WO2019131659A1 - Electric motor device and electric brake device in which same is used - Google Patents

Electric motor device and electric brake device in which same is used Download PDF

Info

Publication number
WO2019131659A1
WO2019131659A1 PCT/JP2018/047629 JP2018047629W WO2019131659A1 WO 2019131659 A1 WO2019131659 A1 WO 2019131659A1 JP 2018047629 W JP2018047629 W JP 2018047629W WO 2019131659 A1 WO2019131659 A1 WO 2019131659A1
Authority
WO
WIPO (PCT)
Prior art keywords
power consumption
electric motor
value
electric
unit
Prior art date
Application number
PCT/JP2018/047629
Other languages
French (fr)
Japanese (ja)
Inventor
唯 増田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019131659A1 publication Critical patent/WO2019131659A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to an electric motor device and an electric brake device, and relates to a technology capable of limiting maximum motor power consumption and improving motor output performance.
  • the maximum power consumption of the electric motor must often be limited in advance to a predetermined value so as not to exceed the capacity of the power supply.
  • the electric brake device of Patent Document 1 or the electric steering device which is another in-vehicle electrical equipment when the power consumption of the electric motor exceeds a predetermined capacity, the electric vehicle (EV) or HEV (Hybrid Electric Vehicle) is used.
  • EV electric vehicle
  • HEV Hybrid Electric Vehicle
  • a problem may occur that the power of the battery is reduced due to lack of DC / DC converter power supply from the high voltage power supply or power supply from the alternator in the engine car.
  • the load on the battery is increased, the battery life may be reduced than expected.
  • the electric brake device of Patent Document 1 generally, a plurality of electric motors are simultaneously driven with respect to a predetermined power supply system, so the upper limit value of power consumption changes depending on other motor driving conditions. At this time, if the drive condition of each electric motor is set unchanged so that the total sum of the maximum power consumption of all the electric motors does not exceed the power source capacity, the motor output becomes small, for example, the response of the brake It may decrease.
  • An object of the present invention is to provide an electric motor apparatus capable of appropriately limiting maximum motor power consumption regardless of motor characteristic fluctuation and the like, and improving output performance of the electric motor by using electric power within the allowable range to the maximum. And providing an electric brake device.
  • the electric motor device of the present invention is an electric motor device including an electric motor 1 and a control device 2 for controlling the electric motor 1,
  • the control device 2 is A power consumption estimation function unit 19 for estimating the current and voltage of the electric motor 1 and estimating the power consumption of the electric motor 1 from the estimated current and voltage;
  • Angular velocity estimation means 15 for estimating the angular velocity of the electric motor 1;
  • a command value of at least one of a torque command value, a current command value, and a voltage command value generated from the motor operation command given to the control device 2 is determined including the angular velocity estimated by the angular velocity estimating means 15
  • An output restriction function unit 8 which restricts so as not to exceed a threshold based on conditions and outputs as a restricted value;
  • a drive circuit 6 for driving the electric motor 1 based on the restricted value given from the output restriction function unit 8;
  • the output restriction function unit 8 adjusts the restricted value so that the command value is reduced to the predetermined value.
  • a restriction unit 20 is provided.
  • the predetermined condition, the threshold value, and the respective predetermined values are conditions, threshold values, and values arbitrarily determined by design etc., for example, conditions suitable for one or both of a test and a simulation, etc.
  • the threshold value is determined by determining the value.
  • the power consumption estimation function unit 19 estimates the power consumption of the electric motor 1 from the current and voltage of the electric motor 1.
  • the output limiting function unit 8 limits the command value of at least one of the torque command value, the current command value, and the voltage command value so that the threshold value is not exceeded based on the angular velocity and the like.
  • the output restriction function unit 8 can output the command value as a restricted value.
  • variable limiting unit 20 of the output limiting function unit 8 adjusts the restricted value so that the command value decreases to a defined value when the estimated power consumption is larger than the defined value.
  • motor power consumption can be appropriately limited to a constant value regardless of motor characteristic fluctuation or the like.
  • variable limitation unit 20 of the output restriction function unit 8 is limited to increase the command value to the predetermined value.
  • the value may be adjusted.
  • the variable limiting unit 20 of the output limiting function unit 8 includes a first limiting unit 21, a second limiting unit 22 whose power consumption is relatively smaller than that of the first limiting unit 21, and the first and second limiting units. And a limit value combining unit 23 for deriving a value obtained by combining the output limit values from the second limiting units 21 and 22 according to a defined ratio as a limited value to be finally output from the output limit function unit 8;
  • the limit value combining unit 23 may adjust the determined ratio based on the power consumption estimated by the power consumption estimation function unit 19.
  • the predetermined ratio is an arbitrary ratio determined by design or the like, and is determined by obtaining an appropriate ratio by, for example, one or both of a test and a simulation. In this case, since estimated power consumption can be derived more accurately than using a value obtained through gain as an excess of estimated power consumption as an adjustment amount to decrease the command value, motor power consumption can be further increased. It may be appropriately limited.
  • the variable limiting unit 43 of the output limiting function unit 8 derives a voltage value that can be the maximum power consumption from the determined maximum power consumption and the current estimated by the power consumption estimating function unit 19, and the electric motor
  • the voltage applied to 1 may be limited to the derived voltage value.
  • the determined maximum power consumption is the maximum power consumption inherent to the electric motor 1, and is determined, for example, by a test and / or simulation to determine an appropriate maximum power consumption. In this case, it is advantageous in strictly managing the power consumption of the electric motor 1.
  • the variable limiting unit 20 of the output limiting function unit 8 sets a value based on a gain to an excess of the power consumption estimated by the power consumption estimating function unit 19 with respect to the determined maximum power consumption.
  • the amount of adjustment to be decreased may be applied to any one of the torque command value, the current command value, and the voltage command value.
  • the determined maximum power consumption is the maximum power consumption inherent to the electric motor 1, and is determined, for example, by a test and / or simulation to determine an appropriate maximum power consumption. In this case, a LUT (Look Up Table) or the like that limits motor output is not necessary, which is advantageous in saving resources such as memory.
  • An electric motor system is an electric motor system including a plurality of electric motor devices DM according to any one of the above,
  • the electric power distribution means 27 which defines the maximum power consumption of each electric motor apparatus DM is provided so that the sum total of the estimated power consumption in the plurality of electric motor apparatuses DM does not exceed a predetermined system maximum power consumption.
  • the predetermined system maximum power consumption is a system maximum power consumption which is arbitrarily determined by design or the like, and is determined by, for example, a test and / or a simulation to obtain an appropriate system maximum power consumption.
  • the power distribution unit 27 has a function of determining a power consumption degree, which is a degree of power consumption of the electric motor device DM, based on comparison between the maximum power consumption and the estimated power consumption of the electric motor device DM.
  • a power consumption degree which is a degree of power consumption of the electric motor device DM
  • the electric power The distribution means 27 sets the maximum power consumption of the electric motor device DM having a high degree of power consumption to be larger than a predetermined value, and the maximum power consumption of the electric motor device DM having a low degree of power consumption is set to a predetermined value. May be set small.
  • the reference value and the determined value are reference values and values arbitrarily determined by design etc., and are determined by obtaining appropriate reference values and values by, for example, one or both of a test and a simulation. .
  • the electric brake device DB of the present invention comprises the electric motor device DM according to any one of the above, a brake rotor 32, a friction member 33 which generates a braking force by contacting the brake rotor 32, and the friction member 33 In the electric brake device, provided with friction member operating means 35 operable by the motor 1; A power variable function unit 27a that makes the maximum power consumption of the electric brake device variable is provided, and the limited value in the output restriction function unit 8 is adjusted based on the maximum power consumption given from the power variable function unit 27a. Ru.
  • the maximum power consumption of the electric brake device is made variable, and the limited value in the output limiting function unit 8 is adjusted based on the maximum power consumption given from the power variable function unit 27a. It is possible to use the electric power in the range as much as possible to improve the performance of the electric brake system.
  • An electric brake system is an electric brake system including a plurality of electric brake devices DB, wherein Power distribution means 27 for determining the maximum power consumption of each of the electric brake devices DB so that the sum of the estimated power consumption of the plurality of electric brake devices DB does not exceed the determined maximum power consumption of the electric brake system; Wheel speed estimation means 28 for estimating a wheel speed which is a rotational speed of a plurality of wheels on which the plurality of electric brake devices DB are respectively mounted; Slip state estimation means 29 for estimating slip states of individual wheels using information including a plurality of wheel speeds estimated by the wheel speed estimation means 28; An anti-skid control function unit 30 performing anti-skid control for adjusting the braking force of the electric brake device DB so that the slip state is suppressed when the slip state estimated by the slip state estimation means 29 exceeds a threshold; Equipped with When the electric brake device DB performing anti-skid control and the electric brake device DB not performing anti-skid control among the plurality of electric brake devices DB are mixed, the power distribution means 27 for
  • Embodiments of the invention will be described in conjunction with FIGS. 1-5.
  • the electric motor device of this embodiment is applied to, for example, an electric brake device (described later) mounted on a vehicle.
  • the electric motor device includes an electric motor 1, a control device 2 for controlling the electric motor 1, a power supply device 3, and various command means.
  • the various command means includes motor operation command means 4 and maximum power consumption limiting means 5.
  • the motor operation command means 4 is, for example, a target command value (motor) for operating the electric motor 1 such as the position (angle) of the rotor of the electric motor, the speed (angular velocity) of the rotor, load (torque, load, etc.)
  • the operation command is output to the control device 2.
  • the motor operation command means 4 may output to the control device 2 a plurality of operation commands among the position, speed and load, and operation mode commands etc. indicating what kind of operation is to be performed.
  • the motor operation command means 4 may be, for example, a host ECU such as a vehicle integrated control unit (VCU) or a test apparatus sequencer, or may be an operation interface such as a brake pedal or an operation volume.
  • VCU vehicle integrated control unit
  • test apparatus sequencer or may be an operation interface such as a brake pedal or an operation volume.
  • the maximum power consumption limiting means 5 has a function of command-outputting the maximum value of the power that can be consumed by the electric motor 1 (maximum power consumption limit value Pmax) to the control device 2.
  • the maximum power consumption limiting unit 5 may be a host ECU or an operation interface that is the same as or similar to the motor operation command unit 4, or may be a dedicated power management system such as a battery manager or a power breaker.
  • a predetermined power limiting condition may be implemented by a program or the like in the control device 2 in advance without providing such an external command means.
  • the electric motor 1 is constituted by a permanent magnet synchronous motor, space saving and high efficiency and high torque are preferable.
  • a DC motor using a brush or a reluctance motor not using a permanent magnet, an induction motor or the like is applied You can also
  • the electric motor 1 is provided with an angle sensor Sa that detects the angle of rotation of the electric motor 1.
  • the angle sensor Sa for example, using a resolver or a magnetic encoder is preferable because of high accuracy and high reliability, but various sensors such as an optical encoder can also be applied.
  • the angle sensor Sa for example, it is possible to use angle sensorless estimation in which the motor angle is estimated from the relationship between the voltage and the current of the electric motor 1 or the like in the control device 2 described later.
  • various sensors such as a thermistor may be separately provided as elements not shown based on requirements for safety etc. according to the requirements.
  • the control device 2 includes various control computing units that perform control computations, a motor driver 6 as a drive circuit, and sensors.
  • the various control computing units include a torque command computing unit 7, a motor output limiter 8 as an output limiting function unit, a voltage estimator 9, a current estimator 10, a current command computing unit 11, a motor current controller 12, and a control power supply 13. , A current estimator 14 and a rotational motion estimator 15 as angular velocity estimation means.
  • the sensors include current sensors 16 and 17, a voltage sensor 18, and the like.
  • the rotational motion estimator 15 has a function of estimating parameters such as an angle, an angular velocity, an electrical angle phase, and the like used for control calculation from a sensor that detects the motion of the electric motor 1 such as the angle sensor Sa. What is used for estimation of the parameter may be, for example, a Calculus process such as differentiating an angle to obtain an angular velocity, or a state estimation observer using an actuator motion equation for calculation, or these The combination of Alternatively, the rotational motion estimator 15 may be, for example, a sensorless estimator that estimates the electrical angular velocity or the electrical angle phase from the voltage and current of the electric motor 1 as described above.
  • the rotational motion estimator 15 can also include the function of a disturbance observer, such as, for example, estimation of a motor reaction force.
  • the current sensors 16 and 17 are sensors for detecting the current of the electric motor 1 and are, for example, a sensor comprising an amplifier for detecting a voltage across the shunt resistor, or a noncontact type for detecting a magnetic flux or the like around the current path. A sensor or the like can be used.
  • the current estimators 10 and 14 have a function of estimating the current used for the control calculation from the values detected by the current sensors 17 and 16.
  • the voltage sensor 18 is a sensor that detects the voltage of the electric motor 1, and can be configured inexpensively by using, for example, a voltage dividing resistor. A noise reduction process using a capacitor or the like may be used as appropriate. Alternatively, the voltage sensor 18 can directly observe the voltage without using a voltage dividing resistor if the hardware withstand voltage of the A / D converter of the computing unit is sufficient.
  • the voltage estimator 9 has a function of estimating the voltage used for the control calculation from the value detected by the voltage sensor 18. Alternatively, when the electric motor 1 is driven by a predetermined fixed voltage (when it is not necessary to consider battery voltage fluctuation etc.), the voltage sensor 18 and the voltage estimator 9 are not provided, and the program etc. You may use the voltage value implemented by.
  • the torque command calculator 7 has a function of converting a command value input from the motor operation command means 4 into a torque command value.
  • the torque command calculator 7 may perform predetermined control calculation from command values such as angular velocity, angle, or load (torque, load) to derive a torque command value, and in that case, The angular velocity angle or load (torque, load) or the like may be feedback calculated.
  • the above-mentioned function shall be suitably defined according to what kind of application this electric motor device is applied to.
  • the motor output limiter 8 limits the torque command value so as not to exceed the threshold and outputs it as a limited value.
  • the motor output limiter 8 reduces the torque command value when the power consumption of the electric motor 1 estimated by the power calculation unit 19 which is a power consumption estimation function unit and the power calculation unit 19 is larger than a predetermined value.
  • a variable limiting unit 20 that adjusts the restricted value.
  • the power calculation unit 19 has a function of deriving the power consumption of the electric motor 1 from the voltage and current of the primary side (input side) of the motor driver 6 described later.
  • the variable limiting unit 20 is a torque limiting value coupling unit that combines the output results of a plurality of (the first and second in this example) torque limiting units (limiting units) 21 and 22 and the plurality of torque limiting units 21 and 22 (Limit value coupling unit) 23, and has a function of deriving a torque command value that achieves predetermined power consumption.
  • the first torque limiting unit 21 has a torque limiting function in which the output is relatively large
  • the second torque limiting unit 22 has a torque limiting function in which the output is relatively small.
  • current conditions for exerting a predetermined torque are uniquely set based on motor characteristics previously determined from test or simulation results, but in actuality, resistance value, inductance, rotor magnetic flux, etc. The power consumption for the current condition is often different due to the solid-state difference and the characteristic fluctuation of the
  • the output change width of the first and second torque limiters 21 and 22 will be described.
  • the maximum torque can be applied to the electric motor device, which is determined based on motor coil current density, heat radiation characteristics of coil heat generation, heat capacity, current capacity of motor drive element, etc.
  • a torque limiter based on the maximum output under current conditions.
  • the second torque limiting unit 22 is defined as a torque limiting unit based on the maximum output under the current condition where the maximum power consumption is achieved under the condition of the power factor or the predetermined maximum power factor.
  • the power consumption can be adjusted as much as possible with respect to any characteristic change.
  • the output change widths of the first and second torque limiters 21 and 22 may be appropriately set based on characteristic fluctuations that may occur in the electric motor device.
  • the first and second torque limiters 21 and 22 are appropriate. Can be limited to the maximum power consumption. At this time, for example, the first and second torque limiters 21 and 22 can be used as the torque limiter including the difference between the predetermined maximum power consumption and the instantaneous maximum power consumption in the steady state.
  • the torque limiting unit coupling unit 23 couples the first and second torque command values limited by the first and second torque limiting units 21 and 22 based on a predetermined relationship, and a final torque limiting value It has the function of (restricted value). For example, when the power consumption Pm calculated by the power calculation unit 19 exceeds the maximum power consumption limit value Pmax, the predetermined relationship sets the torque limit value to a second torque limit value at which the output becomes relatively small. In the case where the power consumption calculated by the power calculation unit 19 is smaller than the limit value of the maximum power consumption, the processing may be made to approach the first torque limit value.
  • the first torque limit value T1 and the second torque limit value T2 are obtained.
  • the final torque limit value T may be set as follows.
  • the gain Ka may be linear, or may be a non-linear gain that changes based on a deviation (Pmax ⁇ Pm) or the like.
  • may be calculated using differentiation or integration of the deviation (Pmax ⁇ Pm).
  • the actual operation may not be the above equation but may be an operation process that is substantially equivalent to the above equation.
  • the motor output limiter 8 has, for example, a third further torque limiter for nonlinear interpolation of the first and second torque limits, and a fourth A torque limiter or the like may be provided.
  • the motor output limiter 8 may be provided with different first and second or additional torque limiters in power running and regeneration, respectively.
  • the current command calculation unit 11 has a function of converting, for example, a torque command value or a torque limit value into a current value that generates the torque based on a predetermined motor characteristic. For example, it is preferable to reduce the calculation load if a LUT or the like of current values according to motor angular velocity and torque is provided in the storage area. Further, the conversion can be a desired torque using, for example, a calculation formula for obtaining a current using a predetermined torque and angular velocity as arguments, or a motor phase resistance or a phase inductance using a convergence calculation formula such as Newton-Rapson method It can also be determined by a predetermined calculation equation such as a calculation equation for obtaining the current condition.
