JP3126895B2 - Single-phase induction motor and refrigerator using the single-phase induction motor - Google Patents

Single-phase induction motor and refrigerator using the single-phase induction motor

Info

Publication number
JP3126895B2
JP3126895B2 JP07075178A JP7517895A JP3126895B2 JP 3126895 B2 JP3126895 B2 JP 3126895B2 JP 07075178 A JP07075178 A JP 07075178A JP 7517895 A JP7517895 A JP 7517895A JP 3126895 B2 JP3126895 B2 JP 3126895B2
Authority
JP
Japan
Prior art keywords
capacitor
compressor
relay
phase induction
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07075178A
Other languages
Japanese (ja)
Other versions
JPH08126363A (en
Inventor
修二 澤野
広繁 小西
邦彦 八木
進 川口
哲哉 望月
泰弘 吉野
威則 足達
信義 原川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP07075178A priority Critical patent/JP3126895B2/en
Priority to SG1995000714A priority patent/SG54971A1/en
Priority to GB9516541A priority patent/GB2292847B/en
Priority to CN95116930A priority patent/CN1038378C/en
Publication of JPH08126363A publication Critical patent/JPH08126363A/en
Priority to HK97101998A priority patent/HK1000503A1/en
Application granted granted Critical
Publication of JP3126895B2 publication Critical patent/JP3126895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • H02P1/445Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor by using additional capacitors switched at start up
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0653Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the mullion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、冷蔵庫等の圧縮機に
使用される単相誘導電動機の制御方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a single-phase induction motor used in a compressor such as a refrigerator.

【0002】[0002]

【従来の技術】図13は例えば特開昭64−29682
号公報に示された従来の空気調和機等に用いられる圧縮
機駆動装置の回路図である。図において、1は圧縮機
(電動機)、2は低負荷用コンデンサ、3は高負荷用コ
ンデンサ、4は低負荷用コンデンサ2と高負荷用コンデ
ンサ3を切り換えるスイッチ、5は起動リレーであり圧
縮機1の起動時のみ動作して接点5aを導通させるもの
である。
2. Description of the Related Art FIG.
FIG. 1 is a circuit diagram of a compressor driving device used for a conventional air conditioner or the like disclosed in Japanese Patent Application Publication No. H10-115,878. In the figure, 1 is a compressor (electric motor), 2 is a low-load capacitor, 3 is a high-load capacitor, 4 is a switch for switching between the low-load capacitor 2 and the high-load capacitor 3, and 5 is a starting relay, which is a compressor. The operation is performed only at the time of start-up of No. 1 to make the contact 5a conductive.

【0003】次に従来の圧縮機駆動装置の動作を図14
のトルクカーブ、コンデンサ端子電圧カーブを用いた説
明する。圧縮機1の始動時はコンデンサ端子電圧が比較
的低いため起動リレー5の接点5aが動作して、圧縮機
1の補コイルにコンデンサ2と3が並列に入るために始
動トルクが大きくなる(図14の起動コンデンサ使用時
トルクカーブ)。従って始動時の負荷が大きくても圧縮
機1は始動する。その後、圧縮機1の回転数が上がって
くると、コンデンサ端子電圧も上がり、接点5aが外
れ、運転用コンデンサのみになり定常運転をすることに
なる(図14の運転コンデンサ使用時トルクカーブ)。
この時、圧縮機1への負荷が軽い場合コンデンサ2を運
転コンデンサとして使い、始動時には起動用コンデンサ
としてコンデンサ3を使う。また負荷の重い場合はコン
デンサ3を運転用としてコンデンサ2を起動用として切
り換えスイッチ4で切り換えて使うことにより、始動ト
ルクの大きな、しかも運転効率の良い圧縮機駆動が可能
となる。
[0003] Next, the operation of the conventional compressor driving device is shown in FIG.
A description will be given using the torque curve and the capacitor terminal voltage curve. When the compressor 1 is started, the capacitor terminal voltage is relatively low, so that the contact 5a of the start relay 5 operates, and the starting torque increases because the capacitors 2 and 3 enter the auxiliary coil of the compressor 1 in parallel (FIG. 14 (torque curve when starting capacitor is used). Therefore, even if the load at the time of starting is large, the compressor 1 starts. Thereafter, when the rotation speed of the compressor 1 increases, the capacitor terminal voltage also increases, the contact 5a is disconnected, and only the operation capacitor is used, so that a steady operation is performed (the torque curve when the operation capacitor is used in FIG. 14).
At this time, when the load on the compressor 1 is light, the capacitor 2 is used as an operation capacitor, and the capacitor 3 is used as a startup capacitor at the time of starting. When the load is heavy, the condenser 3 is used for operation and the condenser 2 is used for start-up by using the changeover switch 4, so that the compressor can be driven with a large starting torque and with high operation efficiency.

【0004】[0004]

【発明が解決しようとする課題】従来の圧縮機駆動装置
は以上のように構成されているので、次のような問題点
があった。 (1)始動トルクと定常トルクの差が大きい場合、コン
デンサ2を運転用コンデンサとして、コンデンサ3を起
動用コンデンサとして使用するが、この場合にはコンデ
ンサ3の容量が大きくなりすぎ、高負荷時にコンデンサ
3を運転用コンデンサとして使用する容量が大きすぎて
効率が悪いという問題点があった。 (2)また、同様のケースでコンデンサ3の容量が大き
すぎると、容量の絶対値の誤差が大きくなり起動リレー
5を安定して動作させることが難しくなる。 (3)運転コンデンサ2と3を切り換えるため、切り換
えスイッチ4の接点には運転コンデンサへ充電する大電
流が流れると共にアークも発生し、接点寿命を難しく低
下させる。また接点強化を図ると高価になる。
Since the conventional compressor driving device is constructed as described above, it has the following problems. (1) When the difference between the starting torque and the steady torque is large, the capacitor 2 is used as an operating capacitor and the capacitor 3 is used as a starting capacitor. However, there is a problem that the capacity of the capacitor No. 3 as an operation capacitor is too large and the efficiency is low. (2) In the same case, if the capacity of the capacitor 3 is too large, an error in the absolute value of the capacity becomes large, and it becomes difficult to operate the starting relay 5 stably. (3) Since the operating capacitors 2 and 3 are switched, a large current for charging the operating capacitor flows through the contact of the changeover switch 4 and an arc is generated, which shortens the contact life. In addition, it is expensive to strengthen the contacts.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、コンデンサの容量切り換えのた
めの接点接続は必ず停止時に行う単相誘導電動機並びに
該単相誘導電動機を用いた冷蔵庫を得ることを目的とす
る。また、始動時には全てのコンデンサを必ず使用して
大きな始動トルクで始動し、かつ負荷の状態により最適
なコンデンサを使用できる単相誘導電動機並びに該単相
誘導電動機を用いた冷蔵庫を得ることを目的とする。さ
らに、失速等の異常時には、速やかに電源供給を断ち、
再び始動する場合には全てのコンデンサを使用して最大
の始動トルクを発生しうる単相誘導電動機並びに該単相
誘導電動機を用いた冷蔵庫を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. A single-phase induction motor and a refrigerator using the single-phase induction motor always perform contact connection for switching the capacity of a capacitor when the motor is stopped. The purpose is to obtain. Another object of the present invention is to obtain a single-phase induction motor that can start with a large starting torque by using all capacitors at the time of starting, and that can use an optimum capacitor depending on the load condition, and a refrigerator using the single-phase induction motor. I do. Furthermore, in the event of an abnormality such as a stall, the power supply is immediately cut off,
An object of the present invention is to provide a single-phase induction motor capable of generating a maximum starting torque by using all capacitors when starting up again, and a refrigerator using the single-phase induction motor.

【0006】[0006]

【課題を解決するための手段】請求項1の単相誘導電動
機は、主巻線と、この主巻線と電気角が異なる位置に設
けられた補助巻線と、この補助巻線に常時接続される常
時接続用運転用コンデンサと、運転負荷に応じて補助巻
線に接続される加算用運転用コンデンサと、この加算用
運転用コンデンサを開閉するリレーと、このリレーを電
動機への電源供給が断たれ、停止している状態で、電動
機起動開始と判定した時点で電源供給より先にオフから
オンにする閉成動作を行い、既に電源供給され通電され
た後でさらにオフからオンにする閉成動作を行わないよ
うにし加算用運転用コンデンサが補助巻線に接続され
後で電源を供給し起動・運転されるように制御を行う
制御部とを備えたものである。
According to a first aspect of the present invention, there is provided a single-phase induction motor comprising: a main winding; an auxiliary winding provided at a position different in electrical angle from the main winding; and a constant connection to the auxiliary winding. The operation capacitor for continuous connection, the addition operation capacitor connected to the auxiliary winding according to the operation load, the relay that opens and closes the addition operation capacitor, and the power supply to the motor In the state of being cut off and stopped , electric
Performs a closing operation when it is determined that the machine starts start from OFF to ON before the power supply is energized is already powered
A control unit that controls so that the closing operation of further turning on from on after turning on the power supply is performed after the addition operation capacitor is connected to the auxiliary winding and the power is supplied and started and operated. It is provided with.

