数は
次の通りである。
FIG. 1 shows one phase of the motor drive system, and the constants of the battery, the inverter and the DC brushless motor are as follows.

【0021】 Vo:バッテリ開放電圧 Ri:バッテリ内部抵抗 ED、ID:インバータの直流入力電圧、電流 Va、Ia:インバータの交流出力電圧、電流 Eo:モータ誘起電圧(相電圧) Ra:モータ等価巻線抵抗(1相分) 図1の構成において、インバータの損失はWINVは、定
常損失及びスイッチング損失からなり、これを交流出力
電流Iaの関数として表わせば次式となる。
V o : Battery open voltage R i : Battery internal resistance E D , I D : Inverter DC input voltage, current V a , I a : Inverter AC output voltage, current E o : Motor induced voltage (phase voltage) ) R a : Motor equivalent winding resistance (for one phase) In the configuration of FIG. 1, the inverter loss W INV consists of a steady loss and a switching loss. If this is expressed as a function of the AC output current I a , Becomes

【0022】WINV=K1a 2+K2a …(1) 但し、K1、K2:インバータ損失係数 次に、モータの全損失WIMは、一次銅損WCUと無負荷損
o及び漂遊負荷損Waを次式 WCU=3Raa 2 …(2−1) Wo=Ko・n1・6 …(2−2) Wa=KfCU …(2−3) とすれば、 WIM=WCU+Wo+Wa =(1+Kf)Raa 2+Ko・n1・6 =Ra′Ia 2+Ko1・6 …(3) となる。
W INV = K 1 I a 2 + K 2 I a (1) where K 1 and K 2 : Inverter loss coefficient Next, the total loss W IM of the motor is the primary copper loss W CU and no load loss. W o and stray load loss W a are expressed by the following formula W CU = 3R a I a 2 (2-1) W o = K o · n 1 6 (2-2) W a = K f W CU ( 2-3), W IM = W CU + W o + W a = (1 + K f ) R a I a 2 + K o · n 1 · 6 = R a ′ I a 2 + K o n 1 · 6 (3 ) Becomes.

【0023】次に、インバータの直流入力側には図1の
関係より、 Vo−RiD=ED …(4) また、EDとVaの間に
Next, on the DC input side of the inverter, from the relationship shown in FIG. 1, V o −R i ID = E D (4) Further, between E D and V a

【0024】[0024]

【数3】 [Equation 3]

【0025】但し、μ:インバータ制御率 なる関係があり、さらに EDD=3Vaa …(6) なる関係が成立するものとすると、(4)〜(6)式か
However, assuming that μ: Inverter control ratio and E D ID = 3V a I a (6) are satisfied, from equations (4) to (6)

【0026】[0026]

【数4】 [Equation 4]

【0027】が成立する。Is satisfied.

【0028】また、インバータの入出力とモータ損失の
関係から、 EDD=WINV+WIM+3Iao =K1a 2+K2a+Ra′Ia+3Iao =(K1+Ra′)Ia 2+(K2+3Eo)Ia …(8) が求まる。但し、(3)式中の無負荷損Wo(=Ko・n
1・6)は無視しており、これは最終的なトルクより無負
荷トルクとして差引くことにする。
From the relationship between the input / output of the inverter and the motor loss, E D I D = W INV + W IM + 3I a E o = K 1 I a 2 + K 2 I a + R a ′ I a + 3I a E o = ( K 1 + R a ′) I a 2 + (K 2 + 3E o ) I a (8) is obtained. However, no-load loss W o (= K o · n) in the equation (3)
1 ) and 6 ) are ignored and this is subtracted from the final torque as no-load torque.

【0029】上記(8)式に(4)式及び(7)式を代
入すると
Substituting equations (4) and (7) into equation (8) above

【0030】[0030]

【数5】 [Equation 5]

【0031】となり、これを整理すると、When this is sorted out,

【0032】[0032]

【数6】 [Equation 6]

【0033】となる。It becomes

【0034】従って、(10)式において、インバータ
制御率μを最大値の1とし、また Eo=KN・n …(11) T=KT・Ia …(12) 但し、T:モータトルク と表わされるため、回転数nに対する最大出力トルクT
mは下記式となる。
Therefore, in the equation (10), the inverter control rate μ is set to the maximum value of 1, and E o = K N · n (11) T = K T · I a (12) where T: motor Since it is expressed as torque, the maximum output torque T with respect to the rotation speed n
m is the following formula.