  • the current command value determined by the current command calculation unit 11 may be, for example, an orthogonal current (d-axis current, q-axis current) with respect to a predetermined electrical angle phase, and is an alternating current having a predetermined phase and frequency. It may be. Alternatively, it may be a current command value in consideration of the slip angle in the induction motor, or may be a DC current command of a brushed DC motor.
  • the motor current controller 12 has a function of controlling the electric motor current so as to follow the current command value given from the current command calculation unit 11.
  • the current estimator 14 estimates the electric motor current used for the control calculation from the value detected by the current sensor 16. For this current control, for example, current feedback control may be used, feed forward control may be used based on predetermined motor characteristics, and these may be used in combination as appropriate.
  • the motor driver 6 converts DC power of the power supply 3 into AC power used for driving the electric motor 1 based on a current command given from the motor current controller 12.
  • the motor driver 6 constitutes a half bridge circuit including switching elements such as FETs, and is preferably inexpensive and has high performance if it is configured to perform PWM control to determine a motor applied voltage with a predetermined duty ratio.
  • a transformer circuit or the like may be provided to perform PAM control.
  • the control power supply 13 supplies power to various control computing units and low-power systems such as the motor driver 6 and the like.
  • output saturation compensation may be required in the control computing unit, and a compensator for performing the output saturation compensation may be provided as appropriate.
  • a redundant system may be separately provided to limit or stop the output at a temperature rise or an overcurrent.
  • FIG. 1 shows the concept of the functional configuration to the last, and elements not shown are appropriately provided according to the requirements.
  • each functional block is provided for the sake of convenience, and can be appropriately integrated or divided according to the convenience of mounting.
  • the connection form of each function is shown as an example, and can be changed in the range which does not disturb the above-mentioned function.
  • FIGS. 2A and 2B show an example of positioning to a predetermined motor angle using the electric motor device.
  • the operation example of the electric motor apparatus of a prior art example is shown by a dotted line
  • the operation example of the electric motor apparatus of embodiment is shown by a continuous line.
  • FIG. 2A shows a case where the loss increases more than a predetermined assumed value in the electric motor having the characteristic variation.
  • the maximum power consumption exceeds the limit value as the motor loss increases.
  • the predetermined maximum consumption particularly by the motor output limiter 8 (FIG. 1) Limited to power.
  • FIG. 2B shows a case where the loss is relatively small in the electric motor having the characteristic variation.
  • the response speed of the electric motor decreases as a result of adjusting the maximum power consumption not to exceed the predetermined limit value for the characteristic variation in the electric motor device of the conventional example.
  • the motor output limiter 8 increases the power consumption and improves the response of the electric motor 1 (FIG. 1).
  • FIG. 3 is a block diagram showing a configuration example of an electric brake device DB using the electric motor device according to the embodiment.
  • the electric brake device DB includes an electric motor device DM and a friction brake BR.
  • the electric brake system includes a plurality of electric brake devices DB.
  • the power supply device 3 may be, for example, a battery, a DC / DC converter, or a combination of these as appropriate.
  • a high voltage battery of about 200 V to 300 V a DC / DC converter for reducing the high battery voltage to 12 V, and a 12 V battery are provided.
  • the configuration to be used may be used.
  • the brake command means 4A is a means for giving a braking force to the integrated control device 24, and for example, a brake pedal can be used.
  • the brake command unit 4A may be another command unit such as a joystick or a volume, or may be a command unit that does not depend on the driver of the vehicle, such as a predetermined brake command unit in an autonomous driving vehicle.
  • the integrated control device 24 includes a power supply capacity calculator 25, a braking force distribution calculator 26, and a power distribution calculator 27 as power distribution means.
  • the integrated control device 24 may be a vehicle integrated control device (VCU), or one or more of the brake control devices 2A described later may have the integrated control device 24.
  • VCU vehicle integrated control device
  • the power supply capacity calculator 25 has a function of determining the power that can be used for the electric brake device DB from the output capacity and state of the power supply device 3.
  • the detection and diagnosis functions of the state of the power supply device 3 may be, for example, the remaining amount detection function such as% SOC in the case of a battery, and in the case of a DC / DC converter The self-diagnosis function of or a combination of these may be used.
  • the power supply capacity computing unit 25 obtains the power consumption state of an electric device (not shown) such as an electric steering device other than the electric brake device, and determines the maximum power consumption taking this power consumption state into consideration. It is also good.
  • the electric brake device DB preferentially uses electric power, it may have a function of notifying the electric power consumption of the electric brake device DB to an electric device not shown.
  • the braking force distribution computing unit 26 outputs a braking force command value to each brake control device 2A in accordance with the braking force required by the braking command unit 4A.
  • the brake force command value may be, for example, a predetermined fixed ratio such as a front / rear brake ratio in a four-wheeled vehicle, for example, a braking state or a turning state of the vehicle is estimated from an acceleration sensor not shown. It may be a variable value according to one or both of the states.
  • the braking force distribution computing unit 26 may include a wheel speed estimating unit 28, a slip state estimating unit 29, an antiskid control function unit 30, and a skid prevention control function unit 31.
  • the wheel speed estimation means 28 estimates a wheel speed which is a rotational speed of each wheel on which the plurality of electric brake devices DB are mounted.
  • the slip state estimation means 29 estimates the slip state of each wheel using the wheel speed of each wheel estimated by the wheel speed estimation means 28, the longitudinal acceleration of the vehicle, vehicle position information (GPS), and the like.
  • the anti-skid control function unit 30 adjusts the braking force (braking force) of the electric brake device DB so that the slip state is suppressed when the slip state estimated by the slip state estimation means 29 exceeds the threshold value. I do. In other words, the anti-skid control function unit 30 performs anti-skid control to adjust the braking force regardless of the operation of the brake pedal or the like in order to prevent an excessive slip state at the time of braking.
  • the skid prevention control function unit 31 estimates the slip state of each wheel as described above, and performs skid prevention control based on the turning state of the vehicle and the like.
  • the power distribution calculator 27 has a function of determining the maximum power consumption of each of the electric brake devices DB from the power consumption of the electric brake device DB determined by the power source capacity calculator 25.
  • the maximum power consumption may be a value changed based on a predetermined distribution condition for each of the electric brake devices DB, or may be the same value.
  • the power distribution computing unit 27 distributes according to the brake force capacity (front wheel Preferably, the distribution of the fork brakes is large and the distribution of the rear wheel brakes is small.
  • the power distribution computing unit 27 may have a power variable function unit 27a that changes the maximum power distribution of each of the electric brake devices DB according to the power condition. For example, when there is an allowance in the drive power of a predetermined electric brake device DB and there is no margin in the drive power of another electric brake device DB, the surplus electric power of the predetermined electric brake device DB is It may be a process to consume.
  • the power condition may be determined based on, for example, comparison between a power limit value in a predetermined electric brake device DB and drive power. If the drive power is equal to or close to the power limit value, the electric brake device DB is considered to be an emergency operating condition requiring a relatively large drive power. If the drive power is smaller than the power limit value by a predetermined amount or more, it is considered that the electric brake device DB is in a situation where the drive power is relatively unnecessary. That is, when the electric brake device DB requiring driving power and the electric brake device DB not requiring driving power coexist, the electric power variable function unit 27a performs the electric braking device DB in an emergency operation state requiring driving power. The responsiveness of the electric brake device DB can be improved by increasing the limit power value (limit value) of the above.
  • the power condition of the electric brake device DB may be determined based on, for example, whether or not a predetermined electric brake device DB is in anti-skid control.
  • the electric brake device DB in anti-skid control requires high-speed brake operation, and the other electric brake devices DB do not relatively require high-speed brake operation. Therefore, in the case where the electric brake device DB performing antiskid control and the electric brake device DB not performing antiskid control among the plurality of electric brake devices DB are mixed, the power variable function unit 27a is By setting the power limit value of the electric brake device DB not performing anti-skid control relatively small and improving the power limit value of the electric brake device DB under anti-skid control with the surplus, anti-skid control performance can be achieved. It can be improved.
  • the brake control device 2A has a function of following control of the braking force to a desired command value.
  • the electric actuator 1A includes friction member operating means such as a screw mechanism or a ball ramp mechanism for operating a friction member of the friction brake BR described later, in addition to the electric motor 1 (FIG. 1) described above.
  • the electric actuator 1A may be provided with a load sensor or the like for detecting the pressing force of the friction member in order to control the braking force.
  • the friction brake BR (described later) includes a brake rotor 32 that rotates in synchronization with the wheels, and a friction member 33 that abuts on the brake rotor 32 to generate a braking force.
  • FIG. 4A and FIG. 4B show an operation example of the electric brake system in a four-wheeled vehicle.
  • F1 and F2 show the operation of the electric brake system for the left and right front wheels
  • R1 and R2 show the operation of the electric brake system for the left and right rear wheels.
  • FIG. 4A shows an operation example of this electric brake system (configuration of FIG. 3).
  • the section in the figure in which F1 operates differently to F2 indicates that anti-skid control is being performed.
  • the power distribution computing unit 27 (FIG. 3) performs high-precision antiskid control by temporarily increasing the maximum power consumption of F1 while keeping the sum of all the maximum power consumptions constant. It shows that it can do.
  • the determination to temporarily increase the maximum power consumption of F1 may be made based on whether anti-skid control is being performed or not, and the power consumption of F1 is large, F2,. You may judge from the power consumption of R1 and R2 being small.
  • FIG. 4B shows an example in which the maximum power consumption is always constant in the conventional electric brake system.
  • the electric brake device DB includes an electric actuator 1A and a friction brake BR.
  • the friction brake BR includes a brake rotor 32 that rotates in conjunction with the wheels of the vehicle, and a friction member 33 that contacts the brake rotor 32 to generate a braking force.
  • the friction member 33 is disposed near the brake rotor.
  • a mechanism may be used in which the friction member 33 is operated by the electric actuator 1A and pressed against the brake rotor 32, and a braking force is generated by the frictional force.
  • the brake rotor 32 and the friction member 33 may be, for example, a disk brake device using a brake disk and a caliper, or may be a drum brake device using a drum and a lining.
  • the electric actuator 1A has an electric motor 1, a reduction mechanism 34, a direct acting mechanism 35 which is a friction member operating means, and a parking brake mechanism PB.
  • the reduction mechanism 34 is a mechanism that reduces the rotation of the electric motor 1 and includes a primary gear 36, an intermediate gear 37, and a tertiary gear 38.
  • the reduction mechanism 34 reduces the rotation of the primary gear 36 attached to the rotor shaft 1 a of the electric motor 1 by the intermediate gear 37 and transmits it to the tertiary gear 38 fixed to the end of the rotating shaft 39 It is possible.
  • the linear motion mechanism 35 is a mechanism that converts the rotational motion output from the speed reduction mechanism 34 into linear motion of the linear motion portion 40 by the feed screw mechanism, and causes the friction member 33 to contact and separate from the brake rotor 32.
  • the linear motion portion 40 is detentated and supported movably in the axial direction indicated by the arrow mark A1.
  • a friction member 33 is provided at the outboard side end of the linear movement portion 40.
  • a linear solenoid is applied as the actuator 41 of the parking brake mechanism PB.
  • the locking member 42 is advanced by the actuator 41 and engaged by being fitted into a locking hole (not shown) formed in the intermediate gear 37, and the rotation of the intermediate gear 37 is prohibited to thereby obtain a parking lock state. Make it By disengaging the lock member 42 from the locking hole, the rotation of the intermediate gear 37 is allowed to be in the unlocked state.
  • the motor output limiter 8 limits the torque command value given from the torque command calculator 7 so as not to exceed the threshold value based on the angular velocity and the like.
  • the electric motor 1 can be used to the maximum usable output, and the output performance of the electric motor 1 can be improved. Therefore, it is possible to prevent the responsiveness of the electric brake device DB and the like from being lowered undesirably.
  • the maximum power consumption can be adjusted by the first and second torque limiters 21 and 22 to limit the power consumption to a predetermined maximum power consumption regardless of motor characteristic fluctuation. be able to. Further, the configuration of the motor output limiter 8 shown in FIG.
  • the power calculation unit 19 of FIG. 1 is advantageous in managing power consumption more directly because the power consumption of the electric motor 1 is derived from the voltage and current of the primary side of the motor driver 6.
  • FIG. 6 shows an example in which the motor output limiter 8 as the output limiting function unit is provided between the current command calculator 11 and the motor current controller 12.
  • the variable limiting unit 20 includes first and second current limiting units (limiting units) 21A and 22A, and a current limiting value coupling unit (limit value coupling unit) 23A.
  • the first current limiting unit 21A has a current limiting function in which the current value is relatively large
  • the second current limiting unit 22A has a current limiting function in which the current value is relatively small.
  • the first and second current limiters 21A and 22A can be set in the same manner as the first and second torque limiters 21 and 22 in FIG.
  • the first current limiting portion 21A has an abnormality in the electric motor apparatus determined based on motor coil current density, heat radiation characteristics of coil heat generation, heat capacity, current capacity of motor drive element, etc.
  • the second current limiter 22A may be a maximum current limit that provides maximum power consumption under conditions of a power factor or a predetermined maximum power factor.
  • the first and second current limiters 21A and 22A may be appropriately set to an arbitrary relationship in which the maximum current value differs by a predetermined amount based on the characteristic fluctuation that may occur in the electric motor device.
  • the power computing unit 19 has the same function as the power computing unit 19 of FIG. 1. Also, as shown in FIG. 6, the current limit value coupling unit 23A differs from the torque limit value coupling unit 23 of FIG. 1 only in that it handles current limitation instead of torque limitation, and the other points are the same as in FIG. It has a function.
  • the output performance of the electric motor 1 can be improved by appropriately limiting the maximum motor power consumption regardless of the motor characteristic fluctuation and the like and using the power within the allowable range to the maximum. it can.
  • the configuration of motor output limiter 8 of FIG. 6 is preferable in order to handle power consumption and heat load of electric motor 1 more strictly, for example, based on the first and second current limit values strictly based on motor characteristic fluctuation. It is superior when deciding.
  • FIG. 7 shows an example in which a power operation unit 19 having a function of calculating power from the current and the output voltage is provided without the voltage estimator 9 and the like in the example of FIG.
  • the power may be, for example, a function of obtaining active power from coaxial voltage and current using orthogonally axis converted voltage and current at a predetermined electrical angle phase, and obtains active power from alternating current voltage and current It may be a function.
  • the power calculation unit 19 having the function of FIG. 7 can be applied to FIG. 6 or other embodiments.
  • the configuration for estimating power from the phase current and voltage of FIG. 7 is superior to the configurations of FIGS. 1 and 6 in reducing sensors and the like.
  • FIG. 8 shows an example in which the motor output limiter 8 is provided downstream of the motor current limiter 12.
  • the motor output limiter 8 in this example includes a power computing unit 19 and a voltage limiting unit 43 as a variable limiting unit.
  • the power calculating unit 19 has a function of calculating power from the current and the output voltage, as in the power calculating unit 19 of FIG. 7.
  • the power may be, for example, a function of obtaining active power from coaxial voltage and current using orthogonally axis converted voltage and current at a predetermined electrical angle phase, and obtains active power from alternating current voltage and current It may be a function.
  • the voltage limiting unit 43 has a function of limiting the output voltage such that the active power of the power computing unit 19 is equal to or less than the limit value of the maximum power consumption. At this time, when the output voltage is d-axis or q-axis voltage, the voltage limiting unit 43 may limit one of the d-axis and q-axis voltages, for example. The d-axis and q-axis voltages may be restricted so as to reduce the norm with equal voltage vector angles at the same ratio.
  • the voltage limiting unit 43 evaluates the output estimation formula when the d-axis and q-axis voltages are applied using the d-axis and q-axis voltages as variables, the active power as a constraint, and the phase resistance and inductance characteristics, etc.
  • the d-axis and q-axis voltages can also be determined by a convergence operation method such as the Newton-Rapson method.
  • the voltage limiting unit 43 may limit the voltage amplitude or may limit the voltage phase.
  • the voltage limiting unit 43 uses the voltage amplitude and phase as variables, and the active power as a constraint, and uses an output estimation equation when applying the voltage amplitude and phase as the variables based on phase resistance and inductance characteristics as an evaluation function,
  • the voltage amplitude and phase can also be determined by a convergence operation method such as the Newton-Rapson method.
  • the configuration of FIG. 8 is advantageous in more strictly managing the power consumption of the electric motor 1.
  • FIG. 9 shows an example of direct feedback calculation using power as a control amount.
  • the power calculation unit 19 has the same function as the power calculation unit 19 according to any of the above-described embodiments.
  • the output adjustment amount computing unit 44 as the variable limiting unit has a function of comparing the maximum power consumption with the power consumption computed by the power computing unit 19 and outputting a predetermined adjustment amount.
  • the predetermined adjustment amount may be, for example, a result of multiplying the excess amount (excess) by a predetermined feedback gain when the output exceeds the maximum power consumption.
  • the sign of the adding unit 45 in FIG. 9 indicates adjustment to decrease the magnitude of the output, and the sign of the actual physical quantity may be appropriately determined according to the driving situation of the electric motor 1.
  • FIG. 9 shows an example in which an adjustment amount is applied to the output of the torque command computing unit 7, ie, the torque command value, but the adjustment is performed by inputting the torque command computing unit 7, ie, the command input Adjustments can also be applied to other functions, such as the output or current command value, and the output or output voltage of the motor current controller 12.
  • the configuration of FIG. 9 is advantageous in terms of resource constraints such as a memory since a limitation LUT and the like are not necessary.
  • FIGS. 1 and 6 to 9 can be selected by a designer based on any design concept, or can be used in combination as appropriate.
  • the electric motor device may be a drive device for driving a vehicle.
  • the electric motor system may be applied to an in-wheel motor drive type vehicle as an electric motor system including a plurality (two in this example) of electric motor devices.
  • the electric motor system may be applied to a two-motor on-board type vehicle as an electric motor system including a plurality of (two in this example) electric motor devices.
  • the electric motor system can also be applied to a vehicle electrical system including an electric steering and an electric brake, an attitude control actuator system of a robot, an actuator system of an aircraft or a ship, and the like.
  • Rotational motion estimator angular velocity estimation means
  • Power calculation unit power consumption estimation function unit
  • 20 ... variable limiting portion 21 ... first torque limiting portion (first limiting portion) 21A ... first current limiting unit (first limiting unit) 22 ... 2nd torque limiting section (second limiting section) 22A ... second current limiter (second limiter) 23 ... Torque limit value junction (limit value junction) 23A ...