【0007】請求項2の単相誘導電動機は、請求項1記
載の単相誘導電動機において、補助巻線に起動リレーを
介して接続されると共に、常時接続用運転用コンデンサ
及び加算用運転用コンデンサに並列に接続される始動用
コンデンサを備えたものである。
[0007] The single-phase induction motor according to the second aspect is the first aspect.
Starting relay on the auxiliary winding
Operation capacitor connected at all times
And for starting connected in parallel with the addition operation capacitor
It has a capacitor .

【0008】請求項3の単相誘導電動機は、請求項2記
載の単相誘導電動機において、加算用運転用コンデンサ
を開閉するリレーは、電動機の始動後負荷が軽くなった
場合に開放されることを特徴とする。
According to a third aspect of the present invention, in the single-phase induction motor according to the second aspect, the relay for opening and closing the adding operation capacitor is opened when the load of the motor is reduced after the motor is started. It is characterized by.

【0009】請求項4の単相誘導電動機は、請求項1記
載の単相誘導電動機において、常時接続用運転用コンデ
ンサとして常時補助巻線に接続された第1の運転用コン
デンサと、加算用運転用コンデンサとしてリレーを介し
て補助巻線に接続された第2の運転用コンデンサとを有
し、第2の運転用コンデンサは電動機が高負荷の場合の
加算用として使用することを特徴とする。
A single-phase induction motor according to a fourth aspect of the present invention is the single-phase induction motor according to the first aspect, wherein the operation motor for continuous connection is provided.
A second operating capacitor connected to the auxiliary winding via a relay as a summing operating capacitor, the second operating capacitor being connected to the auxiliary winding at all times as a sensor. The capacitor for use is used for addition when the motor has a high load.

【0010】請求項5の単相誘導電動機は、主巻線と、
この主巻線と電気角が異なる位置に設けられた補助巻線
と、この補助巻線に常時接続される常時接続用運転用コ
ンデンサと、運転負荷に応じて補助巻線に接続される加
算用運転用コンデンサと、この加算用運転用コンデンサ
を開閉するリレーと、電動機の電流を検出する電流検出
手段と、この電流検出手段が電動機へ電源が供給されて
いるにも拘わらず電動機の失速を検出すると、電動機へ
の電源供給を断つと共にリレーを開放し、次の始動時に
電動機起動開始と判定した時点で電源供給より先に
ずこのリレーをオフからオンにする閉成動作を行い、加
算用運転用コンデンサが補助巻線に接続された後で電源
を供給し起動・運転されるように制御を行う制御部と、
を備えたものである。
According to a fifth aspect of the present invention, there is provided a single-phase induction motor comprising: a main winding;
An auxiliary winding provided at a position different in electrical angle from the main winding, an operation capacitor for continuous connection always connected to the auxiliary winding, and an addition capacitor connected to the auxiliary winding according to the operation load. An operation capacitor, a relay for opening and closing the addition operation capacitor, current detection means for detecting the current of the motor, and the current detection means detecting the motor stall despite power being supplied to the motor. Then, the power supply to the motor is cut off and the relay is opened, and at the time of the next start, when it is determined that the motor is to be started , a closing operation of turning on the relay from off prior to the power supply is performed before the power supply. Power supply after the addition operation capacitor is connected to the auxiliary winding.
And a control unit for controlling so as to supply and start up and operate,
It is provided with.

【0011】請求項6の冷蔵庫は、請求項1記載の単相
誘導電動機を使用した圧縮機駆動装置により運転され、
始動する場合は全ての運転用コンデンサが接続されるこ
とを特徴とする冷蔵庫。
A refrigerator according to claim 6 is operated by a compressor driving device using the single-phase induction motor according to claim 1,
Refrigerator characterized in that all operating capacitors are connected when starting.

【0012】請求項7の冷蔵庫は、請求項3記載の単相
誘導電動機を使用した圧縮機駆動装置により運転され、
圧縮機駆動装置の負荷が軽くなった場合に加算用運転用
コンデンサを開閉するリレーが開放されることを特徴と
する。
A refrigerator according to claim 7 is operated by a compressor drive device using a single-phase induction motor according to claim 3,
When the load on the compressor driving device is reduced, a relay for opening and closing the addition operation capacitor is opened.

【0013】請求項8の冷蔵庫は、請求項3記載の単相
誘導電動機を使用した圧縮機駆動装置により運転され、
庫内または蒸発器の温度が一定温度以下になった場合に
加算用運転用コンデンサを開閉するリレーが開放される
ことを特徴とする。
The refrigerator according to claim 8 is operated by a compressor drive device using the single-phase induction motor according to claim 3,
When the temperature in the refrigerator or evaporator drops below a certain temperature
The relay for opening and closing the addition operation capacitor is opened.

【0014】請求項9の冷蔵庫は、請求項3記載の単相
誘導電動機を使用した圧縮機駆動装置により運転され、
除霜運転後の加算用運転用コンデンサを開閉するリレー
の始動から開放するまでの時間は、通常運転の場合より
も長くしたことを特徴とする。
A refrigerator according to a ninth aspect is operated by a compressor driving device using a single-phase induction motor according to the third aspect,
The time from the start of the relay for opening and closing the addition operation capacitor after the defrosting operation until the relay is opened is set to be longer than that in the normal operation.

【0015】請求項10の冷蔵庫は、請求項5記載の単
相誘導電動機を使用した圧縮機駆動装置により運転さ
れ、電流検出手段の異常を検出する手段を備え、電流検
出手段に異常が有る場合は圧縮機の失速判定を行わない
ことを特徴とする。
According to a tenth aspect of the present invention, there is provided a refrigerator driven by a compressor driving device using a single-phase induction motor according to the fifth aspect, comprising means for detecting an abnormality of the current detecting means. Is characterized in that the stall determination of the compressor is not performed.

【0016】請求項11の冷蔵庫は、請求項5記載の単
相誘導電動機を使用した圧縮機駆動装置により運転さ
れ、圧縮機が連続して失速する場合は、その都度加算用
運転用コンデンサを開閉するリレーの始動から開放まで
の時間を段階的に長く設定する手段を備えたものであ
る。
The refrigerator according to the eleventh aspect is operated by the compressor driving device using the single-phase induction motor according to the fifth aspect. When the compressor stalls continuously, the addition operation is performed each time. Means for setting the time from starting to opening of the relay for opening and closing the capacitor for stepwise to be gradually increased.

【0017】[0017]

【作用】請求項1の単相誘導電動機は、運転用コンデン
サを開閉するリレーを電動機への電源供給が断たれ、停
止している場合にのみ閉成する制御を行う。
According to the first aspect of the present invention, the single-phase induction motor controls the relay that opens and closes the operation capacitor only when the power supply to the motor is cut off and stopped.

【0018】請求項2の単相誘導電動機は、運転用コン
デンサに並列に接続された運転用コンデンサを開閉する
リレーを電動機への電源供給が断たれ、停止している場
合にのみ閉成する制御を行う。
According to a second aspect of the present invention, there is provided a single-phase induction motor in which a relay for opening and closing an operation capacitor connected in parallel with the operation capacitor is closed only when power supply to the motor is cut off and stopped. I do.

【0019】請求項3の単相誘導電動機は、運転用コン
デンサを開閉するリレーを電動機の始動後負荷が軽くな
った場合に開放する。
According to a third aspect of the present invention, the relay for opening and closing the operating capacitor is opened when the load becomes light after the motor is started.

【0020】請求項4の単相誘導電動機は、第2の運転
用コンデンサは電動機が高負荷の場合の加算用として使
用される。
In the single-phase induction motor according to the present invention, the second operating capacitor is used for addition when the motor has a high load.

【0021】請求項5の単相誘導電動機は、電流検出手
段が失速を検出すると、制御部は電動機への電源供給が
断つと共にリレーを開放する制御を行うと共に電動機が
停止中にリレーを閉成する。
In the single-phase induction motor according to the present invention, when the current detecting means detects a stall, the control section performs a control to cut off the power supply to the motor and to open the relay, and closes the relay while the motor is stopped. I do.

【0022】請求項6の冷蔵庫は、全ての運転用コンデ
ンサが接続された状態で圧縮機駆動装置が始動する。
In the refrigerator according to the sixth aspect, the compressor driving device is started in a state where all the operation condensers are connected.

【0023】請求項7の冷蔵庫は、運転用コンデンサを
開閉するリレーは圧縮機駆動装置の負荷が軽くなった場
合に開放される。
In the refrigerator of the present invention, the relay for opening and closing the operation condenser is opened when the load on the compressor driving device is reduced.

【0024】請求項8の冷蔵庫は、運転用コンデンサを
開閉するリレーは庫内または蒸発器の温度が一定温度以
下になった場合に開放される。
In the refrigerator according to the present invention, the relay for opening and closing the operation condenser is opened when the temperature of the evaporator becomes lower than a predetermined temperature in the refrigerator or the evaporator.

【0025】請求項9の冷蔵庫は、除霜運転後の運転用
コンデンサを開閉するリレーの始動から開放するまでの
時間は、通常運転の場合よりも長い。
In the refrigerator according to the ninth aspect, the time from the start of the relay for opening and closing the operation capacitor after the defrosting operation to the opening thereof is longer than that in the normal operation.