【0035】[0035]

【数7】 [Equation 7]

【0036】上記(13)式により、バッテリのパラメ
ータ(Vo、Ri)とインバータのパラメータ(K1
2)及びモータのパラメータ(KT、KN、Ra′)は既
知の値であるから、回転数n毎の出力可能な最大トルク
mを求めることができる。
From the equation (13), the battery parameters (V o , R i ) and the inverter parameters (K 1 ,
K 2) and the motor parameters (K T, K N, R a ') is from a known value, it is possible to obtain the maximum torque T m can be output for each rotation speed n.

【0037】より厳密には、無負荷損失Wo(=Ko・n
1・6)分のトルクを(13)式から減ずることにより
More precisely, the no-load loss W o (= K o · n)
By subtracting 1-6) content of the torque from (13)

【0038】[0038]

【数8】 [Equation 8]

【0039】によって最大トルクTmが求められる。The maximum torque T m is obtained by

【0040】この最大トルクTmは図2に例示するよう
になり、領域Aはインバータの最大許容電流で制限され
ることを示し、領域Bが回転数nに応じて決まる最大ト
ルクTmによる制限値になる。
The maximum torque T m is as illustrated in FIG. 2, showing that the region A is limited by the maximum allowable current of the inverter, and the region B is limited by the maximum torque T m determined according to the rotation speed n. It becomes a value.

【0041】以上までのことから、本発明ではモータの
回転数nとバッテリの開放電圧Voから出力し得る最大
トルクTmにトルク指令値を制限し、過不足の生じない
トルク制御ができるようにする。
From the above, according to the present invention, the torque command value is limited to the maximum torque T m that can be output from the motor rotation speed n and the open circuit voltage V o of the battery, so that torque control can be performed without excess or deficiency. To

【0042】[0042]

【実施例】図3は本発明の一実施例を示す装置構成図で
あり、1組のトルク制御装置を示す。インバータ21は
例えば図8の制御装置構成にされ、電流指令値I1ref
応じた交流出力を直流ブラシレスモータ13に供給する
電流制御系を備える。ポテンショメータ5の出力になる
トルク指令TACCはリミッタ回路22による制限が加え
られてトルク信号Tにされ、このトルク信号Tはトルク
−電流変換演算器23によりトルクと電流の変換係数1
/KTが乗せられてインバータ21への電流指令I1ref
にされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a block diagram of an apparatus showing an embodiment of the present invention and shows a set of torque control devices. The inverter 21 has, for example, the control device configuration of FIG. 8 and includes a current control system that supplies an AC output according to the current command value I 1ref to the DC brushless motor 13. The torque command T ACC output from the potentiometer 5 is limited by the limiter circuit 22 to be a torque signal T. The torque signal T is converted by the torque-current conversion calculator 23 into a torque-current conversion coefficient 1
/ K T is added to the current command I 1ref to the inverter 21.
To be

【0043】ここで、リミッタ回路22のリミッタ値T
mはリミッタ値演算部24により与えられる。この演算
には直流ブラシレスモータ13の回転数n及びバッテリ
11の開放電圧Voからリミッタ値Tmが前述の(14)
式又は(13)式から求められる。
Here, the limiter value T of the limiter circuit 22
m is given by the limiter value calculation unit 24. In this calculation, the limiter value T m is calculated from the rotational speed n of the DC brushless motor 13 and the open circuit voltage V o of the battery 11 as described in (14).
It is calculated from the equation or the equation (13).

【0044】このように、トルク指令値TACCをリミッ
タ回路22とリミッタ値演算部24により最大トルクT
mに制限することにより、回転数に応じた最適なトルク
指令値以内に制限し、スムーズな駆動かつ安定した駆動
が可能となる。
As described above, the torque command value T ACC is set to the maximum torque T by the limiter circuit 22 and the limiter value calculator 24.
By limiting to m , the torque is limited to within the optimum torque command value according to the rotation speed, and smooth driving and stable driving are possible.