Abstract

Provided are an electric motor device and electric brake device with which it is possible to adequately restrict the motor maximum power consumption regardless of variations in motor properties, and to improve the output performance of an electric motor by maximizing the use of electric power within the allowable range. This electric motor device is provided with an electric motor (1) and a control device (2). The control device (2) is provided with: a power calculator (19) for estimating the voltage and current of an electric motor (1) and estimating the power consumption of the electric motor (1) from the estimated current and voltage; and a rotation motion estimator (15) for estimating the angular velocity of the electric motor (1). The control device (2) is provided with a motor output restrictor (8) for restricting, on the basis of the angular velocity, etc., the torque command value of the electric motor (1) so that the torque command value does not exceed a threshold value and outputting the result as a restricted value. The motor output restrictor (8) has a variable restrictor (20) which, if the power consumption estimated by the power calculator (19) is greater than a predetermined value, adjusts the restricted value so that the torque command value falls to a prescribed value.

Description

電動モータ装置とこれを用いた電動ブレーキ装置Electric motor device and electric brake device using the same 関連出願Related application
 本出願は、2017年12月27日出願の特願2017-251099の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-251099 filed on Dec. 27, 2017, which is incorporated by reference in its entirety.
 この発明は、電動モータ装置および電動ブレーキ装置に関し、モータ最大消費電力を制限し、かつモータ出力性能を向上し得る技術に関する。 The present invention relates to an electric motor device and an electric brake device, and relates to a technology capable of limiting maximum motor power consumption and improving motor output performance.
 電動モータ装置および電動モータを使用した電動アクチュエータとして、以下の技術が提案されている。
 1.電動モータ、直動機構および減速機を使用した電動ブレーキ装置(特許文献1)。
 2.電動モータを無効電力に基づいて制御する電動モータ装置(特許文献2)。
The following techniques have been proposed as an electric motor device and an electric actuator using the electric motor.
1. An electric brake device using an electric motor, a linear motion mechanism, and a reduction gear (Patent Document 1).
2. The electric motor apparatus which controls an electric motor based on reactive power (patent document 2).
特開2003-247576号公報JP 2003-247576 特開2017-11937号公報Unexamined-Japanese-Patent No. 2017-11937
 特許文献1、2のような電動モータ装置において、電動モータの最大消費電力は、電源の容量を超過しないよう、予め所定値に制限されなければならない場合が多い。例えば、特許文献1の電動ブレーキ装置、またはその他の車載電装機器である電動ステアリング装置等において、電動モータの消費電力が所定の容量を超えると、EV(Electric Vehicle)、HEV(Hybrid Electric Vehicle)における高圧電源からのDC/DCコンバータ給電、またはエンジン車におけるオルタネータからの給電が不足してバッテリの電力が低下する問題が発生する場合がある。また、バッテリへの負荷が大きくなることで、想定よりバッテリ寿命が低下する場合がある。 In the electric motor devices as described in Patent Documents 1 and 2, the maximum power consumption of the electric motor must often be limited in advance to a predetermined value so as not to exceed the capacity of the power supply. For example, in the electric brake device of Patent Document 1 or the electric steering device which is another in-vehicle electrical equipment, when the power consumption of the electric motor exceeds a predetermined capacity, the electric vehicle (EV) or HEV (Hybrid Electric Vehicle) is used. A problem may occur that the power of the battery is reduced due to lack of DC / DC converter power supply from the high voltage power supply or power supply from the alternator in the engine car. In addition, when the load on the battery is increased, the battery life may be reduced than expected.
 しかしながら、例えば、モータコイル、ハーネス、および駆動回路等の温度変化によって所定の電流条件に対する銅損が変動する等の特性変動により、モータの消費電力を予め厳密に制限することが困難な場合が多い。また、永久磁石式モータの場合、磁石の温度変化等によって磁束が変動し、所定の角速度および電流条件に対する電力が変動する。さらに、特に高速回転時における積層鋼板等の磁気回路の鉄損を正確に見積もることは困難な場合がある。 However, it is often difficult in advance to strictly limit the power consumption of the motor due to characteristic fluctuation such as fluctuation of copper loss to a predetermined current condition due to temperature change of motor coil, harness, drive circuit, etc. . Further, in the case of a permanent magnet type motor, the magnetic flux fluctuates due to the temperature change of the magnet and the like, and the power for a predetermined angular velocity and current condition fluctuates. Furthermore, it may be difficult to accurately estimate the core loss of a magnetic circuit such as a laminated steel sheet particularly at high speed rotation.
 以上の問題に対して、最悪条件を仮定したうえで所定の電源容量を超過しないようモータの駆動条件を設定すると、モータの出力低下を補うために容積の大きなモータが必要となり、搭載スペースが増大する等の問題となる場合がある。 To solve the above problems, if the motor drive conditions are set so that the power supply capacity is not exceeded after assuming the worst condition, a motor with a large volume is needed to compensate for the decrease in motor output, and the mounting space increases. And other problems.
 また、例えば、特許文献1の電動ブレーキ装置の場合において、一般に所定の電源系統に対して複数の電動モータが同時に駆動されるため、他のモータ駆動状況によって消費電力の上限値が変化する。このとき、全ての電動モータの最大消費電力の総和が電源容量を超過しないよう、各電動モータの駆動条件を不変に設定してしまうと、モータ出力が小さくなり、例えば、ブレーキの応答性等が低下する場合がある。 Further, for example, in the case of the electric brake device of Patent Document 1, generally, a plurality of electric motors are simultaneously driven with respect to a predetermined power supply system, so the upper limit value of power consumption changes depending on other motor driving conditions. At this time, if the drive condition of each electric motor is set unchanged so that the total sum of the maximum power consumption of all the electric motors does not exceed the power source capacity, the motor output becomes small, for example, the response of the brake It may decrease.
 この発明の目的は、モータ特性変動等によらずモータ最大消費電力を適切に制限し、かつ許容範囲内の電力を最大限に使用して電動モータの出力性能を向上することができる電動モータ装置および電動ブレーキ装置を提供することである。 An object of the present invention is to provide an electric motor apparatus capable of appropriately limiting maximum motor power consumption regardless of motor characteristic fluctuation and the like, and improving output performance of the electric motor by using electric power within the allowable range to the maximum. And providing an electric brake device.
 以下、本発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, the present invention will be described with reference to the reference numerals of the embodiments for the sake of convenience to facilitate understanding.
 この発明の電動モータ装置は、電動モータ1と、この電動モータ1を制御する制御装置2とを備えた電動モータ装置であって、
 前記制御装置2は、
 前記電動モータ1の電流および電圧を推定し、この推定した電流および電圧から前記電動モータ1の消費電力を推定する消費電力推定機能部19と、
 前記電動モータ1の角速度を推定する角速度推定手段15と、
 前記制御装置2に与えられたモータ動作指令から生成されるトルク指令値、電流指令値、電圧指令値の少なくともいずれかの指令値が、前記角速度推定手段15で推定される角速度を含む定められた条件に基づき、閾値を超過しないように制限して制限済値として出力する出力制限機能部8と、
 この出力制限機能部8から与えられた制限済値に基づいて、前記電動モータ1を駆動させる駆動回路6と、を備え、
 前記出力制限機能部8は、前記消費電力推定機能部19で推定される消費電力が定められた値より大きいとき、前記指令値が定められた値まで小さくなるよう前記制限済値を調整する可変制限部20を有する。
 前記定められた条件、前記閾値、前記各定められた値は、それぞれ設計等によって任意に定める条件、閾値、値であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な条件、閾値、値を求めて定められる。
The electric motor device of the present invention is an electric motor device including an electric motor 1 and a control device 2 for controlling the electric motor 1,
The control device 2 is
A power consumption estimation function unit 19 for estimating the current and voltage of the electric motor 1 and estimating the power consumption of the electric motor 1 from the estimated current and voltage;
Angular velocity estimation means 15 for estimating the angular velocity of the electric motor 1;
A command value of at least one of a torque command value, a current command value, and a voltage command value generated from the motor operation command given to the control device 2 is determined including the angular velocity estimated by the angular velocity estimating means 15 An output restriction function unit 8 which restricts so as not to exceed a threshold based on conditions and outputs as a restricted value;
A drive circuit 6 for driving the electric motor 1 based on the restricted value given from the output restriction function unit 8;
When the power consumption estimated by the power consumption estimation function unit 19 is larger than the predetermined value, the output restriction function unit 8 adjusts the restricted value so that the command value is reduced to the predetermined value. A restriction unit 20 is provided.
The predetermined condition, the threshold value, and the respective predetermined values are conditions, threshold values, and values arbitrarily determined by design etc., for example, conditions suitable for one or both of a test and a simulation, etc. The threshold value is determined by determining the value.
 この構成によると、消費電力推定機能部19は、電動モータ1の電流および電圧から電動モータ1の消費電力を推定する。出力制限機能部8は、トルク指令値、電流指令値、電圧指令値の少なくともいずれかの指令値を、角速度等に基づいて、閾値を超過しないように制限する。出力制限機能部8は、前記指令値を制限済値として出力し得る。これにより、電動モータ1を使用できる出力まで最大限使用することができ、電動モータ1の出力性能を向上し得る。したがって、ブレーキ等の応答性が不所望に低下することを防止することができる。但し、出力制限機能部8の可変制限部20は、推定される消費電力が定められた値より大きいとき、指令値が定められた値まで小さくなるよう前記制限済値を調整する。これにより、モータ特性変動等によらずモータ消費電力を一定値まで適切に制限することができる。 According to this configuration, the power consumption estimation function unit 19 estimates the power consumption of the electric motor 1 from the current and voltage of the electric motor 1. The output limiting function unit 8 limits the command value of at least one of the torque command value, the current command value, and the voltage command value so that the threshold value is not exceeded based on the angular velocity and the like. The output restriction function unit 8 can output the command value as a restricted value. As a result, the electric motor 1 can be used to the maximum usable output, and the output performance of the electric motor 1 can be improved. Therefore, it is possible to prevent the responsiveness of the brake or the like from being undesirably reduced. However, the variable limiting unit 20 of the output limiting function unit 8 adjusts the restricted value so that the command value decreases to a defined value when the estimated power consumption is larger than the defined value. As a result, motor power consumption can be appropriately limited to a constant value regardless of motor characteristic fluctuation or the like.
 前記出力制限機能部8の可変制限部20は、前記消費電力推定機能部19で推定される消費電力が定められた値より小さいとき、前記指令値が定められた値まで大きくなるよう前記制限済値を調整するものであってもよい。このように電動モータ1の推定される消費電力が小さい場合は消費電力を大きくし、許容範囲内の電力を最大限使用することが可能となる。 When the power consumption estimated by the power consumption estimation function unit 19 is smaller than the predetermined value, the variable limitation unit 20 of the output restriction function unit 8 is limited to increase the command value to the predetermined value. The value may be adjusted. As described above, when the estimated power consumption of the electric motor 1 is small, it is possible to increase the power consumption and to use the power within the allowable range as much as possible.
 前記出力制限機能部8の可変制限部20は、第一の制限部21と、消費電力が前記第一の制限部21よりも相対的に小さくなる第二の制限部22と、前記第一および第二の制限部21,22による出力制限値を定められた比率によって結合した値を前記出力制限機能部8から最終的に出力する制限済値として導出する制限値結合部23とを有し、この制限値結合部23は、前記定められた比率を、前記消費電力推定機能部19で推定される消費電力に基づいて調整するものであってもよい。前記定められた比率は、設計等によって任意に定める比率であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な比率を求めて定められる。この場合、推定される消費電力の超過分にゲインを介した値を、指令値を減少させる調整量とするよりも、より正確に推定消費電力を導出することができるため、モータ消費電力をより適切に制限し得る。 The variable limiting unit 20 of the output limiting function unit 8 includes a first limiting unit 21, a second limiting unit 22 whose power consumption is relatively smaller than that of the first limiting unit 21, and the first and second limiting units. And a limit value combining unit 23 for deriving a value obtained by combining the output limit values from the second limiting units 21 and 22 according to a defined ratio as a limited value to be finally output from the output limit function unit 8; The limit value combining unit 23 may adjust the determined ratio based on the power consumption estimated by the power consumption estimation function unit 19. The predetermined ratio is an arbitrary ratio determined by design or the like, and is determined by obtaining an appropriate ratio by, for example, one or both of a test and a simulation. In this case, since estimated power consumption can be derived more accurately than using a value obtained through gain as an excess of estimated power consumption as an adjustment amount to decrease the command value, motor power consumption can be further increased. It may be appropriately limited.
 前記出力制限機能部8の可変制限部43は、定められた最大消費電力と、前記消費電力推定機能部19で推定される電流とから、最大消費電力となり得る電圧値を導出し、前記電動モータ1に印加する電圧を、導出された前記電圧値に制限するものであってもよい。前記定められた最大消費電力は、電動モータ1に固有の最大消費電力であり、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な最大消費電力を求めて定められる。この場合、電動モータ1の消費電力を厳密に管理するうえで優位である。 The variable limiting unit 43 of the output limiting function unit 8 derives a voltage value that can be the maximum power consumption from the determined maximum power consumption and the current estimated by the power consumption estimating function unit 19, and the electric motor The voltage applied to 1 may be limited to the derived voltage value. The determined maximum power consumption is the maximum power consumption inherent to the electric motor 1, and is determined, for example, by a test and / or simulation to determine an appropriate maximum power consumption. In this case, it is advantageous in strictly managing the power consumption of the electric motor 1.
 前記出力制限機能部8の可変制限部20は、定められた最大消費電力に対し、前記消費電力推定機能部19で推定される消費電力の超過分にゲインを介した値を、前記指令値を減少させる調整量として、前記トルク指令値、電流指令値、電圧指令値のいずれかに作用させてもよい。前記定められた最大消費電力は、電動モータ1に固有の最大消費電力であり、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な最大消費電力を求めて定められる。この場合、モータ出力を制限するLUT(Look Up Table)等が不要となり、メモリ等のリソースを節約するうえで優位である。 The variable limiting unit 20 of the output limiting function unit 8 sets a value based on a gain to an excess of the power consumption estimated by the power consumption estimating function unit 19 with respect to the determined maximum power consumption. The amount of adjustment to be decreased may be applied to any one of the torque command value, the current command value, and the voltage command value. The determined maximum power consumption is the maximum power consumption inherent to the electric motor 1, and is determined, for example, by a test and / or simulation to determine an appropriate maximum power consumption. In this case, a LUT (Look Up Table) or the like that limits motor output is not necessary, which is advantageous in saving resources such as memory.
 この発明の電動モータシステムは、いずれかに記載の電動モータ装置DMを複数備えた電動モータシステムであって、
 前記複数の電動モータ装置DMにおける推定消費電力の総和が、定められたシステム最大消費電力を超過しないよう各電動モータ装置DMの最大消費電力を定める電力配分手段27を備える。
 前記定められたシステム最大消費電力は、それぞれ設計等によって任意に定めるシステム最大消費電力であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切なシステム最大消費電力を求めて定められる。
An electric motor system according to the present invention is an electric motor system including a plurality of electric motor devices DM according to any one of the above,
The electric power distribution means 27 which defines the maximum power consumption of each electric motor apparatus DM is provided so that the sum total of the estimated power consumption in the plurality of electric motor apparatuses DM does not exceed a predetermined system maximum power consumption.
The predetermined system maximum power consumption is a system maximum power consumption which is arbitrarily determined by design or the like, and is determined by, for example, a test and / or a simulation to obtain an appropriate system maximum power consumption.
 前記電力配分手段27は、前記電動モータ装置DMにおける最大消費電力と推定消費電力との比較に基づいて、前記電動モータ装置DMの電力消費の度合である電力消費度合を判断する機能を有し、
 前記複数の電動モータ装置DMのうち、前記電力消費度合が基準値よりも高い電動モータ装置DMと、前記電力消費度合が基準値よりも低い電動モータ装置DMが混在している場合に、前記電力配分手段27は、前記電力消費度合が高い電動モータ装置DMの最大消費電力を定められた値よりも大きく設定し、前記電力消費度合が低い電動モータ装置DMの最大消費電力を定められた値よりも小さく設定するものであってもよい。
 前記基準値、前記定められた値は、それぞれ設計等によって任意に定める基準値、値であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な基準値、値を求めて定められる。
The power distribution unit 27 has a function of determining a power consumption degree, which is a degree of power consumption of the electric motor device DM, based on comparison between the maximum power consumption and the estimated power consumption of the electric motor device DM.
Among the plurality of electric motor devices DM, when the electric motor device DM having the power consumption degree higher than the reference value and the electric motor device DM having the power consumption degree lower than the reference value coexist, the electric power The distribution means 27 sets the maximum power consumption of the electric motor device DM having a high degree of power consumption to be larger than a predetermined value, and the maximum power consumption of the electric motor device DM having a low degree of power consumption is set to a predetermined value. May be set small.
The reference value and the determined value are reference values and values arbitrarily determined by design etc., and are determined by obtaining appropriate reference values and values by, for example, one or both of a test and a simulation. .
 この場合、消費電力に余裕のある電動モータ装置DMと、高出力動作中で消費電力に余裕がない電動モータ装置DMがある場合に、消費電力に余裕がある電動モータ装置DMの分を、消費電力に余裕がない電動モータ装置DMに振り分けることで、高出力動作中の電動モータ装置DMの出力を向上することができる。 In this case, when there is an electric motor apparatus DM having a surplus in power consumption and an electric motor apparatus DM having high power operation and no margin for the power consumption, the electric motor apparatus DM having a surplus in power consumption is consumed By allocating to the electric motor apparatus DM which has no surplus power, the output of the electric motor apparatus DM in high output operation can be improved.
 この発明の電動ブレーキ装置DBは、いずれかに記載の電動モータ装置DMと、ブレーキロータ32と、このブレーキロータ32と接触して制動力を発生させる摩擦部材33と、この摩擦部材33を前記電動モータ1によって操作可能とする摩擦部材操作手段35と、を備えた電動ブレーキ装置において、
 前記電動ブレーキ装置の最大消費電力を可変とする電力可変機能部27aを備え、この電力可変機能部27aから与えられた最大消費電力に基づいて、前記出力制限機能部8における制限済値が調整される。
The electric brake device DB of the present invention comprises the electric motor device DM according to any one of the above, a brake rotor 32, a friction member 33 which generates a braking force by contacting the brake rotor 32, and the friction member 33 In the electric brake device, provided with friction member operating means 35 operable by the motor 1;
A power variable function unit 27a that makes the maximum power consumption of the electric brake device variable is provided, and the limited value in the output restriction function unit 8 is adjusted based on the maximum power consumption given from the power variable function unit 27a. Ru.
 このように、電動ブレーキ装置の最大消費電力を可変としたうえで、電力可変機能部27aから与えられた最大消費電力に基づいて、出力制限機能部8における制限済値が調整されるため、許容範囲内の電力を最大限使用して電動ブレーキ装置の性能を向上することが可能となる。 As described above, the maximum power consumption of the electric brake device is made variable, and the limited value in the output limiting function unit 8 is adjusted based on the maximum power consumption given from the power variable function unit 27a. It is possible to use the electric power in the range as much as possible to improve the performance of the electric brake system.
 この発明の電動ブレーキシステムは、前記電動ブレーキ装置DBを複数備えた電動ブレーキシステムであって、
 前記複数の電動ブレーキ装置DBにおける推定消費電力の総和が、定められた電動ブレーキシステム最大消費電力を超過しないよう各電動ブレーキ装置DBの最大消費電力を定める電力配分手段27と、
 前記複数の電動ブレーキ装置DBをそれぞれ搭載する複数の車輪の回転速度である車輪速を推定する車輪速推定手段28と、
 この車輪速推定手段28で推定される複数の車輪速を含む情報を用いて、個別の車輪のスリップ状態を推定するスリップ状態推定手段29と、
 このスリップ状態推定手段29で推定されるスリップ状態が閾値を超過したとき、スリップ状態が抑制されるよう前記電動ブレーキ装置DBのブレーキ力を調整するアンチスキッド制御を行うアンチスキッド制御機能部30と、を備え、
 前記複数の電動ブレーキ装置DBのうち、アンチスキッド制御を行っている電動ブレーキ装置DBと、アンチスキッド制御を行っていない電動ブレーキ装置DBが混在している場合に、前記電力配分手段27は、アンチスキッド制御を行っている電動ブレーキ装置DBの最大消費電力を定められた値よりも大きく設定し、アンチスキッド制御を行っていない電動ブレーキ装置DBの最大消費電力を定められた値よりも小さく設定する。
An electric brake system according to the present invention is an electric brake system including a plurality of electric brake devices DB, wherein
Power distribution means 27 for determining the maximum power consumption of each of the electric brake devices DB so that the sum of the estimated power consumption of the plurality of electric brake devices DB does not exceed the determined maximum power consumption of the electric brake system;