【0026】請求項10の冷蔵庫は、電流検出手段に異
常が有る場合は圧縮機の失速判定を行わない。
In the refrigerator according to the present invention, the stall determination of the compressor is not performed when the current detecting means has an abnormality.

【0027】請求項11の冷蔵庫は、圧縮機が連続して
失速する場合は、その都度運転用コンデンサを開閉する
リレーの始動から開放までの時間を段階的に長く設定す
る。
In the refrigerator according to the eleventh aspect, each time the compressor stalls continuously, the time from starting to opening of the relay for opening and closing the operation capacitor is set to be gradually longer each time.

【0028】[0028]

【実施例】【Example】

実施例1. 実施例1の概要 この実施例1では、単相誘導電動機の起動方式として1
個の始動コンデンサと2個の運転コンデンサの計3個の
コンデンサを用いたケースを説明する。そしてこの3個
のコンデンサの使い方を制御部で制御し、圧縮機の始動
時はこの3個のコンデンサを全て使用して始動トルクを
大きくし、圧縮機の運転負荷に応じて2個の運転コンデ
ンサを運転効率が高くなるように使い分ける。また、運
転コンデンサを開閉する接点には、特に閉じる時に大電
流が流れたり、アークが発生するので必ず圧縮機の停止
中に閉じるようにし圧縮機に通電されている時には閉じ
ることがないようにする。このような単相誘導電動機を
用いた圧縮機駆動装置を冷蔵庫に応用した例で説明す
る。
Embodiment 1 FIG. Overview of Embodiment 1 In Embodiment 1, the starting method of the single-phase induction motor is 1
A case in which three starting capacitors and two operating capacitors are used will be described. The use of these three capacitors is controlled by a control unit. When the compressor is started, all three capacitors are used to increase the starting torque, and two operating capacitors are used according to the operating load of the compressor. Are used properly so as to increase the operation efficiency. In addition, the contact that opens and closes the operating capacitor, especially when the compressor is stopped, is closed when a large current flows or an arc is generated. . An example in which a compressor driving device using such a single-phase induction motor is applied to a refrigerator will be described.

【0029】以下、この発明の実施例1を図について説
明する。図1において、1は電動機を収納した圧縮機、
5は圧縮機1の補助巻線に始動用コンデンサ6を始動時
のみ接続させるPTCサーミスタ、7はPTCサーミス
タ5及び始動コンデンサ6の直列回路に並列に接続され
た定常時負荷に対応した第1の運転コンデンサ、8はこ
の第1の運転コンデンサ7にリレー4の接点4aを介し
て並列に接続された高負荷時に加算するため第2の運転
コンデンサ、10は圧縮機1の動作を制御する制御部、
11は冷却器(図示せず)の温度を検出する温度センサ
ー、12は圧縮機1に電源を接続するためのリレーで接
点12aをオン/オフさせる。13は第2の運転コンデ
ンサ8の電荷をリレー接点4aオフ時に放電させる放電
抵抗である。
The first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a compressor containing an electric motor,
Reference numeral 5 denotes a PTC thermistor for connecting the starting capacitor 6 to the auxiliary winding of the compressor 1 only at the time of starting, and reference numeral 7 denotes a first corresponding to a steady-state load connected in parallel to a series circuit of the PTC thermistor 5 and the starting capacitor 6. The operation condenser 8 is added to the first operation condenser 7 in parallel with the first operation condenser 7 via the contact 4a of the relay 4 at the time of a high load. The second operation condenser 10 is a control unit for controlling the operation of the compressor 1. ,
Reference numeral 11 denotes a temperature sensor for detecting a temperature of a cooler (not shown), and reference numeral 12 denotes a relay for connecting a power supply to the compressor 1 to turn on / off a contact 12a. Reference numeral 13 denotes a discharge resistor for discharging the electric charge of the second operation capacitor 8 when the relay contact 4a is turned off.

【0030】図2はこの発明の圧縮機駆動装置を冷蔵庫
に用いた場合の、冷蔵庫の断面と制御方法を示す概略図
であり、図において、100は冷蔵庫本体、101は本
体100の上部に設けられた冷凍室、102はこの冷凍
室101の下に連設された冷蔵室、103は羽根とモー
タとで構成される冷気循環用のファン、104は冷蔵室
102への冷気流入量を調節して適切な温度に制御する
手段である電動モータで駆動するダンパーサーモ、10
5は冷凍室101に設けられた冷却器(蒸発器)、10
6は冷却器105に付着した霜を溶かし取り除くための
ヒータである。圧縮機1は本体100の下部に配設され
ると共に、冷却器105の温度を検出する温度センサー
11が冷却器105近傍に取り付けられている。
FIG. 2 is a schematic view showing a cross section of the refrigerator and a control method when the compressor driving device of the present invention is used in a refrigerator. In FIG. Refrigeration room 102, a refrigeration room connected below the refrigeration room 101, 103 a fan for circulating cool air composed of blades and a motor, 104 adjusts the amount of cool air flowing into the refrigeration room 102. Damper thermometer driven by an electric motor which is means for controlling the temperature to an appropriate temperature
5 is a cooler (evaporator) provided in the freezing room 101, 10
Reference numeral 6 denotes a heater for melting and removing frost attached to the cooler 105. The compressor 1 is disposed below the main body 100, and a temperature sensor 11 for detecting the temperature of the cooler 105 is attached near the cooler 105.

【0031】図1の圧縮機駆動装置の動作を説明する前
に、先ず図2の冷蔵庫の動作を図3の概略フローチャー
トに従い説明する。冷凍室101、冷蔵室102の各室
の温度データと霜取用サーミスタ11の温度データを読
み込む(ステップ200)。次に、霜取中の判定を行い
霜取中であれば冷却器105の温度検出のサーミスタ1
1の温度により霜取終了を判定し継続又は終了を定め、
ステップ213へ進む(ステップ201〜204)。ま
た霜取中でない場合には、冷凍室101の庫内温度によ
り圧縮機1の運転停止を定める。このとき、冷凍室10
1の庫内温度が高い場合には、圧縮機1とファンモータ
103を運転させ10分間起動防止用タイマーTMをク
リアーして圧縮機運転Fに“1”をセットする(ステッ
プ205〜208)。冷凍室101の庫内温度が低い場
合には、圧縮機1とファンモータ103を停止し運転禁
止Fに“1”をセットする。次に10分間起動防止タイ
マー:TMのカウントを行い10分経過した場合には運
転禁止Fに“0”をセットする(ステップ209〜ステ
ップ212)。次に冷蔵室102の庫内温度により電動
モータ駆動タイプのダンパーサーモを動作させて適正な
温度に保つ(ステップ213〜ステップ215)。以上
のような制御を繰り返して冷蔵庫を制御している。
Before describing the operation of the compressor driving device of FIG. 1, the operation of the refrigerator of FIG. 2 will be described first with reference to the schematic flowchart of FIG. The temperature data of each of the freezing room 101 and the refrigerator room 102 and the temperature data of the defrosting thermistor 11 are read (step 200). Next, it is determined that the defrosting is being performed. If the defrosting is being performed, the thermistor 1 for detecting the temperature of the cooler 105 is used.
Determine the end of the defrost by the temperature of 1 and determine the continuation or end,
The process proceeds to step 213 (steps 201 to 204). When the defrosting is not being performed, the operation stop of the compressor 1 is determined based on the temperature in the freezer 101. At this time, the freezing room 10
If the internal temperature of the compressor 1 is high, the compressor 1 and the fan motor 103 are operated to clear the start-up prevention timer TM for 10 minutes, and the compressor operation F is set to "1" (steps 205 to 208). When the temperature in the freezer compartment 101 is low, the compressor 1 and the fan motor 103 are stopped and the operation inhibition F is set to "1". Next, a 10-minute start prevention timer: TM is counted, and when 10 minutes have elapsed, "0" is set to the operation inhibition F (steps 209 to 212). Next, the electric motor drive type damper thermostat is operated based on the temperature in the refrigerator compartment 102 to keep the temperature at an appropriate level (steps 213 to 215). The refrigerator is controlled by repeating the above control.