【0045】なお、リミッタ値演算部24は、インバー
タの最大許容電流で制限される領域A(図2参照)では
最大トルクTmをアクセルストローク100%時のトル
ク指令値Tmaxに制限する。この演算は IF Tm>Tmax THEN Tm=Tmax の条件式によって実現される。
The limiter value calculation unit 24 limits the maximum torque T m to the torque command value T max at 100% accelerator stroke in the region A (see FIG. 2) where the maximum allowable current of the inverter is limited. This calculation is realized by the conditional expression of IF T m > T max THEN T m = T max .

【0046】図4は本発明の他の実施例を示す装置構成
図である。同図が図3と異なる部分は、リミッタ回路2
2に代えて、フルスケール調整部25を設けた点にあ
る。
FIG. 4 is a block diagram of an apparatus showing another embodiment of the present invention. 3 is different from FIG. 3 in that the limiter circuit 2
Instead of 2, the full-scale adjusting unit 25 is provided.

【0047】フルスケール調整部25は、トルク指令値
ACCに対し次式からトルク指令Tを求める。
The full-scale adjusting unit 25 obtains the torque command T from the following formula for the torque command value T ACC .

【0048】T=TACC×(Tm/Tmax) …(15) 本実施例の作用効果を説明する。まず、前述の実施例で
はリミッタ値演算部24によってトルク指令値TACC
最大トルクTmに制限される。このときの制限特性は図
2に示すようにモータ回転数nに応じて最大トルクTm
が決まる。
T = T ACC × (T m / T max ) (15) The function and effect of this embodiment will be described. First, in the above-described embodiment, the limiter value calculator 24 limits the torque command value T ACC to the maximum torque T m . The limiting characteristic at this time is, as shown in FIG. 2, the maximum torque T m depending on the motor speed n.
Is decided.

【0049】この制限特性において、領域Bではアクセ
ルを最大に踏み混むも最大トルクTmに制限され、アク
セルの踏み角変更にもトルク指令Tが変化しない「あそ
び領域」が生ずる。
In this restriction characteristic, in the area B, the maximum torque T m is limited even if the accelerator is maximally stepped on, and a "play area" occurs in which the torque command T does not change even when the accelerator depression angle is changed.

【0050】例えば、モータ回転数n90ではそのときの
最大トルクTm90に制限され、あそび領域Cの範囲内で
はアクセル踏み角変更にも最大トルクTm90で制限され
る。このため、あそび領域Cではアクセルの踏込み、戻
しにも電気自動車の加減速が無く、運転者に違和感を与
える。特に、モータ回転数100%付近ではアクセルを
少し踏込むだけで指令値Tが最大トルクTmになって該
値に制限されてしまう。
For example, the motor rotation speed n 90 is limited to the maximum torque T m90 at that time, and within the range of the play area C, the maximum torque T m90 is also limited for changing the accelerator depression angle. For this reason, in the play area C, there is no acceleration or deceleration of the electric vehicle even when the accelerator is stepped on or returned, and the driver feels uncomfortable. In particular, when the motor speed is near 100%, the command value T becomes the maximum torque T m and is limited to this value by simply stepping on the accelerator.

【0051】上述のあそび領域Cによるアクセル踏込み
の違和感を無くすため、本実施例ではフルスケール調整
部25によりモータ回転数に応じてアクセルのフルスト
ロークに対するトルク指令を調整する。
In order to eliminate the uncomfortable feeling of the accelerator depression due to the play area C, the full-scale adjusting unit 25 adjusts the torque command for the full stroke of the accelerator according to the motor rotation speed in this embodiment.

【0052】例えば、モータ回転数n90では最大トルク
mがTm90として与えられ、アクセルフルストローク時
のトルク指令値Tmaxとの比Tm90/Tmaxによってトル
ク指令値TACCが比例配分され、トルク指令Tは T=TACC×(Tm90/Tmax) となる。
For example, at the motor speed n 90 , the maximum torque T m is given as T m90 , and the torque command value T ACC is proportionally distributed according to the ratio T m90 / T max to the torque command value T max at the accelerator full stroke. , The torque command T is T = T ACC × (T m90 / T max ).