Wheel speed estimation means 28 for estimating a wheel speed which is a rotational speed of a plurality of wheels on which the plurality of electric brake devices DB are respectively mounted;
Slip state estimation means 29 for estimating slip states of individual wheels using information including a plurality of wheel speeds estimated by the wheel speed estimation means 28;
An anti-skid control function unit 30 performing anti-skid control for adjusting the braking force of the electric brake device DB so that the slip state is suppressed when the slip state estimated by the slip state estimation means 29 exceeds a threshold; Equipped with
When the electric brake device DB performing anti-skid control and the electric brake device DB not performing anti-skid control among the plurality of electric brake devices DB are mixed, the power distribution unit 27 performs anti-skid control. The maximum power consumption of the electric brake device DB performing the skid control is set larger than a predetermined value, and the maximum power consumption of the electric brake device DB not performing the antiskid control is set smaller than the predetermined value. .
 この構成によると、高出力動作を必要とするアンチスキッド制御中の電動ブレーキ装置DBの最大消費電力を引き上げることで、より高速なブレーキ動作を可能とし、アンチスキッド制御の性能を向上することができる。 According to this configuration, by increasing the maximum power consumption of the electric brake device DB in anti-skid control requiring high-power operation, higher-speed brake operation can be enabled and anti-skid control performance can be improved. .
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the invention. In particular, any combination of two or more of the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
この発明の実施形態に係る電動モータ装置のブロック図である。It is a block diagram of an electric motor device concerning an embodiment of this invention. 同電動モータ装置の動作例を示す図である。It is a figure which shows the operation example of the same electric motor apparatus. 同電動モータ装置の動作例を示す図である。It is a figure which shows the operation example of the same electric motor apparatus. 同電動モータ装置を用いた電動ブレーキ装置およびこの電動ブレーキ装置を複数備えた電動ブレーキシステムの構成例を示すブロック図である。It is a block diagram showing an example of composition of an electric brake device using the electric motor device, and an electric brake system provided with two or more this electric brake device. 同電動ブレーキシステムの動作例を示す図である。It is a figure which shows the operation example of the same electric brake system. は従来例の電動ブレーキシステムの動作例を示す図である。These are figures which show the operation example of the electrically-driven brake system of a prior art example. 同電動ブレーキ装置の構成を概略示す図である。It is a figure showing roughly the composition of the electric brake device. この発明の他の実施形態に係る電動モータ装置のブロック図である。It is a block diagram of the electric motor apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る電動モータ装置のブロック図である。It is a block diagram of the electric motor apparatus which concerns on further another embodiment of this invention. この発明のさらに他の実施形態に係る電動モータ装置のブロック図である。It is a block diagram of the electric motor apparatus which concerns on further another embodiment of this invention. この発明のさらに他の実施形態に係る電動モータ装置のブロック図である。It is a block diagram of the electric motor apparatus which concerns on further another embodiment of this invention. はいずれかの電動モータ装置をインホイールモータ駆動形式の車両に適用した例である。Is an example in which any one of the electric motor devices is applied to an in-wheel motor drive type vehicle. はいずれかの電動モータ装置を2モータオンボード形式の車両に適用した例を平面視で概略示す図である。These are figures which show roughly the example which applied the electric motor apparatus of either to the vehicle of 2 motor on-board type by planar view.
 この発明の実施形態を図1ないし図5と共に説明する。この実施形態の電動モータ装置は、例えば、車両に搭載される電動ブレーキ装置(後述する)に適用される。 Embodiments of the invention will be described in conjunction with FIGS. 1-5. The electric motor device of this embodiment is applied to, for example, an electric brake device (described later) mounted on a vehicle.
 <電動モータ装置の構成例>
 図1に示すように、この電動モータ装置は、電動モータ1と、この電動モータ1を制御する制御装置2と、電源装置3と、各種指令手段とを備える。前記各種指令手段は、モータ動作指令手段4と、最大消費電力制限手段5とを有する。
<Configuration Example of Electric Motor Device>
As shown in FIG. 1, the electric motor device includes an electric motor 1, a control device 2 for controlling the electric motor 1, a power supply device 3, and various command means. The various command means includes motor operation command means 4 and maximum power consumption limiting means 5.
 モータ動作指令手段4は、例えば、電動モータのロータの位置(角度)、同ロータの速度(角速度)、負荷(トルク、荷重等)等の、電動モータ1を動作させる目標となる指令値(モータ動作指令)を、制御装置2に対して出力する。あるいはモータ動作指令手段4は、前記位置、速度、負荷のうち複数の動作指令と、どのような動作を行うかを示す動作モード指令等を制御装置2に出力するものであってもよい。モータ動作指令手段4は、例えば、車両統合制御装置(VCU)または試験装置シーケンサ等の上位ECUであってもよく、ブレーキペダルまたは操作ボリューム等の操作インターフェースであってもよい。 The motor operation command means 4 is, for example, a target command value (motor) for operating the electric motor 1 such as the position (angle) of the rotor of the electric motor, the speed (angular velocity) of the rotor, load (torque, load, etc.) The operation command is output to the control device 2. Alternatively, the motor operation command means 4 may output to the control device 2 a plurality of operation commands among the position, speed and load, and operation mode commands etc. indicating what kind of operation is to be performed. The motor operation command means 4 may be, for example, a host ECU such as a vehicle integrated control unit (VCU) or a test apparatus sequencer, or may be an operation interface such as a brake pedal or an operation volume.
 最大消費電力制限手段5は、電動モータ1が消費し得る電力の最大値(最大消費電力の制限値Pmax)を制御装置2に指令出力する機能を有する。この最大消費電力制限手段5は、モータ動作指令手段4と同一または同様の上位ECUや操作インターフェースであってもよく、バッテリマネージャまたは電力ブレーカ等の専用の電力管理システムであってもよい。もしくは、最大消費電力制限手段5として、こうした外部指令手段を設けずに、所定の電力制限条件を予め制御装置2内にプログラム等で実装したものであってもよい。 The maximum power consumption limiting means 5 has a function of command-outputting the maximum value of the power that can be consumed by the electric motor 1 (maximum power consumption limit value Pmax) to the control device 2. The maximum power consumption limiting unit 5 may be a host ECU or an operation interface that is the same as or similar to the motor operation command unit 4, or may be a dedicated power management system such as a battery manager or a power breaker. Alternatively, as the maximum power consumption limiting means 5, a predetermined power limiting condition may be implemented by a program or the like in the control device 2 in advance without providing such an external command means.
 電動モータ1は、永久磁石同期電動機により構成すると、省スペースで高効率かつ高トルクとなり好適であるが、例えば、ブラシを用いたDCモータまたは永久磁石を用いないリラクタンスモータ、あるいは誘導モータ等を適用することもできる。 When the electric motor 1 is constituted by a permanent magnet synchronous motor, space saving and high efficiency and high torque are preferable. For example, a DC motor using a brush or a reluctance motor not using a permanent magnet, an induction motor or the like is applied You can also
 電動モータ1には、この電動モータ1の回転の角度を検出する角度センサSaが設けられている。角度センサSaは、例えば、レゾルバまたは磁気エンコーダ等を用いると高精度かつ高信頼性であり好適であるが、光学式のエンコーダ等の各種センサを適用することもできる。前記角度センサSaを用いずに、例えば、後述する制御装置2において、電動モータ1の電圧と電流との関係等からモータ角度を推定するような角度センサレス推定を用いることもできる。その他、図示外の要素として、安全性に対する要件等に基づいて、サーミスタ等の各種センサ類を要件に応じて別途設けてもよい。 The electric motor 1 is provided with an angle sensor Sa that detects the angle of rotation of the electric motor 1. As the angle sensor Sa, for example, using a resolver or a magnetic encoder is preferable because of high accuracy and high reliability, but various sensors such as an optical encoder can also be applied. Instead of using the angle sensor Sa, for example, it is possible to use angle sensorless estimation in which the motor angle is estimated from the relationship between the voltage and the current of the electric motor 1 or the like in the control device 2 described later. In addition, various sensors such as a thermistor may be separately provided as elements not shown based on requirements for safety etc. according to the requirements.
 <制御装置2について>
 制御装置2は、制御演算を行う各種制御演算器と、駆動回路としてのモータドライバ6と、センサ類とを備える。前記各種制御演算器は、トルク指令演算器7、出力制限機能部としてのモータ出力制限器8、電圧推定器9、電流推定器10、電流指令演算器11、モータ電流制御器12、制御電源13、電流推定器14、および角速度推定手段としての回転運動推定器15を有する。前記センサ類は、電流センサ16,17、電圧センサ18等を含む。
<About control device 2>
The control device 2 includes various control computing units that perform control computations, a motor driver 6 as a drive circuit, and sensors. The various control computing units include a torque command computing unit 7, a motor output limiter 8 as an output limiting function unit, a voltage estimator 9, a current estimator 10, a current command computing unit 11, a motor current controller 12, and a control power supply 13. , A current estimator 14 and a rotational motion estimator 15 as angular velocity estimation means. The sensors include current sensors 16 and 17, a voltage sensor 18, and the like.
 回転運動推定器15は、角度センサSa等の電動モータ1の運動を検出するセンサから、制御演算に用いる角度、角速度、電気角位相、等のパラメータを推定する機能を有する。前記パラメータの推定に使用されるのは、例えば、角度を微分して角速度を得る等の微積分処理であってもよく、アクチュエータ運動方程式を演算に用いた状態推定オブザーバ等であってもよく、これらの併用であってもよい。あるいは、回転運動推定器15は、前述の通り、例えば、電動モータ1の電圧と電流から電気角速度または電気角位相を推定するような、センサレス推定器であってもよい。また、回転運動推定器15は、例えば、モータ反力の推定等、外乱オブザーバの機能を含めることもできる。 The rotational motion estimator 15 has a function of estimating parameters such as an angle, an angular velocity, an electrical angle phase, and the like used for control calculation from a sensor that detects the motion of the electric motor 1 such as the angle sensor Sa. What is used for estimation of the parameter may be, for example, a Calculus process such as differentiating an angle to obtain an angular velocity, or a state estimation observer using an actuator motion equation for calculation, or these The combination of Alternatively, the rotational motion estimator 15 may be, for example, a sensorless estimator that estimates the electrical angular velocity or the electrical angle phase from the voltage and current of the electric motor 1 as described above. The rotational motion estimator 15 can also include the function of a disturbance observer, such as, for example, estimation of a motor reaction force.
 電流センサ16,17は、電動モータ1の電流を検出するセンサであって、例えば、シャント抵抗両端の電圧を検出するアンプからなるセンサ、または、通電経路の周囲の磁束等を検出する非接触式センサ等を用いることができる。電流推定器10,14は、電流センサ17,16で検出される値から制御演算に用いる電流を推定する機能を有する。 The current sensors 16 and 17 are sensors for detecting the current of the electric motor 1 and are, for example, a sensor comprising an amplifier for detecting a voltage across the shunt resistor, or a noncontact type for detecting a magnetic flux or the like around the current path. A sensor or the like can be used. The current estimators 10 and 14 have a function of estimating the current used for the control calculation from the values detected by the current sensors 17 and 16.
 電圧センサ18は、電動モータ1の電圧を検出するセンサであって、例えば、分圧抵抗を用いると安価に構成できて好ましく、コンデンサ等を用いたノイズ低減処理を適宜用いてもよい。あるいは、電圧センサ18は、演算器のA/D変換器等のハードウェア耐圧が十分であるなら、分圧抵抗を用いず直接電圧を観測することもできる。 The voltage sensor 18 is a sensor that detects the voltage of the electric motor 1, and can be configured inexpensively by using, for example, a voltage dividing resistor. A noise reduction process using a capacitor or the like may be used as appropriate. Alternatively, the voltage sensor 18 can directly observe the voltage without using a voltage dividing resistor if the hardware withstand voltage of the A / D converter of the computing unit is sufficient.
 電圧推定器9は、電圧センサ18で検出される値から制御演算に用いる電圧を推定する機能を有する。あるいは、所定の固定電圧により電動モータ1を駆動する場合(バッテリ電圧変動等を考えなくてもよい場合)、電圧センサ18および電圧推定器9を設けずに、予め、制御装置2内にプログラム等で実装した電圧値を用いてもよい。 The voltage estimator 9 has a function of estimating the voltage used for the control calculation from the value detected by the voltage sensor 18. Alternatively, when the electric motor 1 is driven by a predetermined fixed voltage (when it is not necessary to consider battery voltage fluctuation etc.), the voltage sensor 18 and the voltage estimator 9 are not provided, and the program etc. You may use the voltage value implemented by.
 トルク指令演算器7は、モータ動作指令手段4から入力された指令値を、トルク指令値に変換する機能を有する。あるいは、トルク指令演算器7は、例えば、角速度、角度、または負荷(トルク、荷重)等の指令値から所定の制御演算を行い、トルク指令値を導出するものであってもよく、その場合、前記角速度角度、または負荷(トルク、荷重)等がフィードバック演算されるものであってもよい。前記機能は、本電動モータ装置をどのようなアプリケーションに適用するかに従い、適宜定められるものとする。 The torque command calculator 7 has a function of converting a command value input from the motor operation command means 4 into a torque command value. Alternatively, the torque command calculator 7 may perform predetermined control calculation from command values such as angular velocity, angle, or load (torque, load) to derive a torque command value, and in that case, The angular velocity angle or load (torque, load) or the like may be feedback calculated. The above-mentioned function shall be suitably defined according to what kind of application this electric motor device is applied to.
 モータ出力制限器8は、回転運動推定器15で推定される角速度を含む所定条件に基づいて、トルク指令値が閾値を超過しないように制限して制限済値として出力する。このモータ出力制限器8は、消費電力推定機能部である電力演算部19と、この電力演算部19で推定される電動モータ1の消費電力が所定より大きいとき、前記トルク指令値が小さくなるよう制限済値を調整する可変制限部20とを有する。 Based on a predetermined condition including the angular velocity estimated by the rotational motion estimator 15, the motor output limiter 8 limits the torque command value so as not to exceed the threshold and outputs it as a limited value. The motor output limiter 8 reduces the torque command value when the power consumption of the electric motor 1 estimated by the power calculation unit 19 which is a power consumption estimation function unit and the power calculation unit 19 is larger than a predetermined value. And a variable limiting unit 20 that adjusts the restricted value.
 電力演算部19は、後述するモータドライバ6の一次側(入力側)の電圧および電流から、電動モータ1の消費電力を導出する機能を有する。可変制限部20は、複数(この例では第一および第二)のトルク制限部(制限部)21,22と、前記複数のトルク制限部21,22の出力結果を結合するトルク制限値結合部(制限値結合部)23とを備え、所定の消費電力となるようなトルク指令値を導出する機能を有する。 The power calculation unit 19 has a function of deriving the power consumption of the electric motor 1 from the voltage and current of the primary side (input side) of the motor driver 6 described later. The variable limiting unit 20 is a torque limiting value coupling unit that combines the output results of a plurality of (the first and second in this example) torque limiting units (limiting units) 21 and 22 and the plurality of torque limiting units 21 and 22 (Limit value coupling unit) 23, and has a function of deriving a torque command value that achieves predetermined power consumption.
 第一のトルク制限部21は、比較的出力が大きくなるトルク制限機能を有し、第二のトルク制限部22は、比較的出力が小さくなるトルク制限機能を有する。一般に、所定のトルクを発揮するための電流条件は、予め試験またはシミュレーション等の結果から定められたモータ特性に基づいて一意に設定されるが、実際には、抵抗値、インダクタンス、回転子磁束等の固体差および特性変動により、前記電流条件に対する消費電力は異なることが多い。 The first torque limiting unit 21 has a torque limiting function in which the output is relatively large, and the second torque limiting unit 22 has a torque limiting function in which the output is relatively small. Generally, current conditions for exerting a predetermined torque are uniquely set based on motor characteristics previously determined from test or simulation results, but in actuality, resistance value, inductance, rotor magnetic flux, etc. The power consumption for the current condition is often different due to the solid-state difference and the characteristic fluctuation of the
 その際、例えば、温度上昇等に伴い抵抗値が増加すると、所定のトルクすなわち電流条件における消費電力が増加する。あるいは、インダクタンスおよび回転子磁束の変化に伴い力率が変化すると、所定の電流条件における消費電力が変動する。このとき、第一および第二のトルク制限部21,22によって最大消費電力を調整可能とすることで、モータ特性変動によらず所定の最大消費電力に制限することができる。 At that time, for example, when the resistance value increases with a temperature rise or the like, power consumption under a predetermined torque, that is, current condition increases. Alternatively, if the power factor changes with the change of the inductance and the rotor magnetic flux, the power consumption under a predetermined current condition fluctuates. At this time, by making the maximum power consumption adjustable by the first and second torque limiters 21 and 22, it is possible to limit to a predetermined maximum power consumption regardless of the motor characteristic fluctuation.
 第一および第二のトルク制限部21,22の出力変化幅について説明する。例えば、第一のトルク制限部21を、モータコイル電流密度、コイル発熱の放熱特性、熱容量、モータ駆動素子の電流容量等に基づいて定められる電動モータ装置に異常を発生させずに通電可能な最大電流条件下における最大出力に基づくトルク制限部とする。第二のトルク制限部22を、力率ないし所定の最大力率の条件下で最大消費電力となる電流条件下における最大出力に基づくトルク制限部に定める。 The output change width of the first and second torque limiters 21 and 22 will be described. For example, the maximum torque can be applied to the electric motor device, which is determined based on motor coil current density, heat radiation characteristics of coil heat generation, heat capacity, current capacity of motor drive element, etc. A torque limiter based on the maximum output under current conditions. The second torque limiting unit 22 is defined as a torque limiting unit based on the maximum output under the current condition where the maximum power consumption is achieved under the condition of the power factor or the predetermined maximum power factor.
 このように第一および第二のトルク制限部21,22の出力変化幅を定めると、あらゆる特性変動に対し可能な限り消費電力を調整できる自由度を持つこととなる。あるいは、予め電動モータ装置に発生し得る特性変動に基づいて、第一および第二のトルク制限部21,22の出力変化幅を適宜設定してもよい。 As described above, when the output change width of the first and second torque limiters 21 and 22 is determined, the power consumption can be adjusted as much as possible with respect to any characteristic change. Alternatively, the output change widths of the first and second torque limiters 21 and 22 may be appropriately set based on characteristic fluctuations that may occur in the electric motor device.
 また、例えば、定常時の所定の最大消費電力と、ある一定時間内における瞬時最大消費電力と、を異なる最大消費条件として定める場合においても、第一および第二のトルク制限部21,22によって適切な最大消費電力に制限することができる。このとき、例えば、第一および第二のトルク制限部21,22を、前記定常時の所定の最大消費電力と瞬時最大消費電力との差を含んだトルク制限部としておくことができる。 Further, for example, even when the predetermined maximum power consumption in steady state and the instantaneous maximum power consumption in a certain period of time are determined as different maximum consumption conditions, the first and second torque limiters 21 and 22 are appropriate. Can be limited to the maximum power consumption. At this time, for example, the first and second torque limiters 21 and 22 can be used as the torque limiter including the difference between the predetermined maximum power consumption and the instantaneous maximum power consumption in the steady state.
 トルク制限部結合部23は、第一および第二のトルク制限部21,22により制限された第一および第二のトルク指令値を、所定の関係に基づいて結合し、最終的なトルク制限値(制限済値)とする機能を有する。前記所定の関係は、例えば、電力演算部19によって演算された消費電力Pmが前記最大消費電力の制限値Pmaxを上回る場合に、トルク制限値を比較的出力が小さくなる第二のトルク制限値に近づけ、逆に電力演算部19によって演算された消費電力が前記最大消費電力の制限値を下回る場合には、第一のトルク制限値に近づける処理としてもよい。 The torque limiting unit coupling unit 23 couples the first and second torque command values limited by the first and second torque limiting units 21 and 22 based on a predetermined relationship, and a final torque limiting value It has the function of (restricted value). For example, when the power consumption Pm calculated by the power calculation unit 19 exceeds the maximum power consumption limit value Pmax, the predetermined relationship sets the torque limit value to a second torque limit value at which the output becomes relatively small. In the case where the power consumption calculated by the power calculation unit 19 is smaller than the limit value of the maximum power consumption, the processing may be made to approach the first torque limit value.
 具体的には、例えば、最大消費電力の制限値Pmax、電力演算部19で導出された消費電力Pm、所定のゲインKaを用いて、第一のトルク制限値T1、第二のトルク制限値T2に対し、最終的なトルク制限値Tを以下のように設定してもよい。
 T=α・T1+(1-α)・T2 (α=Ka・(Pmax-Pm),0≦α≦1)
ゲインKaは線形としてもよく、偏差(Pmax-Pm)等に基づいて変化する非線形ゲインであってもよい。また、例えば、偏差(Pmax-Pm)の微分または積分を用いてαを演算するものであってもよい。その他、実際の演算は上記数式の通りでなくても、最終的に上記数式と概ね等価となる演算過程であってもよい。
Specifically, for example, using the limit value Pmax of the maximum power consumption, the power consumption Pm derived by the power calculation unit 19, and the predetermined gain Ka, the first torque limit value T1 and the second torque limit value T2 are obtained. Alternatively, the final torque limit value T may be set as follows.
T = α · T1 + (1−α) · T2 (α = Ka · (Pmax−Pm), 0 ≦ α ≦ 1)