【0032】圧縮機駆動装置の動作を図4の概略フロー
チャートについて説明する。先ず、圧縮機1の起動時は
現在の圧縮機1の状態が圧縮機1運転フラグF=0の停
止中で、運転要求が有る場合には、運転可否の判定を行
い、運転可の場合にリレー接点4aを接続させ圧縮機1
の運転フラグF=1とし、1秒カウント後ステップ27
へ進む(ステップ21〜25)。また、ステップ21に
おいて、圧縮機1の運転フラグF=1の場合にはステッ
プ26へ進み運転要求がある場合はステップ27へ進み
リレー接点12aを接続して圧縮機1の電源を供給す
る。この時、圧縮機1の補助巻線には始動コンデンサ6
と運転コンデンサ7と8が並列の形で接続されるので始
動トルクは大きくなる。従って、始動時の負荷が大きく
ても圧縮機1は始動する。これと同時にPTCサーミス
タ5にも電流が流れキュリー温度に達した時点で抵抗が
無限大となり、始動コンデンサ6は補助巻線から電気的
に切離れる。次にステップ28において、圧縮機1の起
動からの時間をカウントして、霜取後であれば圧縮機1
の負荷が大のためT2より長いT1(2分)、その他は
T2(2秒)経過したならばリレー接点4aを開放し、
運転コンデンサ7のみで圧縮機1を動作させる(ステッ
プ29〜33)。
The operation of the compressor driving device will be described with reference to the schematic flowchart of FIG. First, when the compressor 1 is started, the current state of the compressor 1 is stopped with the compressor 1 operation flag F = 0, and if there is an operation request, it is determined whether or not operation is possible. Compressor 1 by connecting relay contact 4a
The operation flag F = 1, and after counting 1 second, step 27
Go to (Steps 21 to 25). In step 21, if the operation flag F of the compressor 1 is 1, the process proceeds to step 26, and if there is an operation request, the process proceeds to step 27 to connect the relay contact 12a to supply power to the compressor 1. At this time, the starting capacitor 6 is connected to the auxiliary winding of the compressor 1.
And the operating capacitors 7 and 8 are connected in parallel, so that the starting torque increases. Therefore, even if the load at the time of starting is large, the compressor 1 starts. At the same time, when the current also flows through the PTC thermistor 5 and reaches the Curie temperature, the resistance becomes infinite, and the starting capacitor 6 is electrically separated from the auxiliary winding. Next, in step 28, the time from the start of the compressor 1 is counted.
The relay contact 4a is opened when T1 (2 minutes) is longer than T2 due to the large load of T2.
The compressor 1 is operated only by the operation condenser 7 (steps 29 to 33).

【0033】そして、ステップ26において運転要求が
無い場合は、ステップ34においてリレー接点12aを
オフし、圧縮機1の運転フラグF=0とし、1秒カウン
ト(ステップ35)後、ステップ36においてリレー接
点4aをオフする。リレー接点4aをオフするのは、リ
レーコイル部4の無駄な電力消費を防止するためであ
る。また、リレー接点4aよりも先にリレー接点12a
をオフするのは、コンデンサ7と8が放電して電荷が無
くなってからリレー接点4aを開放する方が接点トラブ
ルの問題が少ないからである。しかし、図5の概略フロ
ーチャートに示すように、ステップ34と36の順序を
逆にして、先にリレー接点4aをオフしても構わない。
If there is no operation request in step 26, the relay contact 12a is turned off in step 34, the operation flag F of the compressor 1 is set to 0, and after counting 1 second (step 35), the relay contact 12 Turn off 4a. The reason why the relay contact 4a is turned off is to prevent useless power consumption of the relay coil unit 4. Further, the relay contact 12a is provided before the relay contact 4a.
Is turned off because the problem of the contact trouble is less when the relay contacts 4a are opened after the capacitors 7 and 8 are discharged and the electric charge is lost. However, as shown in the schematic flowchart of FIG. 5, the order of steps 34 and 36 may be reversed, and the relay contact 4a may be turned off first.

【0034】以上のように、この実施例によれば冷蔵庫
の運転状態により圧縮機1のトルクカーブを制御するこ
とにより、始動トルクが大きく、しかも運転効率の良い
圧縮機駆動が可能となる。また、リレー接点4aは圧縮
機1が停止している時にのみオンになり、圧縮機1が電
源に接続された状態、即ちコンデンサ7に電荷が帯電し
ている時にはオンしないので、リレー接点4aに大電流
が流れたり、アークが発生することがない。
As described above, according to this embodiment, by controlling the torque curve of the compressor 1 according to the operation state of the refrigerator, the compressor can be driven with a large starting torque and high operating efficiency. The relay contact 4a is turned on only when the compressor 1 is stopped, and is not turned on when the compressor 1 is connected to the power supply, that is, when the capacitor 7 is charged. No large current flows and no arcing occurs.

【0035】実施例2. 実施例2の概要 実施例1では基本動作について説明したが、実施例2は
圧縮機が何らかな理由で失速停止した場合に、速やかに
これを検出して圧縮機の電源を切ると共に再度運転要求
があって始動する場合には全てのコンデンサを接続して
最大の始動トルクで始動できるようにするものである。
Embodiment 2 FIG. Embodiment 2 Although the basic operation has been described in the first embodiment, in the second embodiment, when the compressor is stopped due to stall for some reason, this is detected immediately, the power of the compressor is turned off, and the operation request is made again. In case of starting, there is a function to connect all capacitors to start with the maximum starting torque.

【0036】以下、この発明の実施例2を図について説
明する。図6において、9は圧縮機1の流れる電流を検
出する電流検出器(以下CT)であり、14は圧縮機1
の保護装置である。その他は図1と全く同一の構成であ
り、その説明は省略する。
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. In FIG. 6, reference numeral 9 denotes a current detector (hereinafter referred to as CT) for detecting a current flowing through the compressor 1;
Protection device. The other configuration is exactly the same as that of FIG. 1 and the description thereof is omitted.

【0037】次に動作について説明する。CT9には圧
縮機1に流れる電流により図9に示すような出力電圧が
発生し、これを制御部10が圧縮機の状態を運転・失速
・停止・断線に分けて記憶する。図7の概略フローチャ
ートにおいて、ステップ37でリレー接点12aを閉と
した圧縮機1が運転中の圧縮機1の状態をCT9の検出
した電流から異常か否か判定し、異常ならばステップ3
8に行き、失速か否か判定し失速ならば、リレー接点1
2aをオフし圧縮機1の運転フラグF=0とし、1秒カ
ウント後、リレー接点4aをオフする(ステップ34〜
36)。ステップ38で失速でない場合は、リレー接点
12aは閉じているので圧縮機1を含めた回路のどこか
が断線していることになりステップ39で断線フラグF
=1として、その後ステップ34〜36に行き圧縮機1
への電源の供給を断つ。
Next, the operation will be described. In the CT 9, an output voltage as shown in FIG. 9 is generated by the current flowing through the compressor 1, and the control unit 10 stores the state of the compressor in operation / stall / stop / disconnection. In the schematic flowchart of FIG. 7, it is determined whether or not the state of the compressor 1 during operation of the compressor 1 in which the relay contact 12a is closed in step 37 is abnormal based on the current detected by CT9.
8 and determine if it is a stall.
2a is turned off, the operation flag F of the compressor 1 is set to 0, and after counting 1 second, the relay contact 4a is turned off (steps 34 to 34).
36). If it is not stall in step 38, the relay contact 12a is closed, so that somewhere in the circuit including the compressor 1 is disconnected, and the disconnection flag F is set in step 39.
= 1 and then go to steps 34 to 36 to
Power supply to the power supply.

【0038】図7では、ステップ34〜36でリレー接
点12aをオフしてから、その後リレー接点4aを実施
例1で述べた理由でオフするようにしたが、図8に示す
ようにこの順序は逆にしても構わない。
In FIG. 7, the relay contact 12a is turned off in steps 34 to 36, and then the relay contact 4a is turned off for the reason described in the first embodiment. However, as shown in FIG. You can reverse it.

【0039】以上のように、この実施例2によれば圧縮
機1が運転中に何らかな理由で失速した場合CT9が検
出した電流により制御部10が失速と判定して圧縮機1
への電源供給を断つと共にリレー接点4aを開とし、次
の始動時には制御部10の制御によりリレー接点4aを
再び閉として、全てのコンデンサが接続された状態で、
即ち始動トルクの大きい状態で始動できる。もしもこの
ような制御を行わない場合は、圧縮機1が失速すると保
護装置14が作動して圧縮機への電源の供給を断つが、
保護装置14が復帰した場合リレー接点4aは開の状態
のままなので、始動コンデンサ6と第1の運転コンデン
サ7が始動することになり、始動トルクが十分でないと
いう不具合が生ずる。
As described above, according to the second embodiment, when the compressor 1 is stalled for some reason during operation, the control unit 10 determines that the compressor 1 is stalled based on the current detected by the CT 9 and determines that the compressor 1 is stalled.
And the relay contact 4a is opened at the time of the next start, and the relay contact 4a is closed again under the control of the control unit 10 at the next start, and in a state where all the capacitors are connected,
That is, the engine can be started with a large starting torque. If such control is not performed, when the compressor 1 stalls, the protection device 14 operates to cut off the power supply to the compressor.
When the protection device 14 is restored, the relay contact 4a remains open, so that the starting capacitor 6 and the first operating capacitor 7 are started, and a problem that the starting torque is not sufficient occurs.

【0040】実施例3.また、上記実施例では、電流検
出器CT9を使用した場合について説明したがシャント
抵抗、振動センサなどを用いて圧縮機1の運転状態を検
出して制御部10で区分してもよく、上記実施例と同様
の効果を奏する。
Embodiment 3 FIG. In the above-described embodiment, the case where the current detector CT9 is used has been described. However, the operating state of the compressor 1 may be detected using a shunt resistor, a vibration sensor, and the like, and the compressor 1 may be classified by the control unit 10. The same effect as the example is achieved.