【0053】このとき、フルスケール調整部25による
制限特性は図2の最大トルクTmとトルクTm90の線で囲
まれた範囲になり、アクセル踏み角最大時のトルク指令
値TmaxがTm90になる。従って、アクセル踏み角の変更
に応じて出力トルクが変化し、アクセルの踏込み量に調
和した電気自動車の加減速を得ることができる。
At this time, the limiting characteristic by the full-scale adjusting unit 25 is in the range surrounded by the lines of the maximum torque T m and the torque T m90 in FIG. 2, and the torque command value T max at the maximum accelerator depression angle is T m90. become. Therefore, the output torque changes according to the change of the accelerator pedal depression angle, and the acceleration / deceleration of the electric vehicle can be obtained in accordance with the accelerator pedal depression amount.

【0054】図5は本発明の他の実施例を示す装置構成
図である。同図が図4と異なる部分は、バッテリパラメ
ータ推定部26を設けた点にある。
FIG. 5 is a block diagram of an apparatus showing another embodiment of the present invention. The difference between FIG. 4 and FIG. 4 is that a battery parameter estimation unit 26 is provided.

【0055】バッテリパラメータ推定部26は、リミッ
タ値演算部24の演算に必要なバッテリパラメータ
o、Riを推定し、この推定値を最大トルクTmの演算
に供する。
The battery parameter estimation unit 26 estimates the battery parameters V o and R i necessary for the calculation of the limiter value calculation unit 24, and uses this estimated value for the calculation of the maximum torque T m .

【0056】バッテリパラメータVo、Riは、前述の実
施例では既知のもの又は一部検出値として最大トルクT
mを求めるが、バッテリの放電深度に対して図6に示す
特性のように変化し、また特性はバッテリの種類等によ
って異なる。
The battery parameters V o and R i are known or partially detected as the maximum torque T in the above-mentioned embodiment.
Although m is obtained, it changes as the characteristics shown in FIG. 6 with respect to the depth of discharge of the battery, and the characteristics differ depending on the type of battery and the like.

【0057】そこで、本実施例ではバッテリパラメータ
推定部26によってバッテリパラメータを推定すること
で一層適切なトルク制限を行なう。
Therefore, in the present embodiment, the battery parameter is estimated by the battery parameter estimation unit 26 to more appropriately limit the torque.

【0058】バッテリパラメータ推定部26による推定
には、次の何れかの方式にされる。
The estimation by the battery parameter estimation unit 26 is performed by any of the following methods.

【0059】(1)放電電流量からバッテリの放電深度
を求め、この放電深度とバッテリ特性からパラメータを
求める方式。
(1) A method in which the depth of discharge of the battery is obtained from the amount of discharge current and the parameters are obtained from the depth of discharge and the battery characteristics.

【0060】(2)モータ制御の停止時にインバータの
入力電圧EDと入力電流IDからパラメータを求める方
式。
(2) A method of obtaining parameters from the input voltage E D and input current I D of the inverter when the motor control is stopped.

【0061】上述の(1)の方式では、まずインバータ
入力電流IDを検出し、この時間積分演算によって放電
電流量AH(アンペアアワー)を求める。
In the above method (1), first, the inverter input current I D is detected, and the discharge current amount AH (ampere hour) is obtained by this time integration calculation.

【0062】[0062]

【数9】 [Equation 9]

【0063】放電深度DODは、バッテリの満充電時の
充電電流量AHoと上記放電電流量AHから次式によっ
て求められる。
The depth of discharge DOD is obtained by the following equation from the charging current amount AH o when the battery is fully charged and the discharging current amount AH.

【0064】[0064]

【数10】 [Equation 10]

【0065】この放電深度DODと予め測定されるバッ
テリの開放電圧Vo特性及び内部抵抗Ri特性からパラメ
ータVo、Riをオンライン推定する。なお、バッテリ特
性はテーブルデータとしてROM等に書込んでおくこと
ができる。
The parameters V o and R i are estimated online based on the depth of discharge DOD, the open circuit voltage V o characteristic of the battery and the internal resistance R i characteristic which are measured in advance. The battery characteristics can be written in the ROM or the like as table data.