The gain Ka may be linear, or may be a non-linear gain that changes based on a deviation (Pmax−Pm) or the like. Also, for example, α may be calculated using differentiation or integration of the deviation (Pmax−Pm). In addition, the actual operation may not be the above equation but may be an operation process that is substantially equivalent to the above equation.
 モータ出力制限器8は、第一および第二のトルク制限部21,22に加え、例えば、第一および第二のトルク制限値を非線形補間するための第三のさらなるトルク制限部、さらに第四トルク制限部等を備えてもよい。また、モータ出力制限器8は、力行と回生それぞれにおいて、異なる第一および第二、あるいはさらなる複数のトルク制限部を備えていてもよい。 In addition to the first and second torque limiters 21 and 22, the motor output limiter 8 has, for example, a third further torque limiter for nonlinear interpolation of the first and second torque limits, and a fourth A torque limiter or the like may be provided. In addition, the motor output limiter 8 may be provided with different first and second or additional torque limiters in power running and regeneration, respectively.
 最終的に、モータ出力制限器8に入力されたトルク指令値が、トルク制限値Tを超過する場合、前記トルク指令値はトルク制限値Tに制限され、トルク制限値Tを超過しない場合はトルク指令値が制限されることなく後段の機能ブロック(この図1の例では電流指令演算部11)に伝達される。なお、前記制限とは、トルクの符号によらず、その大きさを制限することを意味する。 Finally, when the torque command value input to the motor output limiter 8 exceeds the torque limit value T, the torque command value is limited to the torque limit value T. When the torque command value does not exceed the torque limit value T, torque is output. The command value is transmitted to the subsequent functional block (the current command calculation unit 11 in the example of FIG. 1) without limitation. The term "restriction" means to limit the magnitude regardless of the sign of the torque.
 電流指令演算部11は、例えば、トルク指令値またはトルク制限値を、予め定められた所定のモータ特性に基づいて前記トルクを発生させる電流値に換算する機能を有する。前記の換算は、例えば、モータ角速度とトルクに応じた電流値のLUT等を記憶領域に設けておくと演算負荷が少なく好ましい。また、前記の換算は、例えば、予め定められたトルクおよび角速度を引数として電流を求める計算式、あるいは、モータ相抵抗または相インダクタンスからニュートンラプソン法等の収束演算式を用いて所望のトルクとなる電流条件を求める計算式等の、所定の演算式において求めることもできる。 The current command calculation unit 11 has a function of converting, for example, a torque command value or a torque limit value into a current value that generates the torque based on a predetermined motor characteristic. For example, it is preferable to reduce the calculation load if a LUT or the like of current values according to motor angular velocity and torque is provided in the storage area. Further, the conversion can be a desired torque using, for example, a calculation formula for obtaining a current using a predetermined torque and angular velocity as arguments, or a motor phase resistance or a phase inductance using a convergence calculation formula such as Newton-Rapson method It can also be determined by a predetermined calculation equation such as a calculation equation for obtaining the current condition.
 電流指令演算部11にて求められる電流指令値は、例えば、所定の電気角位相に対する直交軸電流(d軸電流、q軸電流)であってもよく、所定の位相および周波数を有する交流電流であってもよい。あるいは、その他、誘導モータにおけるすべり角を考慮した電流指令値としてもよく、もしくはブラシ付DCモータの直流電流指令であってもよい。 The current command value determined by the current command calculation unit 11 may be, for example, an orthogonal current (d-axis current, q-axis current) with respect to a predetermined electrical angle phase, and is an alternating current having a predetermined phase and frequency. It may be. Alternatively, it may be a current command value in consideration of the slip angle in the induction motor, or may be a DC current command of a brushed DC motor.
 モータ電流制御器12は、電流指令演算部11から与えられた前記電流指令値に追従するよう電動モータ電流を制御する機能を有する。電流推定器14が、電流センサ16で検出される値から制御演算に用いる前記電動モータ電流を推定する。この電流制御は、例えば、電流フィードバック制御を用いてもよく、所定のモータ特性に基づいてフィードフォワード制御を用いてもよく、これらを適宜併用してもよい。 The motor current controller 12 has a function of controlling the electric motor current so as to follow the current command value given from the current command calculation unit 11. The current estimator 14 estimates the electric motor current used for the control calculation from the value detected by the current sensor 16. For this current control, for example, current feedback control may be used, feed forward control may be used based on predetermined motor characteristics, and these may be used in combination as appropriate.
 モータドライバ6は、モータ電流制御器12から与えられる電流指令に基づいて、電源装置3の直流電力を電動モータ1の駆動に用いる交流電力に変換する。このモータドライバ6は、FET等のスイッチ素子を含むハーフブリッジ回路を構成し、所定のデューティ比によりモータ印加電圧を決定するPWM制御を行う構成とすると、安価で高性能となり好適である。あるいは、図示外の変圧回路等を設け、PAM制御を行う構成とすることもできる。制御電源13は、各種制御演算器およびモータドライバ6等の弱電系へ電力を供給する。 The motor driver 6 converts DC power of the power supply 3 into AC power used for driving the electric motor 1 based on a current command given from the motor current controller 12. The motor driver 6 constitutes a half bridge circuit including switching elements such as FETs, and is preferably inexpensive and has high performance if it is configured to perform PWM control to determine a motor applied voltage with a predetermined duty ratio. Alternatively, a transformer circuit or the like (not shown) may be provided to perform PAM control. The control power supply 13 supplies power to various control computing units and low-power systems such as the motor driver 6 and the like.
 図1に図示しない機能は、必要に応じて別途設けられるものとする。例えば、モータ出力を制限する上で、制御演算器において出力飽和補償が必要となる場合があり、前記出力飽和補償を行う補償器を適宜設けてもよい。あるいは、例えば、温度上昇または過電流において出力を制限ないし動作停止するような冗長系を別途設けてもよい。 The functions not shown in FIG. 1 are separately provided as necessary. For example, when limiting the motor output, output saturation compensation may be required in the control computing unit, and a compensator for performing the output saturation compensation may be provided as appropriate. Alternatively, for example, a redundant system may be separately provided to limit or stop the output at a temperature rise or an overcurrent.
 その他、図1はあくまで機能構成の概念を示したものであり、図示外の要素は要件に応じて適宜設けられるものとする。また、各機能ブロックは便宜上設けているものであり、実装上の都合に伴い適宜統合ないし分割可能であるものとする。また、各機能の接続形態は一つの例として示すものであり、前述の機能に支障をきたさない範囲で変更できるものとする。 In addition, FIG. 1 shows the concept of the functional configuration to the last, and elements not shown are appropriately provided according to the requirements. Also, each functional block is provided for the sake of convenience, and can be appropriately integrated or divided according to the convenience of mounting. Moreover, the connection form of each function is shown as an example, and can be changed in the range which does not disturb the above-mentioned function.
 <電動モータ装置の動作例>
 図2A、図2Bは、前記電動モータ装置を用いて、所定のモータ角度への位置決めを行う例を示す。図2A、図2Bにおいて、従来例の電動モータ装置の動作例を点線で示し、実施形態の電動モータ装置の動作例を実線で示す。
<Operation Example of Electric Motor Device>
FIGS. 2A and 2B show an example of positioning to a predetermined motor angle using the electric motor device. In FIG. 2A and FIG. 2B, the operation example of the electric motor apparatus of a prior art example is shown by a dotted line, and the operation example of the electric motor apparatus of embodiment is shown by a continuous line.
 図2Aは、特性バラツキを有する電動モータにおいて、所定の想定値より損失が増加した場合を示す。従来例の電動モータ装置においては、モータ損失増加に伴い最大消費電力が制限値を超過するが、実施形態の電動モータ装置では、特に前記モータ出力制限器8(図1)により、所定の最大消費電力に制限される。 FIG. 2A shows a case where the loss increases more than a predetermined assumed value in the electric motor having the characteristic variation. In the electric motor device of the conventional example, the maximum power consumption exceeds the limit value as the motor loss increases. However, in the electric motor device of the embodiment, the predetermined maximum consumption particularly by the motor output limiter 8 (FIG. 1) Limited to power.
 図2Bは、特性バラツキを有する電動モータにおいて、比較的損失が少なくなった場合を示す。従来例の電動モータ装置において、特性バラツキに対して最大消費電力が所定の制限値を超過しないよう調整された結果、電動モータの応答速度が低下する例に対して、実施形態の電動モータ装置では、特に前記モータ出力制限器8(図1)により、消費電力を増加させて電動モータ1(図1)の応答性が改善される。 FIG. 2B shows a case where the loss is relatively small in the electric motor having the characteristic variation. In the electric motor device according to the embodiment, the response speed of the electric motor decreases as a result of adjusting the maximum power consumption not to exceed the predetermined limit value for the characteristic variation in the electric motor device of the conventional example. In particular, the motor output limiter 8 (FIG. 1) increases the power consumption and improves the response of the electric motor 1 (FIG. 1).
 <電動ブレーキ装置の構成例>
 図3は、実施形態に係る電動モータ装置を用いた電動ブレーキ装置DBの構成例を示すブロック図である。この電動ブレーキ装置DBは、電動モータ装置DMと、摩擦ブレーキBRとを備える。電動ブレーキシステムは、この電動ブレーキ装置DBを複数備える。
<Configuration Example of Electric Brake Device>
FIG. 3 is a block diagram showing a configuration example of an electric brake device DB using the electric motor device according to the embodiment. The electric brake device DB includes an electric motor device DM and a friction brake BR. The electric brake system includes a plurality of electric brake devices DB.
 電源装置3は、例えば、バッテリであってもよく、DC/DCコンバータであってもよく、これらを適宜併用した構成であってもよい。例えば、EV、HEV等においては、200V~300V程度の高圧バッテリと、高圧バッテリ電圧を12Vに降圧するDC/DCコンバータと、12Vバッテリとを備え、前記DC/DCコンバータおよび12Vバッテリを電源装置3とする構成を用いてもよい。 The power supply device 3 may be, for example, a battery, a DC / DC converter, or a combination of these as appropriate. For example, in an EV, HEV, etc., a high voltage battery of about 200 V to 300 V, a DC / DC converter for reducing the high battery voltage to 12 V, and a 12 V battery are provided. The configuration to be used may be used.
 ブレーキ指令手段4Aは、ブレーキ力を統合制御装置24に与える手段であって、例えば、ブレーキペダルを用いることができる。あるいは、ブレーキ指令手段4Aは、ジョイスティックまたはボリューム等の別の指示手段であってもよく、その他自動運転車両における所定の制動指示手段等、車両の操縦者に依存しない指示手段であってもよい。 The brake command means 4A is a means for giving a braking force to the integrated control device 24, and for example, a brake pedal can be used. Alternatively, the brake command unit 4A may be another command unit such as a joystick or a volume, or may be a command unit that does not depend on the driver of the vehicle, such as a predetermined brake command unit in an autonomous driving vehicle.
 統合制御装置24は、電源容量演算器25と、制動力配分演算器26と、電力配分手段としての電力配分演算器27とを備える。統合制御装置24は、例えば、車両統合制御装置(VCU)であってもよく、あるいは後述のブレーキ制御装置2Aのうちの一つまたは複数が統合制御装置24を有するものであってもよい。 The integrated control device 24 includes a power supply capacity calculator 25, a braking force distribution calculator 26, and a power distribution calculator 27 as power distribution means. For example, the integrated control device 24 may be a vehicle integrated control device (VCU), or one or more of the brake control devices 2A described later may have the integrated control device 24.
 電源容量演算器25は、電源装置3の出力容量および状態から、電動ブレーキ装置DBに使用可能な電力を決定する機能を有する。電源装置3の状態の検出、診断等の機能は、例えば、バッテリであれば%SOC等の残量検出機能であってもよく、DC/DCコンバータであれば内部回路素子の温度等に基づく所定の自己診断機能であってもよく、あるいはこれらの併用であってもよい。また、電源容量演算器25は、電動ブレーキ装置以外の電動ステアリング等の電動装置(図示せず)の電力消費状態を取得し、この電力消費状態を加味した最大消費電力を決定するものであってもよい。もしくは、電動ブレーキ装置DBが優先的に電力を使用する場合において、電動ブレーキ装置DBの消費電力を図示外の電動装置に通知する機能を有していてもよい。 The power supply capacity calculator 25 has a function of determining the power that can be used for the electric brake device DB from the output capacity and state of the power supply device 3. The detection and diagnosis functions of the state of the power supply device 3 may be, for example, the remaining amount detection function such as% SOC in the case of a battery, and in the case of a DC / DC converter The self-diagnosis function of or a combination of these may be used. In addition, the power supply capacity computing unit 25 obtains the power consumption state of an electric device (not shown) such as an electric steering device other than the electric brake device, and determines the maximum power consumption taking this power consumption state into consideration. It is also good. Alternatively, in the case where the electric brake device DB preferentially uses electric power, it may have a function of notifying the electric power consumption of the electric brake device DB to an electric device not shown.
 制動力配分演算器26は、ブレーキ指令手段4Aにより要求されるブレーキ力に応じて、各ブレーキ制御装置2Aにブレーキ力指令値を出力する。前記ブレーキ力指令値は、例えば、四輪車両における前後ブレーキ比率のような所定の固定比率としてもよく、例えば、図示外の加速度センサ等から車両の制動状態または旋回状態を推定し、前記いずれか一方または両方の状態に応じた可変の値としてもよい。 The braking force distribution computing unit 26 outputs a braking force command value to each brake control device 2A in accordance with the braking force required by the braking command unit 4A. The brake force command value may be, for example, a predetermined fixed ratio such as a front / rear brake ratio in a four-wheeled vehicle, for example, a braking state or a turning state of the vehicle is estimated from an acceleration sensor not shown. It may be a variable value according to one or both of the states.
 その他、制動力配分演算器26は、車輪速推定手段28、スリップ状態推定手段29、アンチスキッド制御機能部30および横滑り防止制御機能部31を備えてもよい。車輪速推定手段28は、複数の電動ブレーキ装置DBをそれぞれ搭載する各車輪の回転速度である車輪速を推定する。スリップ状態推定手段29は、車輪速推定手段28で推定される各車輪の車輪速および車両の前後加速度、車両位置情報(GPS)等を用いて各車輪のスリップ状態を推定する。 In addition, the braking force distribution computing unit 26 may include a wheel speed estimating unit 28, a slip state estimating unit 29, an antiskid control function unit 30, and a skid prevention control function unit 31. The wheel speed estimation means 28 estimates a wheel speed which is a rotational speed of each wheel on which the plurality of electric brake devices DB are mounted. The slip state estimation means 29 estimates the slip state of each wheel using the wheel speed of each wheel estimated by the wheel speed estimation means 28, the longitudinal acceleration of the vehicle, vehicle position information (GPS), and the like.
 アンチスキッド制御機能部30は、スリップ状態推定手段29で推定されるスリップ状態が閾値を超過したとき、スリップ状態が抑制されるよう電動ブレーキ装置DBの制動力(ブレーキ力)を調整するアンチスキッド制御を行う。換言すれば、アンチスキッド制御機能部30は、制動時の過度なスリップ状態を防止するために、前記ブレーキペダル等の操作によらず制動力を調整するアンチスキッド制御を行う。横滑り防止制御機能部31は、前記のように各車輪のスリップ状態を推定し、さらに車両の旋回状態等に基づいた横滑り防止制御を行う。 The anti-skid control function unit 30 adjusts the braking force (braking force) of the electric brake device DB so that the slip state is suppressed when the slip state estimated by the slip state estimation means 29 exceeds the threshold value. I do. In other words, the anti-skid control function unit 30 performs anti-skid control to adjust the braking force regardless of the operation of the brake pedal or the like in order to prevent an excessive slip state at the time of braking. The skid prevention control function unit 31 estimates the slip state of each wheel as described above, and performs skid prevention control based on the turning state of the vehicle and the like.
 電力配分演算器27は、電源容量演算器25で決定された電動ブレーキ装置DBの消費電力から、各電動ブレーキ装置DBにおける最大消費電力を決定する機能を有する。前記最大消費電力は、各電動ブレーキ装置DB毎に所定の配分条件に基づいて変更した値でもよく、全て同じ値としてもよい。特に、例えば、四輪車両における前輪用ブレーキと後輪用ブレーキのようなブレーキ力容量の異なる電動ブレーキ装置DBを適用する場合、電力配分演算器27は、前記ブレーキ力容量に応じた配分(前輪用ブレーキの配分を多く、後輪用ブレーキの配分を少なくするような配分)とすると好ましい。 The power distribution calculator 27 has a function of determining the maximum power consumption of each of the electric brake devices DB from the power consumption of the electric brake device DB determined by the power source capacity calculator 25. The maximum power consumption may be a value changed based on a predetermined distribution condition for each of the electric brake devices DB, or may be the same value. In particular, for example, in the case of applying an electric brake device DB having different braking force capacities such as the front wheel brake and the rear wheel brake in a four-wheeled vehicle, the power distribution computing unit 27 distributes according to the brake force capacity (front wheel Preferably, the distribution of the fork brakes is large and the distribution of the rear wheel brakes is small.
 また、電力配分演算器27は、各電動ブレーキ装置DBの最大電力配分を電力状況に応じて変更する電力可変機能部27aを有していてもよい。例えば、所定の電動ブレーキ装置DBの駆動電力に余裕があり、他の電動ブレーキ装置DBの駆動電力に余裕がないような場合、所定の電動ブレーキ装置DBの余剰電力を他の電動ブレーキ装置DBにおいて消費する処理としてもよい。 Further, the power distribution computing unit 27 may have a power variable function unit 27a that changes the maximum power distribution of each of the electric brake devices DB according to the power condition. For example, when there is an allowance in the drive power of a predetermined electric brake device DB and there is no margin in the drive power of another electric brake device DB, the surplus electric power of the predetermined electric brake device DB is It may be a process to consume.
 前記電力状況は、例えば、所定の電動ブレーキ装置DBにおける電力制限値と駆動電力との比較に基づいて判断してもよい。前記駆動電力が前記電力制限値と等しいかまたは近い場合、当該電動ブレーキ装置DBは比較的大きな駆動電力が必要な緊急動作状況であると考えられる。前記駆動電力が前記電力制限値より所定量以上小さい場合、当該電動ブレーキ装置DBは駆動電力を比較的必要としていない状況であると考えられる。すなわち、駆動電力が必要な電動ブレーキ装置DBと、駆動電力を必要としていない電動ブレーキ装置DBが混在している場合、電力可変機能部27aは、駆動電力が必要な緊急動作状態の電動ブレーキ装置DBの制限電力値(制限値)を増加させることで、電動ブレーキ装置DBの応答性を向上することができる。 The power condition may be determined based on, for example, comparison between a power limit value in a predetermined electric brake device DB and drive power. If the drive power is equal to or close to the power limit value, the electric brake device DB is considered to be an emergency operating condition requiring a relatively large drive power. If the drive power is smaller than the power limit value by a predetermined amount or more, it is considered that the electric brake device DB is in a situation where the drive power is relatively unnecessary. That is, when the electric brake device DB requiring driving power and the electric brake device DB not requiring driving power coexist, the electric power variable function unit 27a performs the electric braking device DB in an emergency operation state requiring driving power. The responsiveness of the electric brake device DB can be improved by increasing the limit power value (limit value) of the above.
 電動ブレーキ装置DBの前記電力状況は、例えば、所定の電動ブレーキ装置DBがアンチスキッド制御中か否かに基づいて判断してもよい。アンチスキッド制御中の電動ブレーキ装置DBは、高速なブレーキ動作を必要とし、それ以外の電動ブレーキ装置DBは、高速なブレーキ動作を比較的必要としない。したがって、複数の電動ブレーキ装置DBのうち、アンチスキッド制御を行っている電動ブレーキ装置DBと、アンチスキッド制御を行っていない電動ブレーキ装置DBが混在している場合に、電力可変機能部27aは、アンチスキッド制御を行っていない電動ブレーキ装置DBの電力制限値を比較的小さく設定し、その余剰分でアンチスキッド制御中の電動ブレーキ装置DBの電力制限値を向上することで、アンチスキッド制御性能を向上することができる。 The power condition of the electric brake device DB may be determined based on, for example, whether or not a predetermined electric brake device DB is in anti-skid control. The electric brake device DB in anti-skid control requires high-speed brake operation, and the other electric brake devices DB do not relatively require high-speed brake operation. Therefore, in the case where the electric brake device DB performing antiskid control and the electric brake device DB not performing antiskid control among the plurality of electric brake devices DB are mixed, the power variable function unit 27a is By setting the power limit value of the electric brake device DB not performing anti-skid control relatively small and improving the power limit value of the electric brake device DB under anti-skid control with the surplus, anti-skid control performance can be achieved. It can be improved.
 ブレーキ制御装置2Aは、前述の制御装置2(図1)の機能に加え、ブレーキ力を所望の指令値に対して追従制御する機能を有する。電動アクチュエータ1Aは、前述の電動モータ1(図1)に加え、後述の摩擦ブレーキBRの摩擦部材を動作させるねじ機構またはボールランプ機構等の摩擦部材操作手段を備える。また、電動アクチュエータ1Aは、ブレーキ力を制御するうえで前記摩擦部材の押圧力を検出する荷重センサ等を設けてもよい。摩擦ブレーキBR(後述する)は、車輪と同期して回転するブレーキロータ32と、このブレーキロータ32と当接して制動力を発生させる摩擦部材33とを備える。 In addition to the function of the control device 2 (FIG. 1) described above, the brake control device 2A has a function of following control of the braking force to a desired command value. The electric actuator 1A includes friction member operating means such as a screw mechanism or a ball ramp mechanism for operating a friction member of the friction brake BR described later, in addition to the electric motor 1 (FIG. 1) described above. In addition, the electric actuator 1A may be provided with a load sensor or the like for detecting the pressing force of the friction member in order to control the braking force. The friction brake BR (described later) includes a brake rotor 32 that rotates in synchronization with the wheels, and a friction member 33 that abuts on the brake rotor 32 to generate a braking force.
 <電動ブレーキ装置の動作例>
 図4A、図4Bは、四輪自動車における電動ブレーキシステムの動作例を示す。同図中、F1,F2は左右の前輪の電動ブレーキ装置の動作、R1,R2は左右の後輪の電動ブレーキ装置の動作を示す。
<Operation Example of Electric Brake Device>
FIG. 4A and FIG. 4B show an operation example of the electric brake system in a four-wheeled vehicle. In the same figure, F1 and F2 show the operation of the electric brake system for the left and right front wheels, and R1 and R2 show the operation of the electric brake system for the left and right rear wheels.