【0041】実施例4.また、上記実施例では、高負荷
時と低負荷時の運転コンデンサ7と8の合成は単に時間
で行うものについて説明したが、図10のフローチャー
トに示すように電源投入時は、時間判定と蒸発器105
の温度を温度センサー11により検出した温度がA温度
以下が1時間継続された場合にリレー接点4aを開放さ
せることにより(ステップ40〜45)、据付時でも上
記実施例と同様の効果を奏する。
Embodiment 4 FIG. Further, in the above-described embodiment, the description has been given of the case where the operation of the operation capacitors 7 and 8 at the time of high load and at the time of low load are simply performed by time. However, as shown in the flowchart of FIG. Vessel 105
By opening the relay contact 4a when the temperature detected by the temperature sensor 11 is equal to or lower than the temperature A for one hour (steps 40 to 45), the same effect as in the above embodiment can be obtained even at the time of installation.

【0042】実施例5.電流検出器が故障した場合は、
圧縮機が失速していないにも拘らず、失速を判定して圧
縮機への電力の供給が断たれることを避けるため、電流
検出器の故障が検出された場合は、失速の判定を行わず
圧縮機の運転要求がなくなるまで、圧縮機等への電力の
供給を続けることにより冷蔵庫内を冷却する。
Embodiment 5 FIG. If the current detector fails,
Determining stall when a current detector failure is detected to determine that the compressor has not stalled and to avoid losing power to the compressor by determining stall. The refrigerator is cooled by continuing to supply power to the compressor and the like until there is no more operation request for the compressor.

【0043】以下、この発明の実施例5を図6の構成図
及び図11のフローチャートにより説明する。先ずステ
ップ50において、CT9の故障検出を常時行う。この
CT9の故障検出は電流が流れていないはずのオフ時に
制御部10がオン信号を受信した場合に故障とする。ス
テップ21で圧縮機1の運転フラグF=0の停止中なら
ば、ステップ22に進み運転要求がある場合は、ステッ
プ24でリレー接点4aをオン及び圧縮機1の運転フラ
グF=1とし、1秒経過後(ステップ25)リレー接点
12aを接続し圧縮機1へ電源を供給する(ステップ2
7)。ステップ21で圧縮機1の運転フラグF=1の運
転中ならばステップ26に進み運転要求がある場合は、
ステップ51に進みCT9が故障している場合は正常な
失速判定ができないため、圧縮機1の運転要求がなくな
るので圧縮機1及び庫内ファンへの電源の供給を続け
る。ステップ51で、CT9が故障していない場合は、
ステップ52で失速を検出してステップ53に進み失速
が検出されればリレー接点12aをオフ及び圧縮機1運
転フラグF=0とし、1秒カウント後リレー接点4aを
オフして圧縮機1への電源の供給を停止する(ステップ
34〜36)。ステップ51でCT9の故障を検出した
場合は、故障表示を行うようにしても良く、実際に圧縮
機1が失速した後に圧縮機1への電源供給が続いていた
場合にも、それが圧縮機1の異常ではなく、CT9の異
常であることがわかる。
Hereinafter, a fifth embodiment of the present invention will be described with reference to the block diagram of FIG. 6 and the flowchart of FIG. First, at step 50, the CT 9 is always detected for failure. In the failure detection of the CT 9, when the control unit 10 receives an ON signal at the time of OFF where no current should flow, it is determined as a failure. If it is determined in step 21 that the operation flag F of the compressor 1 is stopped, the process proceeds to step 22, and if there is an operation request, the relay contact 4a is turned on and the operation flag F of the compressor 1 is set to 1 in step 24, and 1 After a lapse of seconds (step 25), the relay contact 12a is connected to supply power to the compressor 1 (step 2).
7). If it is determined in step 21 that the compressor 1 is operating with the operation flag F = 1, the process proceeds to step 26, and if there is an operation request,
Proceeding to step 51, if the CT 9 is faulty, a normal stall determination cannot be made, and there is no longer any request for operation of the compressor 1, so supply of power to the compressor 1 and the internal fan is continued. In step 51, if CT9 has not failed,
At step 52, the stall is detected. At step 53, if the stall is detected, the relay contact 12a is turned off, the compressor 1 operation flag F is set to 0, and after counting for 1 second, the relay contact 4a is turned off and the compressor 1 is turned off. The supply of power is stopped (steps 34 to 36). If a failure of the CT 9 is detected in step 51, a failure display may be performed. Even if the power supply to the compressor 1 is continued after the compressor 1 has actually stalled, the failure is displayed. It can be seen that this is not CT1 but CT9.

【0044】この実施例によれば、電流検出部分の故障
を検出できるようにして、その故障が検出された場合は
失速の判定を行わず圧縮機1の運転要求がなくなるまで
圧縮機1等への電源の供給を続けて冷蔵庫内を冷却する
ことにより、電流検出器9の故障による冷蔵庫の運転停
止をなくすことができる。
According to this embodiment, the failure of the current detecting portion can be detected, and if the failure is detected, the stall is not determined and the compressor 1 or the like is operated until the operation request of the compressor 1 is eliminated. By continuing to supply the power supply and cooling the inside of the refrigerator, the operation stop of the refrigerator due to the failure of the current detector 9 can be eliminated.

【0045】実施例6.以下、この発明の実施例6を図
12のフローチャートにより説明する。ステップ21で
圧縮機1の運転フラグF=1の圧縮機1へ電源通電中
に、圧縮機1が失速した場合、一旦圧縮機1への通電を
停止し、連続失速回数1回とする(ステップ54)。1
0分後、通電を再開し再び失速した場合、圧縮機1への
通電を停止し連続失速回数2回となる(ステップ5
5)。このとき、高負荷時と判定する。よって、10分
後の次回圧縮機1起動時の高トルク運転時間を30分延
長する。さらに失速が続き、連続失速回数が増す毎に、
10分停止後の、圧縮機1起動時の高トルク運転時間は
最大2時間まで30分ずつ延長する(ステップ56)。
また、圧縮機1の運転が正常に終了した場合には連続失
速回数はリセットされ、次回圧縮機1起動時の高トルク
運転時間は通常に戻る(ステップ57,58)。
Embodiment 6 FIG. Hereinafter, a sixth embodiment of the present invention will be described with reference to the flowchart of FIG. If the compressor 1 is stalled while power is supplied to the compressor 1 with the operation flag F = 1 in Step 21, the power supply to the compressor 1 is temporarily stopped and the number of continuous stalls is set to once (Step 21). 54). 1
After 0 minutes, if the power supply is restarted and the motor stops again, the power supply to the compressor 1 is stopped and the number of continuous stalls becomes two (step 5).
5). At this time, it is determined that the load is high. Therefore, the high torque operation time at the time of starting the next compressor 1 after 10 minutes is extended by 30 minutes. As stalls continue and the number of consecutive stalls increases,
After the 10-minute stop, the high-torque operation time at the start of the compressor 1 is extended by 30 minutes up to a maximum of 2 hours (step 56).
When the operation of the compressor 1 ends normally, the number of continuous stalls is reset, and the high torque operation time at the next start of the compressor 1 returns to normal (steps 57 and 58).

【0046】この実施例によれば、連続失速回数が2回
以上の場合は、連続失速回数が増す毎に10分停止後の
圧縮機1起動時の高トルク運転時間を最大2時間まで3
0分づつ延長するので、圧縮機1が起動時に連続して失
速することを防ぐことができる。
According to this embodiment, when the number of continuous stalls is two or more, each time the number of continuous stalls is increased, the high torque operation time at the time of starting the compressor 1 after stopping for 10 minutes is reduced to 3 hours at the maximum.
Since the extension is performed every 0 minutes, it is possible to prevent the compressor 1 from continuously stalling at startup.

【0047】[0047]

【発明の効果】請求項1の単相誘導電動機は、主巻線
と、この主巻線と電気角が異なる位置に設けられた補助
巻線と、この補助巻線に常時接続される常時接続用運転
用コンデンサと、運転負荷に応じて補助巻線に接続され
る加算用運転用コンデンサと、この加算用運転用コンデ
ンサを開閉するリレーと、このリレーを電動機への電源
供給が断たれ、停止している状態で、電動機起動開始と
判定した時点で電源供給より先にオフからオンにする閉
成動作を行い、既に電源供給され通電された後でさらに
オフからオンにする閉成動作を行わないようにし加算
用運転用コンデンサが補助巻線に接続された後で電源を
供給し起動・運転されるように制御を行う制御部と、を
備えた構成にしたので、運転用コンデンサを開閉するリ
レーの接点に大電流が流れたり、アークが発生すること
がなく、かつ始動トルクが大きく運転効率の良い単相誘
導電動機が得られる。
According to the first aspect of the present invention, there is provided a single-phase induction motor having a main winding, an auxiliary winding provided at a position having an electrical angle different from that of the main winding, and a constant connection always connected to the auxiliary winding. Operation capacitor, an addition operation capacitor connected to the auxiliary winding according to the operation load, a relay that opens and closes the addition operation capacitor, and a power supply to the motor that cuts off this relay and stops While the motor is running ,
Performs a closing operation to turn from off before the power supply when the determined already Separate the closing operation to turn from further <br/> off after being supplied with power current, for summing After the operating capacitor is connected to the auxiliary winding ,
The control unit controls the power supply so that it can be started and operated.Therefore, a large current does not flow through the contacts of the relay that opens and closes the operation capacitor, no arc is generated, and the start-up is performed. A single-phase induction motor with large torque and good operation efficiency can be obtained.