【0066】次に、(2)の方式を説明する。開放電圧
oは、バッテリの無負荷状態の出力電圧であるから、
電気自動車が停止した時点や惰行運転時などモータ制御
の停止時の電圧検出によって得ることができる。
Next, the method (2) will be described. Since the open circuit voltage V o is the output voltage of the battery in the no-load state,
This can be obtained by detecting the voltage when the electric vehicle is stopped or when the motor control is stopped, such as during coasting operation.

【0067】これにより、インバータの入力電圧ED
電流IDを適当な時間間隔でサンプリングし、電流ID
0のときの電圧EDを検出し開放電圧Voとする。次に、
電流ID>0になるモータ駆動時の電圧EDと電流ID
検出値と前述の(4)式から内部抵抗Riを Ri=(ED−Vo)/ID …(18) として求めることができる。これら演算はサンプリング
周期毎に行ない、オンラインで推定値を求める。
As a result, the input voltage E D of the inverter,
The current I D is sampled at appropriate time intervals, and the current I D =
The voltage E D at 0 is detected and set as the open circuit voltage V o . next,
From the detected values of the voltage E D and the current I D at the time of driving the motor where the current I D > 0 and the above-mentioned formula (4), the internal resistance R i is expressed as R i = (E D −V o ) / I D (18) ) Can be obtained as These calculations are performed every sampling period, and the estimated value is obtained online.

【0068】なお、上述までの2つの推定方式におい
て、(1)の方式は長時間に渡る累積計算を行うことに
よる累積誤差が発生することがある。一方、(2)の方
式は連続走行時などモータ制御が続くときに電流ID
0における電圧EDの測定機会が長時間に渡って得られ
ないことがある。このような事実から(1)の方式及び
(2)の方式を併用してバッテリパラメータVo、Ri
推定することで推定誤差を小さくすることができる。
In the above two estimation methods, in the method (1), cumulative error may occur due to cumulative calculation for a long time. On the other hand, in the method (2), the current I D =
The measurement opportunity of the voltage E D at 0 may not be obtained for a long time. From such a fact, it is possible to reduce the estimation error by estimating the battery parameters V o and R i by using the method (1) and the method (2) together.

【0069】[0069]

【発明の効果】以上のとおり、本発明によれば、直流ブ
ラシレスモータの回転数nとバッテリの開放電圧Vo
らモータが出力し得る最大トルクTmにトルク指令値T
ACCを制限するようにしたため、トルク制御に過不足を
無くした適切なモータ制御ができる。
As described above, according to the present invention, the maximum torque T m that can be output by the motor from the rotational speed n of the DC brushless motor and the open circuit voltage V o of the battery is changed to the torque command value T.
Since the ACC is limited, it is possible to perform appropriate motor control without excess or deficiency in torque control.

【0070】また、トルク制限にフルスケール調整を付
加することでアクセルの踏込みと出力トルク変化に違和
感を無くすことができ、さらにバッテリのパラメータ推
定を行なうことで一層確実なトルク制限を得ることがで
きる。
Further, by adding full-scale adjustment to the torque limit, it is possible to eliminate a feeling of strangeness in the depression of the accelerator and the change in the output torque, and more reliable torque limit can be obtained by estimating the parameter of the battery. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】モータ駆動系の回路図。FIG. 1 is a circuit diagram of a motor drive system.

【図2】本発明の制限特性例を示す図。FIG. 2 is a diagram showing an example of limiting characteristics of the present invention.

【図3】実施例の装置構成図。FIG. 3 is a device configuration diagram of an embodiment.

【図4】他の実施例の装置構成図。FIG. 4 is a device configuration diagram of another embodiment.

【図5】他の実施例の装置構成図。FIG. 5 is a device configuration diagram of another embodiment.

【図6】バッテリの特性図。FIG. 6 is a characteristic diagram of a battery.

【図7】電気自動車の構成図。FIG. 7 is a configuration diagram of an electric vehicle.

【図8】直流ブラシレスモータの制御装置構成図。FIG. 8 is a block diagram of a controller of a DC brushless motor.