 図4Aはこの電動ブレーキシステム(図3の構成)の動作例を示す。F1がF2に対して異なる動作をしている図中区間は、アンチスキッド制御が実行されていることを示している。その際、電力配分演算器27(図3)が、全ての最大消費電力の総和を一定にしつつ、F1の最大消費電力を一時的に増加させることで、高精度なアンチスキッド制御を実行することができることを示している。 FIG. 4A shows an operation example of this electric brake system (configuration of FIG. 3). The section in the figure in which F1 operates differently to F2 indicates that anti-skid control is being performed. At this time, the power distribution computing unit 27 (FIG. 3) performs high-precision antiskid control by temporarily increasing the maximum power consumption of F1 while keeping the sum of all the maximum power consumptions constant. It shows that it can do.
 電力配分演算器27(図3)において、F1の最大消費電力を一時的に増加させる判断は、アンチスキッド制御を実行中か否かで判断してもよく、F1の消費電力が多く、F2,R1,R2の消費電力が少ないことから判断してもよい。図4Bは、従来例の電動ブレーキシステムにおいて、最大消費電力を常に一定とする例を示す。 In the power distribution computing unit 27 (FIG. 3), the determination to temporarily increase the maximum power consumption of F1 may be made based on whether anti-skid control is being performed or not, and the power consumption of F1 is large, F2,. You may judge from the power consumption of R1 and R2 being small. FIG. 4B shows an example in which the maximum power consumption is always constant in the conventional electric brake system.
 <電動ブレーキ装置DBの概略構成について>
 図5に示すように、電動ブレーキ装置DBは、電動アクチュエータ1Aと、摩擦ブレーキBRとを備える。摩擦ブレーキBRは、車両の車輪と連動して回転するブレーキロータ32と、このブレーキロータ32と接触して制動力を発生させる摩擦部材33とを有する。この摩擦部材33はブレーキロータ近傍に配置される。摩擦部材33を電動アクチュエータ1Aにより操作してブレーキロータ32に押圧し、摩擦力によって制動力を発生させる機構を用いることができる。前記ブレーキロータ32および摩擦部材33は、例えば、ブレーキディスクおよびキャリパを用いたディスクブレーキ装置であってもよく、あるいはドラムおよびライニングを用いたドラムブレーキ装置であってもよい。
<About schematic configuration of electric brake device DB>
As shown in FIG. 5, the electric brake device DB includes an electric actuator 1A and a friction brake BR. The friction brake BR includes a brake rotor 32 that rotates in conjunction with the wheels of the vehicle, and a friction member 33 that contacts the brake rotor 32 to generate a braking force. The friction member 33 is disposed near the brake rotor. A mechanism may be used in which the friction member 33 is operated by the electric actuator 1A and pressed against the brake rotor 32, and a braking force is generated by the frictional force. The brake rotor 32 and the friction member 33 may be, for example, a disk brake device using a brake disk and a caliper, or may be a drum brake device using a drum and a lining.
 電動アクチュエータ1Aは、電動モータ1と、減速機構34と、摩擦部材操作手段である直動機構35と、パーキングブレーキ機構PBとを有する。減速機構34は、電動モータ1の回転を減速する機構であり、一次歯車36、中間歯車37、および三次歯車38を含む。この例では、減速機構34は、電動モータ1のロータ軸1aに取り付けられた一次歯車36の回転を、中間歯車37により減速して、回転軸39の端部に固定された三次歯車38に伝達可能としている。 The electric actuator 1A has an electric motor 1, a reduction mechanism 34, a direct acting mechanism 35 which is a friction member operating means, and a parking brake mechanism PB. The reduction mechanism 34 is a mechanism that reduces the rotation of the electric motor 1 and includes a primary gear 36, an intermediate gear 37, and a tertiary gear 38. In this example, the reduction mechanism 34 reduces the rotation of the primary gear 36 attached to the rotor shaft 1 a of the electric motor 1 by the intermediate gear 37 and transmits it to the tertiary gear 38 fixed to the end of the rotating shaft 39 It is possible.
 直動機構35は、減速機構34から出力される回転運動を送りねじ機構により直動部40の直線運動に変換して、ブレーキロータ32に対して摩擦部材33を当接離隔させる機構である。直動部40は、回り止めされ且つ矢符A1にて表記する軸方向に移動自在に支持されている。直動部40のアウトボード側端に摩擦部材33が設けられる。電動モータ1の回転を減速機構34を介して直動機構35に伝達することで、回転運動が直線運動に変換され、それが摩擦部材33の押圧力に変換されることによりブレーキ力を発生させる。 The linear motion mechanism 35 is a mechanism that converts the rotational motion output from the speed reduction mechanism 34 into linear motion of the linear motion portion 40 by the feed screw mechanism, and causes the friction member 33 to contact and separate from the brake rotor 32. The linear motion portion 40 is detentated and supported movably in the axial direction indicated by the arrow mark A1. A friction member 33 is provided at the outboard side end of the linear movement portion 40. By transmitting the rotation of the electric motor 1 to the linear motion mechanism 35 via the reduction mechanism 34, the rotational motion is converted into a linear motion, which is converted into the pressing force of the friction member 33 to generate a braking force. .
 パーキングブレーキ機構PBのアクチュエータ41として、例えば、リニアソレノイドが適用される。アクチュエータ41によりロック部材42を進出させて中間歯車37に形成された係止孔(図示せず)に嵌まり込ませることで係止し、中間歯車37の回転を禁止することで、パーキングロック状態にする。ロック部材42を前記係止孔から離脱させることで中間歯車37の回転を許容し、アンロック状態にする。 For example, a linear solenoid is applied as the actuator 41 of the parking brake mechanism PB. The locking member 42 is advanced by the actuator 41 and engaged by being fitted into a locking hole (not shown) formed in the intermediate gear 37, and the rotation of the intermediate gear 37 is prohibited to thereby obtain a parking lock state. Make it By disengaging the lock member 42 from the locking hole, the rotation of the intermediate gear 37 is allowed to be in the unlocked state.
 <作用効果>
 以上説明した構成によると、モータ出力制限器8は、トルク指令演算器7から与えられたトルク指令値を角速度等に基づいて、閾値を超過しないように制限する。これにより、電動モータ1を使用できる出力まで最大限使用することができ、電動モータ1の出力性能を向上し得る。したがって、電動ブレーキ装置DB等の応答性が不所望に低下することを防止することができる。所定の電流条件における消費電力が変動するとき、第一および第二のトルク制限部21,22によって最大消費電力を調整可能とすることで、モータ特性変動によらず所定の最大消費電力に制限することができる。また図1のモータ出力制限器8の構成は、モータ消費電力を厳密に扱う上で好ましく、例えば、角度または角速度等の制御系を上位に設ける場合、モータ出力制限に伴う飽和補償制御が容易になる面で優位である。図1の電力演算部19は、モータドライバ6の一次側の電圧および電流から、電動モータ1の消費電力を導出するため、より直接的に消費電力を管理する上で優位である。
<Function effect>
According to the configuration described above, the motor output limiter 8 limits the torque command value given from the torque command calculator 7 so as not to exceed the threshold value based on the angular velocity and the like. As a result, the electric motor 1 can be used to the maximum usable output, and the output performance of the electric motor 1 can be improved. Therefore, it is possible to prevent the responsiveness of the electric brake device DB and the like from being lowered undesirably. When the power consumption under a predetermined current condition fluctuates, the maximum power consumption can be adjusted by the first and second torque limiters 21 and 22 to limit the power consumption to a predetermined maximum power consumption regardless of motor characteristic fluctuation. be able to. Further, the configuration of the motor output limiter 8 shown in FIG. 1 is preferable in strictly treating the motor power consumption. For example, when a control system such as an angle or angular velocity is provided on the upper side, saturation compensation control accompanying motor output limitation is facilitated. Be superior in terms of The power calculation unit 19 of FIG. 1 is advantageous in managing power consumption more directly because the power consumption of the electric motor 1 is derived from the voltage and current of the primary side of the motor driver 6.
 <他の実施形態について>
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
<Other Embodiments>
In the following description, the portions corresponding to the items described in advance in each embodiment are denoted by the same reference numerals, and the redundant description will be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding embodiment unless otherwise stated. The same function and effect can be obtained from the same configuration. Not only the combination of the portions specifically described in the embodiments but also the embodiments may be partially combined if any problem does not occur in the combination.
 図6は、出力制限機能部としてのモータ出力制限器8を、電流指令演算器11と、モータ電流制御器12との間に設ける例を示す。図1の例に対し、図6の例におけるモータ出力制限器8は、消費電力推定機能部である電力演算部19と、可変制限部20とを有する。可変制限部20は、第一および第二の電流制限部(制限部)21A,22Aと、電流制限値結合部(制限値結合部)23Aとを備える。 FIG. 6 shows an example in which the motor output limiter 8 as the output limiting function unit is provided between the current command calculator 11 and the motor current controller 12. With respect to the example of FIG. 1, the motor output limiter 8 in the example of FIG. The variable limiting unit 20 includes first and second current limiting units (limiting units) 21A and 22A, and a current limiting value coupling unit (limit value coupling unit) 23A.
 第一の電流制限部21Aは、電流値が比較的大きくなる電流制限機能を有し、第二の電流制限部22Aは、電流値が比較的小さくなる電流制限機能を有する。前記第一および第二の電流制限部21A,22Aは、図1における第一および第二のトルク制限部21,22と同様に設定することができる。 The first current limiting unit 21A has a current limiting function in which the current value is relatively large, and the second current limiting unit 22A has a current limiting function in which the current value is relatively small. The first and second current limiters 21A and 22A can be set in the same manner as the first and second torque limiters 21 and 22 in FIG.
 図6に示すように、例えば、第一の電流制限部21Aを、モータコイル電流密度、コイル発熱の放熱特性、熱容量、モータ駆動素子の電流容量、等に基づいて定められる電動モータ装置に異常を発生させずに通電可能な最大電流制限としてもよく、第二の電流制限部22Aを、力率ないし所定の最大力率の条件下で最大消費電力となる最大電流制限としてもよい。あるいは、予め電動モータ装置に発生し得る特性変動に基づいて、前記第一および第二の電流制限部21A,22Aを最大電流値が所定量異なる任意の関係に適宜設定してもよい。 As shown in FIG. 6, for example, the first current limiting portion 21A has an abnormality in the electric motor apparatus determined based on motor coil current density, heat radiation characteristics of coil heat generation, heat capacity, current capacity of motor drive element, etc. Alternatively, the second current limiter 22A may be a maximum current limit that provides maximum power consumption under conditions of a power factor or a predetermined maximum power factor. Alternatively, the first and second current limiters 21A and 22A may be appropriately set to an arbitrary relationship in which the maximum current value differs by a predetermined amount based on the characteristic fluctuation that may occur in the electric motor device.
 電力演算部19は、図1の電力演算部19と同様の機能を備える。また、図6に示すように、電流制限値結合部23Aは、図1のトルク制限値結合部23に対しトルク制限の代わりに電流制限を扱う点のみ異なり、その他は図1の場合と同様の機能を備える。 The power computing unit 19 has the same function as the power computing unit 19 of FIG. 1. Also, as shown in FIG. 6, the current limit value coupling unit 23A differs from the torque limit value coupling unit 23 of FIG. 1 only in that it handles current limitation instead of torque limitation, and the other points are the same as in FIG. It has a function.
 したがって、図6の構成においても、モータ特性変動等によらずモータ最大消費電力を適切に制限し、かつ許容範囲内の電力を最大限に使用して電動モータ1の出力性能を向上することができる。また図6のモータ出力制限器8の構成は、電動モータ1の消費電力および熱負荷をより厳密に扱う上で好ましく、例えば、第一および第二の電流制限値をモータ特性変動に厳密に基づいて決定する場合に優位である。 Therefore, also in the configuration of FIG. 6, the output performance of the electric motor 1 can be improved by appropriately limiting the maximum motor power consumption regardless of the motor characteristic fluctuation and the like and using the power within the allowable range to the maximum. it can. Further, the configuration of motor output limiter 8 of FIG. 6 is preferable in order to handle power consumption and heat load of electric motor 1 more strictly, for example, based on the first and second current limit values strictly based on motor characteristic fluctuation. It is superior when deciding.
 図7は、図1の例において、電圧推定器9等を有さず、現在の電流および出力する電圧から、電力を計算する機能を有する電力演算部19を設ける例を示す。前記電力は、例えば、所定の電気角位相で直交軸変換された電圧および電流を用いて、同軸の電圧および電流から有効電力を求める機能であってもよく、交流電圧および電流から有効電力を求める機能であってもよい。また、本図7の機能を有する電力演算部19を、図6またはその他の実施形態において適用することもできる。図7の相電流および電圧から電力を推定する構成は、図1,図6の構成等よりもセンサ等を削減する上で優位である。 FIG. 7 shows an example in which a power operation unit 19 having a function of calculating power from the current and the output voltage is provided without the voltage estimator 9 and the like in the example of FIG. The power may be, for example, a function of obtaining active power from coaxial voltage and current using orthogonally axis converted voltage and current at a predetermined electrical angle phase, and obtains active power from alternating current voltage and current It may be a function. Also, the power calculation unit 19 having the function of FIG. 7 can be applied to FIG. 6 or other embodiments. The configuration for estimating power from the phase current and voltage of FIG. 7 is superior to the configurations of FIGS. 1 and 6 in reducing sensors and the like.
 図8は、モータ出力制限器8を、モータ電流制限器12の後段に設ける例を示す。この例のモータ出力制限器8は、電力演算部19と、可変制限部としての電圧制限部43とを備える。電力演算部19は、図7の電力演算部19と同様、現在の電流および出力する電圧から、電力を計算する機能を有する。前記電力は、例えば、所定の電気角位相で直交軸変換された電圧および電流を用いて、同軸の電圧および電流から有効電力を求める機能であってもよく、交流電圧および電流から有効電力を求める機能であってもよい。 FIG. 8 shows an example in which the motor output limiter 8 is provided downstream of the motor current limiter 12. The motor output limiter 8 in this example includes a power computing unit 19 and a voltage limiting unit 43 as a variable limiting unit. The power calculating unit 19 has a function of calculating power from the current and the output voltage, as in the power calculating unit 19 of FIG. 7. The power may be, for example, a function of obtaining active power from coaxial voltage and current using orthogonally axis converted voltage and current at a predetermined electrical angle phase, and obtains active power from alternating current voltage and current It may be a function.
 電圧制限部43は、電力演算部19の有効電力が前記最大消費電力の制限値以下になるよう、出力電圧を制限する機能を有する。このとき、出力電圧がd軸、q軸電圧である場合、電圧制限部43は、例えば、d軸、q軸電圧のいずれか一方を制限してもよく、d軸およびq軸電圧を同じ量だけ制限してもよく、d軸およびq軸電圧を同じ比率で電圧ベクトル角が等しいままノルムが縮小するよう制限してもよい。 The voltage limiting unit 43 has a function of limiting the output voltage such that the active power of the power computing unit 19 is equal to or less than the limit value of the maximum power consumption. At this time, when the output voltage is d-axis or q-axis voltage, the voltage limiting unit 43 may limit one of the d-axis and q-axis voltages, for example. The d-axis and q-axis voltages may be restricted so as to reduce the norm with equal voltage vector angles at the same ratio.
 電圧制限部43は、d軸およびq軸電圧を変数、有効電力を制約とし、相抵抗およびインダクタンス特性等に基づき前記変数としたd軸およびq軸電圧を印加した際の出力推定式を評価関数とし、ニュートンラプソン法等の収束演算法により、d軸およびq軸電圧を求めることもできる。 The voltage limiting unit 43 evaluates the output estimation formula when the d-axis and q-axis voltages are applied using the d-axis and q-axis voltages as variables, the active power as a constraint, and the phase resistance and inductance characteristics, etc. The d-axis and q-axis voltages can also be determined by a convergence operation method such as the Newton-Rapson method.
 出力電圧が三相電圧である場合、電圧制限部43は、例えば、電圧振幅を制限してもよく、電圧位相を制限してもよい。あるいは、電圧制限部43は、電圧振幅および位相を変数、有効電力を制約とし、相抵抗およびインダクタンス特性等に基づき前記変数とした電圧振幅および位相を印加した際の出力推定式を評価関数とし、ニュートンラプソン法等の収束演算法により、電圧振幅および位相を求めることもできる。図8の構成は電動モータ1の消費電力をさらに厳密に管理する上で優位である。 When the output voltage is a three-phase voltage, for example, the voltage limiting unit 43 may limit the voltage amplitude or may limit the voltage phase. Alternatively, the voltage limiting unit 43 uses the voltage amplitude and phase as variables, and the active power as a constraint, and uses an output estimation equation when applying the voltage amplitude and phase as the variables based on phase resistance and inductance characteristics as an evaluation function, The voltage amplitude and phase can also be determined by a convergence operation method such as the Newton-Rapson method. The configuration of FIG. 8 is advantageous in more strictly managing the power consumption of the electric motor 1.
 図9は、電力を制御量として直接フィードバック演算する例を示す。電力演算部19は、前述のいずれかの実施形態に係る電力演算部19と同様の機能を有する。可変制限部としての出力調整量演算部44は、最大消費電力と、前記電力演算部19にて演算された消費電力とを比較し、所定の調整量を出力する機能を有する。前記所定の調整量は、例えば、最大消費電力に対して出力が超過している場合、その超過量(超過分)に所定のフィードバックゲインを乗じた結果であってもよい。 FIG. 9 shows an example of direct feedback calculation using power as a control amount. The power calculation unit 19 has the same function as the power calculation unit 19 according to any of the above-described embodiments. The output adjustment amount computing unit 44 as the variable limiting unit has a function of comparing the maximum power consumption with the power consumption computed by the power computing unit 19 and outputting a predetermined adjustment amount. The predetermined adjustment amount may be, for example, a result of multiplying the excess amount (excess) by a predetermined feedback gain when the output exceeds the maximum power consumption.
 図9中の加算部45の符号は、出力の大きさが減少するよう調整することを示したものであり、実際の物理量における符号は、電動モータ1の駆動状況に応じて適宜定められるものとする。また、図9は、トルク指令演算器7の出力すなわちトルク指令値に調整量を作用させる例を示すが、前記調整は、トルク指令演算器7への入力すなわち指令入力、電流指令演算器11の出力すなわち電流指令値、モータ電流制御器12の出力すなわち出力電圧、等の他の機能に調整量を作用させることもできる。図9の構成は、制限LUT等が不要となり、メモリ等のリソース制約の上で優位である。 The sign of the adding unit 45 in FIG. 9 indicates adjustment to decrease the magnitude of the output, and the sign of the actual physical quantity may be appropriately determined according to the driving situation of the electric motor 1. Do. Further, FIG. 9 shows an example in which an adjustment amount is applied to the output of the torque command computing unit 7, ie, the torque command value, but the adjustment is performed by inputting the torque command computing unit 7, ie, the command input Adjustments can also be applied to other functions, such as the output or current command value, and the output or output voltage of the motor current controller 12. The configuration of FIG. 9 is advantageous in terms of resource constraints such as a memory since a limitation LUT and the like are not necessary.
 図1、図6~図9の実施形態は設計者が任意の設計思想の元で選択でき、あるいは適宜併用することもできる。 The embodiment of FIGS. 1 and 6 to 9 can be selected by a designer based on any design concept, or can be used in combination as appropriate.
 電動モータ装置を車両駆動用の駆動装置としてもよい。例えば、図10Aに示すように、いずれかの電動モータ装置を複数(この例では二つ)備えた電動モータシステムとして、この電動モータシステムをインホイールモータ駆動形式の車両に適用してもよい。図10Bに示すように、いずれかの電動モータ装置を複数(この例では二つ)備えた電動モータシステムとして、この電動モータシステムを二モータオンボード形式の車両に適用してもよい。 The electric motor device may be a drive device for driving a vehicle. For example, as shown in FIG. 10A, the electric motor system may be applied to an in-wheel motor drive type vehicle as an electric motor system including a plurality (two in this example) of electric motor devices. As shown in FIG. 10B, the electric motor system may be applied to a two-motor on-board type vehicle as an electric motor system including a plurality of (two in this example) electric motor devices.
 図示しないが、電動モータシステムを、電動ステアリングと電動ブレーキを含む車両電装システム、ロボットの姿勢制御アクチュエータシステム、航空機または船舶のアクチュエータシステム等に適用することも可能である。 Although not shown, the electric motor system can also be applied to a vehicle electrical system including an electric steering and an electric brake, an attitude control actuator system of a robot, an actuator system of an aircraft or a ship, and the like.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, although the preferred embodiments have been described with reference to the drawings, various additions, modifications, and deletions can be made without departing from the spirit of the present invention. Therefore, such is also included in the scope of the present invention.
1…電動モータ
2…制御装置
6…モータドライバ(駆動回路)
8…モータ出力制限器(出力制限機能部)
15…回転運動推定器(角速度推定手段)
19…電力演算部(消費電力推定機能部)
20…可変制限部
21…第一のトルク制限部(第一の制限部)
21A…第一の電流制限部(第一の制限部)
22…第二のトルク制限部(第二の制限部)
22A…第二の電流制限部(第二の制限部)
23…トルク制限値結合部(制限値結合部)
23A…電流制限値結合部(制限値結合部)
27…電力配分演算器(電力配分手段)
27a…電力可変機能部
28…車輪速推定手段
29…スリップ状態推定手段
30…アンチスキッド制御機能部
32…ブレーキロータ
33…摩擦部材
35…直動機構(摩擦部材操作手段)
43…電圧制限部(可変制限部)
DM…電動モータ装置
1 ... electric motor 2 ... control device 6 ... motor driver (drive circuit)
8 ... Motor output limiter (output limiting function part)
15: Rotational motion estimator (angular velocity estimation means)
19 ... Power calculation unit (power consumption estimation function unit)
20 ... variable limiting portion 21 ... first torque limiting portion (first limiting portion)
21A ... first current limiting unit (first limiting unit)
22 ... 2nd torque limiting section (second limiting section)
22A ... second current limiter (second limiter)
23 ... Torque limit value junction (limit value junction)
23A ... Current limit value junction (limit value junction)
27 Power distribution computing unit (power distribution means)
27a: Power variable function unit 28: Wheel speed estimation means 29: Slip state estimation means 30: Anti-skid control function unit 32: Brake rotor 33: Friction member 35: Linear movement mechanism (friction member operation means)
43 ... Voltage limiter (variable limiter)
DM: Electric motor device