【0048】請求項2の単相誘導電動機は、請求項1記
載の単相誘導電動機において、補助巻線に起動リレーを
介して接続されると共に、常時接続用運転用コンデンサ
及び加算用運転用コンデンサに並列に接続される始動用
コンデンサを備えた構成にしたので、運転用コンデンサ
を開閉するリレーの接点に大電流が流れたり、アークが
発生することがなく、かつ始動トルクがさらに大きく運
転効率の良い単相誘導電動機が得られる。
[0048] The single-phase induction motor according to claim 2 is characterized in that :
Starting relay on the auxiliary winding
Operation capacitor connected at all times
And for starting connected in parallel with the addition operation capacitor
With a configuration equipped with a capacitor , it is possible to obtain a single-phase induction motor that has a larger starting torque and higher operating efficiency without causing a large current to flow through the contacts of the relay that opens and closes the operating capacitor and without arcing. .

【0049】請求項3の単相誘導電動機は、請求項2記
載の単相誘導電動機において、加算用運転用コンデンサ
を開閉するリレーは、電動機の始動後負荷が軽くなった
場合に開放されるので、常に運転効率の良い単相誘導電
動機が得られる。
According to a third aspect of the present invention, in the single-phase induction motor according to the second aspect, the relay for opening and closing the addition operation capacitor is opened when the load becomes light after the motor is started. As a result, a single-phase induction motor with always high operating efficiency can be obtained.

【0050】請求項4の単相誘導電動機は、請求項1記
載の単相誘導電動機において、常時接続用運転用コンデ
ンサとして常時補助巻線に接続された第1の運転用コン
デンサと、加算用運転用コンデンサとしてリレーを介し
て補助巻線に接続された第2の運転用コンデンサとを有
し、第2の運転用コンデンサは電動機が高負荷の場合の
加算用として使用するので、高負荷、低負荷のいずれの
場合においても運転効率の良い単相誘導電動機が得られ
る。
A single-phase induction motor according to a fourth aspect of the present invention is the single-phase induction motor according to the first aspect, wherein the operation capacitor for continuous connection is provided.
A second operating capacitor connected to the auxiliary winding via a relay as a summing operating capacitor, the second operating capacitor being connected to the auxiliary winding at all times as a sensor. Since the capacitor for use is used for addition when the motor has a high load, a single-phase induction motor with good operation efficiency can be obtained regardless of whether the load is high or low.

【0051】請求項5の単相誘導電動機は、主巻線と、
この主巻線と電気角が異なる位置に設けられた補助巻線
と、この補助巻線に常時接続される常時接続用運転用コ
ンデンサと、運転負荷に応じて補助巻線に接続される加
算用運転用コンデンサと、この加算用運転用コンデンサ
を開閉するリレーと、電動機の電流を検出する電流検出
手段と、この電流検出手段が電動機へ電源が供給されて
いるにも拘わらず電動機の失速を検出すると、電動機へ
の電源供給を断つと共にリレーを開放し、次の始動時に
電動機起動開始と判定した時点で電源供給より先に
ずこのリレーをオフからオンにする閉成動作を行い、加
算用運転用コンデンサが補助巻線に接続された後で電源
を供給し起動・運転されるように制御を行う制御部と、
を備えた構成にしたので、失速後の再始動時においても
最大の始動トルクで始動できる。
According to a fifth aspect of the present invention, there is provided a single-phase induction motor comprising: a main winding;
An auxiliary winding provided at a position different in electrical angle from the main winding, an operation capacitor for continuous connection always connected to the auxiliary winding, and an addition capacitor connected to the auxiliary winding according to the operation load. An operation capacitor, a relay for opening and closing the addition operation capacitor, current detection means for detecting the current of the motor, and the current detection means detecting the motor stall despite power being supplied to the motor. Then, the power supply to the motor is cut off and the relay is opened, and at the time of the next start, when it is determined that the motor is to be started , a closing operation of turning on the relay from off prior to the power supply is performed before the power supply. Power supply after the addition operation capacitor is connected to the auxiliary winding.
And a control unit for controlling so as to supply and start up and operate,
With this configuration, it is possible to start with the maximum starting torque even when restarting after a stall.

【0052】請求項6の冷蔵庫は、請求項1記載の単相
誘導電動機を使用した圧縮機駆動装置により運転され、
始動する場合は全ての運転用コンデンサが接続されるの
で、最大の始動トルクで始動できる。
A refrigerator according to a sixth aspect is operated by a compressor driving device using the single-phase induction motor according to the first aspect,
When starting, all the operation capacitors are connected, so that starting can be performed with the maximum starting torque.

【0053】請求項7の冷蔵庫は、請求項3記載の単相
誘導電動機を使用した圧縮機駆動装置により運転され、
圧縮機駆動装置の負荷が軽くなった場合に加算用運転用
コンデンサを開閉するリレーが開放されるので、常に運
転効率の良い冷蔵庫が得られる。
The refrigerator according to claim 7 is operated by a compressor driving device using the single-phase induction motor according to claim 3,
When the load on the compressor driving device is reduced, the relay that opens and closes the addition operation capacitor is opened, so that a refrigerator with always high operation efficiency can be obtained.

【0054】請求項8の冷蔵庫は、請求項3記載の単相
誘導電動機を使用した圧縮機駆動装置により運転され、
庫内または蒸発器の温度が一定温度以下になった場合に
加算用運転用コンデンサを開閉するリレーが開放される
ので、常に運転効率の良い冷蔵庫が得られる。
The refrigerator according to claim 8 is operated by a compressor drive device using a single-phase induction motor according to claim 3,
When the temperature in the refrigerator or evaporator drops below a certain temperature
Since the relay that opens and closes the addition operation capacitor is opened, a refrigerator with always high operation efficiency can be obtained.

【0055】請求項9の冷蔵庫は、請求項3記載の単相
誘導電動機を使用した圧縮機駆動装置により運転され、
除霜運転後の加算用運転用コンデンサを開閉するリレー
の始動から開放するまでの時間は、通常運転の場合より
も長くしたので、常に運転効率の良い冷蔵庫が得られ
る。
A refrigerator according to a ninth aspect is operated by a compressor driving device using the single-phase induction motor according to the third aspect,
Since the time from the start of the relay for opening and closing the addition operation capacitor to the opening after the defrosting operation until the relay is opened is longer than in the case of the normal operation, a refrigerator with always high operation efficiency can be obtained.

【0056】請求項10の冷蔵庫は、請求項5記載の単
相誘導電動機を使用した圧縮機駆動装置により運転さ
れ、電流検出手段の異常を検出する手段を備え、電流検
出手段に異常が有る場合は圧縮機の失速判定を行わない
構成にしたので、電流検出手段故障時の無用な圧縮機へ
の電源停止を避けることができる。
A refrigerator according to a tenth aspect is operated by a compressor driving device using a single-phase induction motor according to the fifth aspect, and includes means for detecting an abnormality in the current detecting means. Is configured not to determine the stall of the compressor, so that it is possible to avoid unnecessary stoppage of the power supply to the compressor when the current detecting means fails.

【0057】請求項11の冷蔵庫は、請求項5記載の単
相誘導電動機を使用した圧縮機駆動装置により運転さ
れ、圧縮機が連続して失速する場合は、その都度加算用
運転用コンデンサを開閉するリレーの始動から開放まで
の時間を段階的に長く設定する手段を備えた構成にした
ので、圧縮機起動時の失速の繰返しを防ぐことができ
る。
The refrigerator according to the eleventh aspect is operated by the compressor driving device using the single-phase induction motor according to the fifth aspect. When the compressor stalls continuously, the addition operation is performed each time. Since the means for setting the time from start to release of the relay that opens and closes the condenser for use in a stepwise manner is provided, repetition of stall at the time of starting the compressor can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施例1による単相誘導電動機の
回路図である。
FIG. 1 is a circuit diagram of a single-phase induction motor according to Embodiment 1 of the present invention.

【図2】 この発明の実施例1による単相誘導電動機を
適用した冷蔵庫の縦断面図である。
FIG. 2 is a longitudinal sectional view of a refrigerator to which the single-phase induction motor according to the first embodiment of the present invention is applied.

【図3】 この発明の実施例1による冷蔵庫の制御を説
明するフローチャート図である。
FIG. 3 is a flowchart illustrating control of the refrigerator according to the first embodiment of the present invention.

【図4】 この発明の実施例1による冷蔵庫の制御を説
明するフローチャート図である。
FIG. 4 is a flowchart illustrating control of the refrigerator according to the first embodiment of the present invention.

【図5】 この発明の実施例1による冷蔵庫の制御を説
明するフローチャート図である。
FIG. 5 is a flowchart illustrating control of the refrigerator according to the first embodiment of the present invention.

【図6】 この発明の実施例2による単相誘導電動機の
回路図である。
FIG. 6 is a circuit diagram of a single-phase induction motor according to Embodiment 2 of the present invention.

【図7】 この発明の実施例2による冷蔵庫の制御を説
明するフローチャート図である。
FIG. 7 is a flowchart illustrating control of a refrigerator according to Embodiment 2 of the present invention.