【符号の説明】[Explanation of symbols]

11…バッテリ、13…直流ブラシレスモータ、22…
リミッタ回路、23…トルク−電流変換演算器、24…
リミッタ値演算部、25…フルスケール調整部、26…
バッテリパラメータ推定部。
11 ... Battery, 13 ... DC brushless motor, 22 ...
Limiter circuit, 23 ... Torque-current conversion calculator, 24 ...
Limiter value calculator, 25 ... Full scale adjuster, 26 ...
Battery parameter estimation unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 足利 正 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 水野 孝行 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 中野 義則 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Ashikaga 2-17-17 Osaki, Shinagawa-ku, Tokyo Stock Company Shameidensha (72) Inventor Takayuki Mizuno 2-1-117 Osaki, Shinagawa-ku, Tokyo Stock Association Shameidensha (72) Inventor Yoshinori Nakano 2-17 Osaki, Shinagawa-ku, Tokyo Stock company Shameidensha

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 車輪の駆動源になる直流ブラシレスモー
タと、アクセルペダルの踏み角をトルク指令TACCとし
該トルク指令に応じた電流指令に従って該モータの電機
子電流を制御するインバータと、該インバータの直流電
源になるバッテリとを備えた電気自動車において、前記
モータの回転数nとバッテリの開放電圧Voから前記ト
ルク指令の制限値Tmを次式 【数1】 但し、KT:トルク指令−電流指令変換係数 K1,K2:インバータ損失係数 KN:誘起電圧定数 Ra′:(1+Kf)Raa:モータ等価巻線抵抗 Kf:漂遊損失係数 Ri:バッテリ内部抵抗 Ko:モータ無負荷損失係数 に従って求めるリミッタ値演算部と、前記トルク指令T
ACCを前記制限値Tmで制限するリミッタ回路とを備えた
ことを特徴とする電気自動車。
1. A DC brushless motor as a drive source for a wheel, an inverter that controls a stepping angle of an accelerator pedal as a torque command T ACC and controls an armature current of the motor according to a current command according to the torque command, and the inverter. In an electric vehicle equipped with a battery serving as a DC power source, the limiting value T m of the torque command is calculated from the rotational speed n of the motor and the open circuit voltage V o of the battery as However, K T: Torque command - current command conversion coefficient K 1, K 2: inverter loss factor K N: induced voltage constant R a ': (1 + K f) R a R a: equivalent motor winding resistance K f: stray loss Coefficient R i : internal battery resistance K o : motor no-load loss coefficient, a limiter value calculation unit and the torque command T
An electric vehicle, comprising: a limiter circuit for limiting ACC with the limit value T m .
【請求項2】 前記リミッタ回路に代えて、前記リミッ
タ値演算部からの制限値Tmと前記インバータの最大許
容電流で制限されるトルク指令値Tmaxとから前記トル
ク指令TACCを T=TACC×(Tm/Tmax) に制限するフルスケール調整部を備えたことを特徴とす
る電気自動車。
2. In place of the limiter circuit, the torque command T ACC is calculated from a limit value T m from the limiter value calculation unit and a torque command value T max limited by the maximum allowable current of the inverter, and T = T. An electric vehicle having a full-scale adjusting unit for limiting to ACC x (T m / T max ).
【請求項3】 前記バッテリの開放電圧Vo及び内部抵
抗Riをバッテリの放電深度とバッテリ特性から求める
バッテリパラメータ推定部を備えたことを特徴とする電
気自動車。
3. An electric vehicle comprising a battery parameter estimation unit that obtains the open circuit voltage V o and internal resistance R i of the battery from the depth of discharge of the battery and the battery characteristics.
【請求項4】 前記バッテリの開放電圧Voをモータ制
御の停止時の電圧EDとして求め、モータ制御中の電流
Dと該電圧Vo、EDから内部抵抗Riを求めるバッテリ
パラメータ推定部を備えたことを特徴とする電気自動
車。
4. A battery parameter estimation for obtaining an open circuit voltage V o of the battery as a voltage E D when the motor control is stopped, and obtaining an internal resistance R i from the current I D during the motor control and the voltages V o , E D. An electric vehicle characterized by having a section.
JP04035490A 1992-02-24 1992-02-24 Electric car Expired - Lifetime JP3127033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04035490A JP3127033B2 (en) 1992-02-24 1992-02-24 Electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04035490A JP3127033B2 (en) 1992-02-24 1992-02-24 Electric car