Claims (9)

  1.  電動モータと、この電動モータを制御する制御装置とを備えた電動モータ装置であって、
     前記制御装置は、
     前記電動モータの電流および電圧を推定し、この推定した電流および電圧から前記電動モータの消費電力を推定する消費電力推定機能部と、
     前記電動モータの角速度を推定する角速度推定手段と、
     前記制御装置に与えられたモータ動作指令から生成されるトルク指令値、電流指令値、電圧指令値の少なくともいずれかの指令値が、前記角速度推定手段で推定される角速度を含む定められた条件に基づき、閾値を超過しないように制限して制限済値として出力する出力制限機能部と、
     この出力制限機能部から与えられた制限済値に基づいて、前記電動モータを駆動させる駆動回路と、を備え、
     前記出力制限機能部は、前記消費電力推定機能部で推定される消費電力が定められた値より大きいとき、前記指令値が定められた値まで小さくなるよう前記制限済値を調整する可変制限部を有する電動モータ装置。
    An electric motor apparatus comprising an electric motor and a control device for controlling the electric motor,
    The controller is
    A power consumption estimation function unit that estimates current and voltage of the electric motor and estimates power consumption of the electric motor from the estimated current and voltage;
    Angular velocity estimation means for estimating the angular velocity of the electric motor;
    At least one of a torque command value, a current command value, and a voltage command value generated from the motor operation command given to the control device is a determined condition including the angular velocity estimated by the angular velocity estimating means. Based on the output limit function unit which limits the threshold value so as not to exceed the threshold value and outputs it as a restricted value,
    A drive circuit for driving the electric motor based on the limited value given from the output limitation function unit;
    The output limiting function unit is a variable limiting unit that adjusts the restricted value so that the command value decreases to a defined value when the power consumption estimated by the power consumption estimating function is larger than the defined value. An electric motor device having
  2.  請求項1に記載の電動モータ装置において、前記出力制限機能部の可変制限部は、前記消費電力推定機能部で推定される消費電力が定められた値より小さいとき、前記指令値が定められた値まで大きくなるよう前記制限済値を調整する電動モータ装置。 The electric motor apparatus according to claim 1, wherein the variable limiting unit of the output limiting function unit determines the command value when the power consumption estimated by the power consumption estimating function unit is smaller than a predetermined value. An electric motor arrangement for adjusting the restricted value to increase to a value.
  3.  請求項1または請求項2に記載の電動モータ装置において、前記出力制限機能部の可変制限部は、第一の制限部と、消費電力が前記第一の制限部よりも相対的に小さくなる第二の制限部と、前記第一および第二の制限部による出力制限値を定められた比率によって結合した値を前記出力制限機能部から最終的に出力する制限済値として導出する制限値結合部とを有し、この制限値結合部は、前記定められた比率を、前記消費電力推定機能部で推定される消費電力に基づいて調整する電動モータ装置。 The electric motor apparatus according to claim 1 or 2, wherein the variable limiting unit of the output limiting function unit includes a first limiting unit, and power consumption becomes smaller than that of the first limiting unit. A limit value combining unit that derives a value obtained by combining the output limiting values by the second limiting unit and the first and second limiting units according to a defined ratio as the final output value from the output limiting function unit And the limit value coupling unit adjusts the determined ratio based on the power consumption estimated by the power consumption estimation function unit.
  4.  請求項1または請求項2に記載の電動モータ装置において、前記出力制限機能部の可変制限部は、定められた最大消費電力と、前記消費電力推定機能部で推定される電流とから、最大消費電力となり得る電圧値を導出し、前記電動モータに印加する電圧を、導出された前記電圧値に制限する電動モータ装置。 The electric motor apparatus according to claim 1 or 2, wherein the variable limiting unit of the output limiting function unit is a maximum consumption from the determined maximum power consumption and the current estimated by the power consumption estimating unit. The electric motor apparatus which derives | leads-out the voltage value which may become electric power, and restrict | limits the voltage applied to the said electric motor to the derived said voltage value.
  5.  請求項1または請求項2に記載の電動モータ装置において、前記出力制限機能部の可変制限部は、定められた最大消費電力に対し、前記消費電力推定機能部で推定される消費電力の超過分にゲインを介した値を、前記指令値を減少させる調整量として、前記トルク指令値、電流指令値、電圧指令値のいずれかに作用させる電動モータ装置。 The electric motor apparatus according to claim 1 or 2, wherein the variable limiting unit of the output limiting function unit is configured to calculate an excess of the power consumption estimated by the power consumption estimating function unit with respect to the determined maximum power consumption. An electric motor apparatus, wherein a value obtained through a gain is applied to any one of the torque command value, the current command value, and the voltage command value as an adjustment amount for reducing the command value.
  6.  請求項1ないし請求項5のいずれか1項に記載の電動モータ装置を複数備えた電動モータシステムであって、
     前記複数の電動モータ装置における推定消費電力の総和が、定められたシステム最大消費電力を超過しないよう各電動モータ装置の最大消費電力を定める電力配分手段を備える電動モータシステム。
    An electric motor system comprising a plurality of electric motor devices according to any one of claims 1 to 5, comprising:
    An electric motor system comprising power distribution means for determining the maximum power consumption of each electric motor device so that the sum of estimated power consumption in the plurality of electric motor devices does not exceed a predetermined system maximum power consumption.
  7.  請求項6に記載の電動モータシステムにおいて、前記電力配分手段は、前記電動モータ装置における最大消費電力と推定消費電力との比較に基づいて、前記電動モータ装置の電力消費の度合である電力消費度合を判断する機能を有し、
     前記複数の電動モータ装置のうち、前記電力消費度合が基準値よりも高い電動モータ装置と、前記電力消費度合が基準値よりも低い電動モータ装置が混在している場合に、前記電力配分手段は、前記電力消費度合が高い電動モータ装置の最大消費電力を定められた値よりも大きく設定し、前記電力消費度合が低い電動モータ装置の最大消費電力を定められた値よりも小さく設定する電動モータシステム。
    The electric motor system according to claim 6, wherein the power distribution unit is a degree of power consumption that is a degree of power consumption of the electric motor device based on comparison of maximum power consumption and estimated power consumption in the electric motor device. Have the ability to
    When the electric motor apparatus having the power consumption degree higher than the reference value and the electric motor apparatus having the power consumption degree lower than the reference value among the plurality of electric motor apparatuses are mixed, the power distribution unit An electric motor setting the maximum power consumption of the electric motor device having a high power consumption degree larger than a predetermined value and setting the maximum power consumption of the electric motor device having a low power consumption degree smaller than a predetermined value; system.
  8.  請求項1ないし請求項5のいずれか1項に記載の電動モータ装置と、ブレーキロータと、このブレーキロータと接触して制動力を発生させる摩擦部材と、この摩擦部材を前記電動モータによって操作可能とする摩擦部材操作手段と、を備えた電動ブレーキ装置において、
     前記電動ブレーキ装置の最大消費電力を可変とする電力可変機能部を備え、この電力可変機能部から与えられた最大消費電力に基づいて、前記出力制限機能部における制限済値が調整される電動ブレーキ装置。
    The electric motor device according to any one of claims 1 to 5, a brake rotor, a friction member generating a braking force by contacting the brake rotor, and the friction member being operable by the electric motor And a friction member operating means for
    An electric brake provided with a power variable function unit that makes the maximum power consumption of the electric brake device variable, and based on the maximum power consumption given from the power variable function unit, the restricted value in the output limiting function unit is adjusted apparatus.
  9.  請求項8に記載の電動ブレーキ装置を複数備えた電動ブレーキシステムであって、
     前記複数の電動ブレーキ装置における推定消費電力の総和が、定められた電動ブレーキシステム最大消費電力を超過しないよう各電動ブレーキ装置の最大消費電力を定める電力配分手段と、
     前記複数の電動ブレーキ装置をそれぞれ搭載する複数の車輪の回転速度である車輪速を推定する車輪速推定手段と、
     この車輪速推定手段で推定される複数の車輪速を含む情報を用いて、個別の車輪のスリップ状態を推定するスリップ状態推定手段と、
     このスリップ状態推定手段で推定されるスリップ状態が閾値を超過したとき、スリップ状態が抑制されるよう前記電動ブレーキ装置のブレーキ力を調整するアンチスキッド制御を行うアンチスキッド制御機能部と、を備え、
     前記複数の電動ブレーキ装置のうち、アンチスキッド制御を行っている電動ブレーキ装置と、アンチスキッド制御を行っていない電動ブレーキ装置が混在している場合に、前記電力配分手段は、アンチスキッド制御を行っている電動ブレーキ装置の最大消費電力を定められた値よりも大きく設定し、アンチスキッド制御を行っていない電動ブレーキ装置の最大消費電力を定められた値よりも小さく設定する電動ブレーキシステム。
    An electric brake system comprising a plurality of electric brake devices according to claim 8, comprising:
    Power distribution means for determining the maximum power consumption of each of the electric brake devices such that the sum of the estimated power consumption of the plurality of electric brake devices does not exceed a predetermined maximum power consumption of the electric brake system;
    A wheel speed estimation means for estimating a wheel speed which is a rotational speed of a plurality of wheels on which each of the plurality of electric brake devices is mounted;
    Slip state estimation means for estimating slip states of individual wheels using information including a plurality of wheel speeds estimated by the wheel speed estimation means;
    The anti-skid control function unit performs anti-skid control to adjust the braking force of the electric brake device so that the slip state is suppressed when the slip state estimated by the slip state estimation means exceeds a threshold.
    The electric power distribution means performs antiskid control when the electric brake device performing antiskid control and the electric brake device not performing antiskid control are mixed among the plurality of electric brake devices. An electric brake system in which the maximum power consumption of the electric brake device is set larger than a predetermined value, and the maximum power consumption of the electric brake device not performing antiskid control is smaller than the predetermined value.
PCT/JP2018/047629 2017-12-27 2018-12-25 Electric motor device and electric brake device in which same is used WO2019131659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-251099 2017-12-27
JP2017251099A JP7089868B2 (en) 2017-12-27 2017-12-27 Electric motor device and electric brake device