【図8】 この発明の実施例2による冷蔵庫の制御を説
明するフローチャート図である。
FIG. 8 is a flowchart illustrating control of a refrigerator according to a second embodiment of the present invention.

【図9】 この発明の実施例2による電流検出器の出力
電圧を示す図である。
FIG. 9 is a diagram showing an output voltage of a current detector according to Embodiment 2 of the present invention.

【図10】 この発明の実施例2による冷蔵庫の制御を
説明するフローチャート図である。
FIG. 10 is a flowchart illustrating control of a refrigerator according to a second embodiment of the present invention.

【図11】 この発明の実施例5による冷蔵庫の制御を
説明するフローチャート図である。
FIG. 11 is a flowchart illustrating control of a refrigerator according to Embodiment 5 of the present invention.

【図12】 この発明の実施例6による冷蔵庫の制御を
説明するフローチャート図である。
FIG. 12 is a flowchart illustrating control of a refrigerator according to Embodiment 6 of the present invention.

【図13】 従来の圧縮機駆動装置の回路図である。FIG. 13 is a circuit diagram of a conventional compressor driving device.

【図14】 従来の単相誘導電動機の特性を示す図であ
る。
FIG. 14 is a diagram showing characteristics of a conventional single-phase induction motor.

【符号の説明】[Explanation of symbols]

1 圧縮機(電動機)、4 リレー、4a 接点、5
PTCサーミスタ、6始動用コンデンサ、7 第1の運
転用コンデンサ、8 第2の運転用コンデンサ、9 電
流検出器、10 制御部、12a 接点。
1 compressor (motor), 4 relays, 4a contacts, 5
PTC thermistor, 6 starting capacitor, 7 first operating capacitor, 8 second operating capacitor, 9 current detector, 10 control unit, 12a contact.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木 邦彦 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (72)発明者 川口 進 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (72)発明者 望月 哲哉 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (72)発明者 吉野 泰弘 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (72)発明者 足達 威則 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (72)発明者 原川 信義 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (56)参考文献 特開 昭52−54106(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kunihiko Yagi 3-18-1, Oka, Shizuoka-shi Mitsubishi Electric Corporation Shizuoka Works (72) Inventor Susumu Kawaguchi 3-181-1, Oka, Shizuoka-shi Mitsubishi Electric Corporation Inside Shizuoka Works (72) Inventor Tetsuya Mochizuki 3-18-1, Oka, Shizuoka-shi Mitsubishi Electric Corporation Inside Shizuoka Works (72) Inventor Yasuhiro Yoshino 3-181-1, Oka, Shizuoka-shi Mitsubishi Electric Corporation Inside Shizuoka Works (72) Inventor Takenori Adachi 3-181-1, Oka, Shizuoka-shi Mitsubishi Electric Corporation Shizuoka Works (72) Inventor Nobuyoshi Haragawa 3-181-1, Oka, Shizuoka-shi Mitsubishi Electric Shizuoka In the factory (56) References JP-A-52-54106 (JP, A)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主巻線と、この主巻線と電気角が異なる
位置に設けられた補助巻線と、この補助巻線に常時接続
される常時接続用運転用コンデンサと、運転負荷に応じ
て前記補助巻線に接続される加算用運転用コンデンサ
と、この加算用運転用コンデンサを開閉するリレーと、
このリレーを電動機への電源供給が断たれ、停止してい
状態で、電動機起動開始と判定した時点で電源供給よ
り先にオフからオンにする閉成動作を行い、既に電源供
給され通電された後でさらにオフからオンにする閉成動
作を行わないようにし、前記加算用運転用コンデンサが
前記補助巻線に接続された後で電源を供給し起動・運転
されるように制御を行う制御部とを備えたことを特徴と
する単相誘導電動機。
1. A main winding, an auxiliary winding provided at a position having an electrical angle different from that of the main winding, an operation capacitor for continuous connection always connected to the auxiliary winding, An addition operation capacitor connected to the auxiliary winding, and a relay that opens and closes the addition operation capacitor,
When the power supply to the motor is cut off and the motor is stopped , the power
Ri destination performs the closing operation to turn from off already is not performed closing operation to turn on the further off after being supplied with power conduction, the previous SL operation capacitor for adding said auxiliary winding And a control unit for supplying power after being connected to the control unit and performing control such that the motor is started and operated.
【請求項2】 前記補助巻線に起動リレーを介して接続
されると共に、前記常時接続用運転用コンデンサ及び前
記加算用運転用コンデンサに並列に接続された始動用コ
ンデンサを備えたことを特徴とする請求項1記載の単相
誘導電動機。
2. A starting capacitor connected to the auxiliary winding via a starting relay and having a starting capacitor connected in parallel to the constant-operation capacitor and the addition-operation capacitor. The single-phase induction motor according to claim 1.
【請求項3】 前記加算用運転用コンデンサを開閉する
リレーは、電動機の始動後負荷が軽くなった場合に開放
されることを特徴とする請求項2記載の単相誘導電動
機。
3. The single-phase induction motor according to claim 2, wherein the relay that opens and closes the addition operation capacitor is opened when the load is reduced after the start of the motor.
【請求項4】 前記常時接続用運転用コンデンサとして
常時前記補助巻線に接続された第1の運転用コンデンサ
と、加算用運転用コンデンサとしてリレーを介して前記
補助巻線に接続された第2の運転用コンデンサとを有
し、該第2の運転用コンデンサは電動機が高負荷の場合
の加算用として使用することを特徴とする請求項1記載
の単相誘導電動機。
4. A first operating capacitor which is constantly connected to the auxiliary winding as the always-connected operating capacitor, and a second operating capacitor which is connected to the auxiliary winding via a relay as an adding operating capacitor. The single-phase induction motor according to claim 1, further comprising: a second operation capacitor, wherein the second operation capacitor is used for addition when the motor has a high load.
【請求項5】 主巻線と、この主巻線と電気角が異なる
位置に設けられた補助巻線と、この補助巻線に常時接続
される常時接続用運転用コンデンサと、運転負荷に応じ
て前記補助巻線に接続される加算用運転用コンデンサ
と、この加算用運転用コンデンサを開閉するリレーと、
電動機の電流を検出する電流検出手段と、この電流検出
手段が電動機へ電源が供給されているにも拘わらず電動
機の失速を検出すると、前記電動機への電源供給を断つ
と共に前記リレーを開放し、次の始動時には電動機起動
開始と判定した時点で電源供給より先に先ずこのリレー
をオフからオンにする閉成動作を行い、前記加算用運転
用コンデンサが前記補助巻線に接続された後で電源を供
給し起動・運転されるように制御を行う制御部と、を備
えたことを特徴とする単相誘導電動機。
5. A main winding, an auxiliary winding provided at a position having an electrical angle different from that of the main winding, an operation capacitor for continuous connection always connected to the auxiliary winding, An addition operation capacitor connected to the auxiliary winding, and a relay that opens and closes the addition operation capacitor,
Current detection means for detecting the current of the motor, and when the current detection means detects the stall of the motor despite the power being supplied to the motor, cuts off the power supply to the motor and opens the relay, Motor starts at next start
Start a first earlier than the power supply at the time of the determination performed closing operation to turn on the relay from OFF later subjected power the adding operation capacitor is connected to the auxiliary winding
A single-phase induction motor, comprising: a control unit that controls so as to be supplied and started / operated.
【請求項6】 請求項1記載の単相誘導電動機を使用し
た圧縮機駆動装置により運転され、始動する場合は全て
の運転用コンデンサが接続されることを特徴とする冷蔵
庫。
6. A refrigerator driven by a compressor drive device using a single-phase induction motor according to claim 1, wherein all the operation capacitors are connected when starting.
【請求項7】 請求項3記載の単相誘導電動機を使用し
た圧縮機駆動装置により運転され、該圧縮機駆動装置の
負荷が軽くなった場合に加算用運転用コンデンサを開閉
するリレーが開放されることを特徴とする冷蔵庫。
7. A relay that is operated by a compressor drive device using the single-phase induction motor according to claim 3 and that opens and closes an addition operation capacitor when the load on the compressor drive device is reduced. Refrigerator.
【請求項8】 請求項3記載の単相誘導電動機を使用し
た圧縮機駆動装置により運転され、庫内または蒸発器の
温度が一定温度以下になった場合に加算用運転用コンデ
ンサを開閉するリレーが開放されることを特徴とする冷
蔵庫。
8. A relay which is operated by a compressor drive device using a single-phase induction motor according to claim 3 and opens and closes an addition operation capacitor when the temperature of the interior or the evaporator becomes lower than a certain temperature. A refrigerator characterized by being opened.
【請求項9】 請求項3記載の単相誘導電動機を使用し
た圧縮機駆動装置により運転され、除霜運転後の運転用
加算用コンデンサを開閉するリレーの始動から開放する
までの時間は、通常運転の場合よりも長くしたことを特
徴とする冷蔵庫。
9. A time period from the start of the relay for opening and closing the operation addition capacitor after the defrosting operation to the opening of the relay, which is operated by the compressor driving device using the single-phase induction motor according to claim 3, is usually equal to A refrigerator characterized by being longer than in operation.
【請求項10】 請求項5記載の単相誘導電動機を使用
した圧縮機駆動装置により運転され、電流検出手段の異
常を検出する手段を備え、該電流検出手段に異常が有る
場合は圧縮機の失速判定を行わないことを特徴とする冷
蔵庫。
10. A compressor driven by a compressor using the single-phase induction motor according to claim 5, further comprising means for detecting an abnormality of the current detecting means. A refrigerator characterized by not performing stall determination.
【請求項11】 請求項5記載の単相誘導電動機を使用
した圧縮機駆動装置により運転され、圧縮機が連続して
失速する場合は、その都度運転用コン加算用デンサを開
閉するリレーの始動から開放までの時間を段階的に長く
設定する手段を備えたことを特徴とする冷蔵庫。
11. A relay that is operated by the compressor drive device using the single-phase induction motor according to claim 5 and that opens and closes the operation capacitor for each time of the compressor whenever the compressor stalls continuously. A refrigerator comprising means for setting the time from opening to opening gradually longer.
JP07075178A 1994-08-31 1995-03-31 Single-phase induction motor and refrigerator using the single-phase induction motor Expired - Fee Related JP3126895B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP07075178A JP3126895B2 (en) 1994-08-31 1995-03-31 Single-phase induction motor and refrigerator using the single-phase induction motor
SG1995000714A SG54971A1 (en) 1994-08-31 1995-06-22 Single-phase induction motor and refrigerator using the single-phase induction motor
GB9516541A GB2292847B (en) 1994-08-31 1995-08-11 Single-phase induction motor and refrigerator using the single-phase induction motor
CN95116930A CN1038378C (en) 1994-08-31 1995-08-31 Single-phase induction motor and refrigerator using single-phase induction motor
HK97101998A HK1000503A1 (en) 1994-08-31 1997-10-21 Single-phase induction motor and refrigerator using the single-phase induction motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-207105 1994-08-31
JP20710594 1994-08-31
JP07075178A JP3126895B2 (en) 1994-08-31 1995-03-31 Single-phase induction motor and refrigerator using the single-phase induction motor