Publications (2)

Publication Number Publication Date
JPH05236607A true JPH05236607A (en) 1993-09-10
JP3127033B2 JP3127033B2 (en) 2001-01-22

Family

ID=12443191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04035490A Expired - Lifetime JP3127033B2 (en) 1992-02-24 1992-02-24 Electric car

Country Status (1)

Country Link
JP (1) JP3127033B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731669A (en) * 1995-09-14 1998-03-24 Nippondenso Co., Ltd. Control apparatus for electric vehicle
FR2859326A1 (en) * 2003-08-25 2005-03-04 Fuji Electric Systems Co Ltd Control circuit for electric motor includes current converter and circuit determining torque limit values for control of final motor output
JP2006149162A (en) * 2004-11-24 2006-06-08 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Revolution control device for construction machinery
JP2009201206A (en) * 2008-02-20 2009-09-03 Panasonic Corp Inverter device
US20120191281A1 (en) * 2011-01-26 2012-07-26 Jun Saito Electric vehicle
WO2023032182A1 (en) * 2021-09-06 2023-03-09 三菱電機株式会社 Electric motor monitoring device and electric motor monitoring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731669A (en) * 1995-09-14 1998-03-24 Nippondenso Co., Ltd. Control apparatus for electric vehicle
FR2859326A1 (en) * 2003-08-25 2005-03-04 Fuji Electric Systems Co Ltd Control circuit for electric motor includes current converter and circuit determining torque limit values for control of final motor output
US7042181B2 (en) 2003-08-25 2006-05-09 Fuji Electric Systems Co., Ltd. Method and system for controlling motor torque
JP2006149162A (en) * 2004-11-24 2006-06-08 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Revolution control device for construction machinery
JP2009201206A (en) * 2008-02-20 2009-09-03 Panasonic Corp Inverter device
US20120191281A1 (en) * 2011-01-26 2012-07-26 Jun Saito Electric vehicle
US8768550B2 (en) * 2011-01-26 2014-07-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electric vehicle
WO2023032182A1 (en) * 2021-09-06 2023-03-09 三菱電機株式会社 Electric motor monitoring device and electric motor monitoring method

Also Published As

Publication number Publication date
JP3127033B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
EP1744445B1 (en) AC motor driving apparatus and method of controlling the same
KR950015169B1 (en) Control system for induction motor driven electric car
US20090234538A1 (en) Method and apparatus for controlling electric power steering system
US5444351A (en) System and method for controlling induction motor applicable to electric motor-driven vehicle
KR100619297B1 (en) A system and an electric vehicle comprising variable limit proportional-integral regulator, and a controlling method related thereto
JPH07212915A (en) Control method for electric vehicle drive motor
JP2000312496A (en) Control method for induction motor
JPH0583976A (en) Alternating current motor controller and electric rolling stock controller with this
JP3561453B2 (en) Electric power steering control device
JP2007116849A (en) Motor drive controller
US20040100220A1 (en) Weighted higher-order proportional-integral current regulator for synchronous machines
JP2018196172A (en) Control method of permanent magnet synchronous motor for electric automobile and device thereof
JP3127033B2 (en) Electric car
WO2019131659A1 (en) Electric motor device and electric brake device in which same is used
JPH11187699A (en) Speed control method for induction motor
JP4299628B2 (en) Control device for electric power steering device
CN108432125A (en) Motor drive
JP3706675B2 (en) Motor drive control device for electric vehicle
JP3351244B2 (en) Induction motor speed control method
JP6663724B2 (en) Electric motor device
JP3474730B2 (en) Vector control device for linear induction motor
JP2552719B2 (en) Electric motor speed controller
JPS63206103A (en) Electric braking system for automobile
JPH11235075A (en) Flat linear induction motor
JP3331784B2 (en) Induction machine magnetic flux controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12