Publications (1)

Publication Number Publication Date
WO2019131659A1 true WO2019131659A1 (en) 2019-07-04

Family

ID=67063768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047629 WO2019131659A1 (en) 2017-12-27 2018-12-25 Electric motor device and electric brake device in which same is used

Country Status (2)

Country Link
JP (1) JP7089868B2 (en)
WO (1) WO2019131659A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268958A1 (en) 2021-06-23 2022-12-29 Hitachi Astemo France Method for adjusting the clamping force exerted by an electromechanical brake

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112406839B (en) * 2019-08-23 2022-02-18 上海汽车集团股份有限公司 Safety control method and device for iBooster braking system
KR102496766B1 (en) * 2020-12-16 2023-02-07 현대모비스 주식회사 Apparatus for estimating angular velocity of dc motor in motor driven power steering system and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051201A (en) * 2012-09-07 2014-03-20 Advics Co Ltd Brake control device of vehicle
JP2017039454A (en) * 2015-08-21 2017-02-23 Ntn株式会社 Electric brake device
JP2017052420A (en) * 2015-09-10 2017-03-16 Ntn株式会社 Electric brake device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972377B2 (en) * 2006-10-23 2012-07-11 日立オートモティブシステムズ株式会社 Electric brake control device and electric brake device
JP6058486B2 (en) * 2013-07-04 2017-01-11 本田技研工業株式会社 Vehicle braking system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051201A (en) * 2012-09-07 2014-03-20 Advics Co Ltd Brake control device of vehicle
JP2017039454A (en) * 2015-08-21 2017-02-23 Ntn株式会社 Electric brake device
JP2017052420A (en) * 2015-09-10 2017-03-16 Ntn株式会社 Electric brake device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268958A1 (en) 2021-06-23 2022-12-29 Hitachi Astemo France Method for adjusting the clamping force exerted by an electromechanical brake
FR3124468A1 (en) * 2021-06-23 2022-12-30 Hitachi Astemo France Method for adjusting the clamping force exerted by an electromechanical brake

Also Published As

Publication number Publication date
JP2019118197A (en) 2019-07-18
JP7089868B2 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
EP2681570B1 (en) Dc bus voltage control
JP4634321B2 (en) Control device for electric four-wheel drive vehicle
US10328803B2 (en) Control method and control device for electric vehicle
WO2019131659A1 (en) Electric motor device and electric brake device in which same is used
US10654455B2 (en) Electric brake device
WO2016190212A1 (en) Electrically powered brake device
WO2017077936A1 (en) Slip control device
US10377355B2 (en) Electric brake device
US10756601B2 (en) Control method and control system of motor rotation speed
CN104773298A (en) Process and device for controlling an operating lever of a vehicle
JP6851542B2 (en) Permanent magnet synchronous motor control device, electric power steering device, and electric vehicle
US20200119680A1 (en) Flux observer-based control strategy for an induction motor
US11441626B2 (en) Electric linear actuator and electric brake device
US11001246B2 (en) Electric brake device
WO2019049971A1 (en) Electric actuator and electric motor device
JP7116551B2 (en) Electric brake device and electric brake system
JP3747858B2 (en) Inverter control method for vehicle and inverter controller
JP2019041503A (en) Motor-driven direct-acting actuator and motor-driven brake device
JPS59198801A (en) Chopper controller for electric railcar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894249

Country of ref document: EP

Kind code of ref document: A1