Publications (2)

Publication Number Publication Date
JPH08126363A JPH08126363A (en) 1996-05-17
JP3126895B2 true JP3126895B2 (en) 2001-01-22

Family

ID=26416329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07075178A Expired - Fee Related JP3126895B2 (en) 1994-08-31 1995-03-31 Single-phase induction motor and refrigerator using the single-phase induction motor

Country Status (5)

Country Link
JP (1) JP3126895B2 (en)
CN (1) CN1038378C (en)
GB (1) GB2292847B (en)
HK (1) HK1000503A1 (en)
SG (1) SG54971A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818186A (en) * 1996-04-03 1998-10-06 Hewlett-Packard Company Multiple impact motor drive for stapling
US6318966B1 (en) 1999-04-06 2001-11-20 York International Corporation Method and system for controlling a compressor
MY125213A (en) * 1999-11-12 2006-07-31 Lg Electronics Inc "device and method for controlling supply of current and static capacitance to compressor"
WO2001035520A1 (en) * 1999-11-12 2001-05-17 Lg Electronics Inc. Device and method for controlling supply of current and static capacitance to compressor
EP1139549A3 (en) * 2000-03-29 2002-06-05 SANYO ELECTRIC Co., Ltd. Sealed motor compressor
ES2181598B1 (en) * 2001-07-10 2004-06-01 Cubigel, S.A. A CONTROL CIRCUIT FOR A SINGLE-PHASE ELECTRIC INDUCTION MOTOR.
GB2387978A (en) 2002-04-27 2003-10-29 P D Technology Ltd Motor control
KR100474330B1 (en) * 2002-05-13 2005-03-08 엘지전자 주식회사 Driving comtrol apparatus of reciprocating compressor for refrigerator
CH695976A5 (en) * 2002-12-02 2006-10-31 Roland Weigel Apparatus and method for reducing the power consumption during start-up of a single-phase AC induction motor.
JP2006187057A (en) * 2004-12-24 2006-07-13 Sumitomo Electric Ind Ltd Motor
KR20070071202A (en) * 2005-12-29 2007-07-04 엘지전자 주식회사 Velocity changeableness apparatus and method for hybrid induction motor
US7859801B2 (en) * 2006-02-02 2010-12-28 Lg Electronics Inc. Control apparatus for linear compressor
JP2007303732A (en) * 2006-05-11 2007-11-22 Matsushita Electric Ind Co Ltd Air conditioner
DE102006034499A1 (en) * 2006-07-19 2008-01-31 Danfoss Compressors Gmbh Motor start circuit
KR100819617B1 (en) * 2006-12-29 2008-04-04 캐리어 주식회사 Airconditioner compressor with softstarter
JP5148978B2 (en) * 2007-12-12 2013-02-20 オリエンタルモーター株式会社 Torque adjustment method and torque adjustment device for capacitor motor
US8764409B2 (en) 2008-01-08 2014-07-01 Lg Electronics Inc. Apparatus and method for controlling operation of compressor
JP4845990B2 (en) * 2009-04-13 2011-12-28 株式会社日立産機システム air compressor
DE112010004128B4 (en) * 2009-10-22 2016-08-18 Secop Gmbh Single-phase AC induction motor, apparatus for operating a single-phase AC induction motor and compressor with such a motor or device
BRPI1005448A2 (en) * 2010-12-22 2013-04-02 Whirlpool Sa Modular Compressor Speed Switching Circuit
WO2012164690A1 (en) * 2011-05-31 2012-12-06 日立アプライアンス株式会社 Method for detecting abnormality in refrigeration apparatus and apparatus therefor
GB2504577A (en) * 2012-06-04 2014-02-05 Secop Gmbh A motor system with a relay disconnecting the start winding at a voltage threshold
CN103326663A (en) * 2013-05-15 2013-09-25 轮通空调节能设备(上海)有限公司 Control circuit of motor for cold storage and control method of motor
CN103414454B (en) * 2013-08-26 2016-06-01 施乐 Rotary magnetic establishes pass and stall protection method by cable
CN105371544A (en) * 2014-08-29 2016-03-02 青岛海尔洗衣机有限公司 Heat pump system, control method of heat pump system and clothes dryer
CN107327397B (en) * 2017-08-29 2021-06-01 合肥恒大江海泵业股份有限公司 Electric control system for monitoring and improving starting performance of submersible electric pump
KR102287163B1 (en) 2020-01-10 2021-08-06 엘지전자 주식회사 Electric motor and compressor having the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB513635A (en) * 1938-03-04 1939-10-18 British Thomson Houston Co Ltd Improvements in and relating to electric motors
GB531374A (en) * 1938-07-23 1941-01-02 British Thomson Houston Co Ltd Improvements in and relating to electric motors
US4066937A (en) * 1976-01-13 1978-01-03 Lennox Industries, Inc. Control circuit for a two speed single phase motor
DE2847456C2 (en) * 1978-11-02 1982-04-29 Danfoss A/S, 6430 Nordborg Starting circuit for a compressor arrangement
GB2067370B (en) * 1979-12-28 1984-01-25 Myson Group Ltd Electric motor start up control
GB2088658B (en) * 1980-11-27 1984-01-25 Electricity Council A starting circuit for a single-phase induction motor

Also Published As

Publication number Publication date
CN1038378C (en) 1998-05-13
SG54971A1 (en) 1998-12-21
CN1132961A (en) 1996-10-09
GB2292847B (en) 1998-05-06
HK1000503A1 (en) 2000-03-24
GB9516541D0 (en) 1995-10-11
GB2292847A (en) 1996-03-06
JPH08126363A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
JP3126895B2 (en) Single-phase induction motor and refrigerator using the single-phase induction motor
JP2539569B2 (en) Refrigerator temperature controller
KR920007295B1 (en) Refrigerating apparatus
JPH06213548A (en) Refrigerator
JP4327936B2 (en) Heat pump refrigeration system
JPH08261571A (en) Method for actuating compression type freezer
JPH0828987A (en) Liquid refrigerant discharging device for compressor
JP4199380B2 (en) Refrigeration equipment for refrigeration vehicles
JPH11211253A (en) Controller for separation type air conditioning equipment
JPH0333992B2 (en)
JP3471204B2 (en) Cooling system
JPH0618103A (en) Air conditioner
JP2002127740A (en) Refrigerated van
JP4090176B2 (en) Refrigeration air conditioner
JP3208925B2 (en) Refrigeration equipment
JPH0113977Y2 (en)
JP2557738B2 (en) Cold storage
JP4279950B2 (en) Refrigeration equipment for refrigeration vehicles
JP2731275B2 (en) vending machine
KR20000028312A (en) Method of diagnosing disorder of fan motor for refrigerator
KR200193593Y1 (en) Defrosting apparatus for a refrigerator
JPH06147659A (en) Device for keeping temperature of compressor
JPS5950037B2 (en) Defrost control system for refrigeration equipment
JPS597594Y2 (en) Starting load reduction device for electric compressor for refrigeration cycle
KR19980017691A (en) Apparatus and method for returning abnormal operation of a defrost heater in a refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees