JP3124989B2 - Light scattering particle detector - Google Patents

Light scattering particle detector

Info

Publication number
JP3124989B2
JP3124989B2 JP06315269A JP31526994A JP3124989B2 JP 3124989 B2 JP3124989 B2 JP 3124989B2 JP 06315269 A JP06315269 A JP 06315269A JP 31526994 A JP31526994 A JP 31526994A JP 3124989 B2 JP3124989 B2 JP 3124989B2
Authority
JP
Japan
Prior art keywords
convex lens
flow cell
light
flow
light scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06315269A
Other languages
Japanese (ja)
Other versions
JPH08178831A (en
Inventor
郁 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP06315269A priority Critical patent/JP3124989B2/en
Publication of JPH08178831A publication Critical patent/JPH08178831A/en
Application granted granted Critical
Publication of JP3124989B2 publication Critical patent/JP3124989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粒子検出部としてフロ
ーセルを利用してなる光散乱式粒子検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light scattering type particle detecting apparatus using a flow cell as a particle detecting section.

【0002】[0002]

【従来の技術】従来、光散乱式粒子検出装置として、例
えば図4に示すような粒子検出装置がある。この粒子検
出装置は、粒子検出部である四角筒状のフローセル3の
内部を試料流体が流れる流路3aとし、この流路3a中
の所定の領域或いは全領域(以下、この領域を照射領域
Zと呼ぶ)を、光源1から出射された光L1で照射光学
系2、すなわちコリメータ2aおよび照射レンズ2bを
介して照射するようになされている。
2. Description of the Related Art Conventionally, as a light scattering type particle detecting device, for example, there is a particle detecting device as shown in FIG. In this particle detection device, the inside of a square cylindrical flow cell 3 serving as a particle detection unit is defined as a flow path 3a through which a sample fluid flows, and a predetermined area or the whole area in the flow path 3a (hereinafter, this area is referred to as an irradiation area Z ) Is irradiated with the light L1 emitted from the light source 1 via the irradiation optical system 2, that is, the collimator 2a and the irradiation lens 2b.

【0003】しかして当該照射領域内を微粒子が通過す
る際、照射光L1によって当該微粒子が発する散乱光L
2はフローセル3側壁およびフローセル3の近傍に配置
された集光光学系6である集光凸レンズ4を介して光電
変換器5において光電変換され、光電変換器5の電気出
力に基づいて微粒子が検出測定される。尚、図中αは、
集光凸レンズ4に入射される散乱光の集光角である。
When the fine particles pass through the irradiation area, the scattered light L emitted by the fine particles by the irradiation light L1 is emitted.
2 is photoelectrically converted by a photoelectric converter 5 via a converging convex lens 4 which is a condensing optical system 6 disposed on the side wall of the flow cell 3 and near the flow cell 3, and fine particles are detected based on the electric output of the photoelectric converter 5. Measured. In the figure, α is
This is the convergence angle of the scattered light incident on the converging convex lens 4.

【0004】[0004]

【発明が解決しようとする課題】ところで、この種の光
散乱式粒子検出装置においては、下記の如き問題点を内
包している。 (1)フローセル中の流路全域に光を照射すれば、流路
内を流れる粒子を全て検出することが可能となり、検出
効率は十分良好なものとなる。しかしながら、流路全域
を照射する場合には、照射光の断面積は大きなものとな
らざるを得ず、畢竟、照射光のエネルギー密度は小さく
なり、検出感度は低下せざるを得ない。これとは逆に、
検出感度を上げるべく照射光を細くすれば、流路中の一
定領域しか照射しない為、検出し得ない粒子の存在を許
すこととなり、検出効率は低下せざるを得ないという不
都合が存在していた。
Incidentally, this type of light scattering type particle detecting apparatus has the following problems. (1) By irradiating the entire flow channel in the flow cell with light, it is possible to detect all particles flowing in the flow channel, and the detection efficiency is sufficiently good. However, when irradiating the entire flow channel, the cross-sectional area of the irradiating light must be large, and eventually the energy density of the irradiating light becomes small and the detection sensitivity must be reduced. On the contrary,
If the irradiation light is made thinner to increase the detection sensitivity, only a certain area in the flow path is irradiated, so that the presence of undetectable particles is allowed, and there is a disadvantage that the detection efficiency must be reduced. Was.

【0005】(2)また、検出感度を上げる為には、フ
ローセルの流路を小さくすることが望ましい。というの
は流路が小さければ照射光を細くでき、エネルギー密度
を大きくすることができるからである。しかも、そもそ
も流路が細いため、検出効率を低下させることもない。
しかしながらフローセルの流路を小さくすると流路の抵
抗が高まり、即ちコンダクタンスが小さくなり、半導体
の製造装置内部などで必要となる真空下での吸引、大流
量のサンプリング、レジストや液体の半導体材料等の粘
性の大きい液体のサンプリングには不適なものとなる。
(2) In order to increase the detection sensitivity, it is desirable to reduce the flow path of the flow cell. This is because the smaller the flow path, the thinner the irradiation light and the higher the energy density. Moreover, since the flow path is narrow in the first place, the detection efficiency does not decrease.
However, when the flow path of the flow cell is reduced, the resistance of the flow path increases, that is, the conductance decreases. Thus, suction under a vacuum required for the inside of a semiconductor manufacturing apparatus, sampling of a large flow rate, resist and liquid semiconductor materials, etc. It is unsuitable for sampling a viscous liquid.

【0006】(3)更に、粒子に発生した散乱光の集光
量は、集光レンズ系の立体角に依存するのでレンズと物
体との間の距離に制約され、この集光量にも限界があっ
た。尚、集光量を多くして検出感度をあげるために、フ
ローセルの外壁面に凸レンズを設けることを本出願人は
提案している(特願平3ー173105号)。しかしな
がら、これはそもそもフローセル側壁から集光光学系方
向に射出する散乱光のフローセル側壁での屈折による見
掛けの集光角の減少を防ぐことで集光量を多くしたもの
であり、照射領域に生じた散乱光の集光量そのものを多
くするものではない。しかも特に液体試料において意義
があるものである。
(3) Furthermore, the amount of scattered light generated by the particles depends on the solid angle of the converging lens system, and is therefore limited by the distance between the lens and the object. Was. The present applicant has proposed to provide a convex lens on the outer wall surface of the flow cell in order to increase the amount of condensed light and increase the detection sensitivity (Japanese Patent Application No. 3-173105). However, this is to increase the amount of light collection by preventing the decrease in the apparent light collection angle due to the refraction of the scattered light emitted from the flow cell side wall toward the light collection optical system from the flow cell side wall in the first place. It does not increase the amount of scattered light itself. Moreover, it is particularly significant for liquid samples.

【0007】本発明は以上の点を考慮してなされたもの
で、従来のフローセルを用いた光散乱式粒子検出装置に
おいて、検出感度と検出効率との相反する問題、及び検
出感度と流路抵抗との相反する問題を解決し、しかも散
乱光の集光量そのものを一段と多くする光散乱式粒子検
出装置を提案しようとするものである。又本発明は、液
体のみならず気体試料にも有用である。
The present invention has been made in view of the above points, and in the light scattering type particle detecting apparatus using the conventional flow cell, there are conflicting problems between the detection sensitivity and the detection efficiency, and the detection sensitivity and the flow path resistance. And to propose a light-scattering type particle detecting device which further increases the amount of scattered light itself. The invention is also useful for gas samples as well as liquids.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、フローセル内の流路の照射領域を通過す
る試料流体に含まれる微粒子に対して、照射光を照射す
ることにより得られる散乱光を光電変換器により光電変
換して測定データを得る光散乱式粒子検出装置におい
て、この検出装置は、角筒状のフローセルを備え、この
角筒状フローセルは4枚の矩形状のフローセル構成部材
を張り合わせて構成され、該4枚の矩形状のフローセル
構成部材のうち、上記照射領域に対応する1枚のフロー
セル構成部材の内壁に、上記照射領域の粒子に生じる散
乱光を集光する一面が平らな凸レンズを密着接合し、上
記凸レンズを上記流路内に突出形成した。また、一面が
平らな凸レンズは、円形平凸レンズであっても、シリン
ドリカルレンズであってもよい。
To solve the above-mentioned problems, the present invention is obtained by irradiating irradiation light to fine particles contained in a sample fluid passing through an irradiation region of a flow channel in a flow cell. In a light scattering type particle detection device that obtains measurement data by photoelectrically converting scattered light by a photoelectric converter, the detection device includes a rectangular cylindrical flow cell.
Square tubular flow cell is composed of four rectangular flow cell components
And the four rectangular flow cells.
Among the constituent members, the flow of one corresponding to the irradiation area
A convex lens having a flat surface for condensing scattered light generated in particles in the irradiation area was tightly joined to the inner wall of the cell constituent member , and the convex lens was formed to protrude into the flow path. The convex lens having a flat surface may be a circular plano-convex lens or a cylindrical lens.

【0009】[0009]

【作用】フローセル内壁に凸レンズを設けている為、凸
レンズが照射領域に近接することとなり、従って開口数
が大きくなり、測定対象となる流体内の微粒子による散
乱光を効率よく集光することができる。しかも流路中の
一部にレンズが突出形成されていることにより、流路の
幅が狭まり、すなわち照射領域を狭くすることができ、
これにより照射光のスポットをより細く絞ることができ
る。従って照射領域における光エネルギー密度が高ま
り、これにより粒子から散乱される散乱光の強度も大き
くなる。
Since the convex lens is provided on the inner wall of the flow cell, the convex lens comes close to the irradiation area, so that the numerical aperture increases, and the scattered light due to the fine particles in the fluid to be measured can be efficiently collected. . In addition, since the lens is formed in a part of the flow path, the width of the flow path is reduced, that is, the irradiation area can be reduced.
Thereby, the spot of the irradiation light can be narrowed more narrowly. Therefore, the light energy density in the irradiation area is increased, thereby increasing the intensity of the scattered light scattered from the particles.

【0010】[0010]

【実施例】以下図面に沿って、本発明の一実施例を説明
する。図1は光散乱式粒子検出装置の要部を示す図で、
図2(a)は、図1に示すフローセルの拡大図、図2
(b)は、図1に示すフローセルの一部切欠き側面図で
ある。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a main part of a light scattering type particle detection device.
FIG. 2A is an enlarged view of the flow cell shown in FIG.
(B) is a partially cutaway side view of the flow cell shown in FIG. 1.

【0011】11は粒子検出部である角筒状のフローセ
ルであり、透明体、例えば石英、サファイア等で形成さ
れている。11aはフローセル11中に形成された流路
であり、試料流体が通過する。ここに試料流体とは、液
体のみならず気体をも含む。
Reference numeral 11 denotes a rectangular tube-shaped flow cell serving as a particle detecting unit, which is formed of a transparent material, for example, quartz, sapphire, or the like. Reference numeral 11a denotes a flow channel formed in the flow cell 11, through which a sample fluid passes. Here, the sample fluid includes not only liquid but also gas.

【0012】12はフローセル11と同一材料で形成さ
れた凸レンズであり、フローセル11の内壁から流路1
1a側に突出形成されている。、凸レンズ12はフロー
セル11中の照射領域Zに生じる散乱光を集光し得る位
置に、即ち照射領域Zに対応するフローセル内壁に設け
らている。凸レンズ12をフローセル11の内壁に突出
形成することにより、微粒子に生じる散乱光をまず集光
することになる。この凸レンズ12は言うまでもなく照
射領域Zに近接することとなり大きな開口数が得られ
る。
Reference numeral 12 denotes a convex lens formed of the same material as the flow cell 11, and the flow path 1 extends from the inner wall of the flow cell 11.
It is formed to protrude from the side 1a. The convex lens 12 is provided at a position where the scattered light generated in the irradiation area Z in the flow cell 11 can be collected, that is, on the inner wall of the flow cell corresponding to the irradiation area Z. By forming the convex lens 12 so as to protrude from the inner wall of the flow cell 11, scattered light generated in the fine particles is first collected. Needless to say, the convex lens 12 comes close to the irradiation area Z, and a large numerical aperture can be obtained.

【0013】ここで、同一材料を用いるのは、言うまで
もなくフローセル11と凸レンズ12とが同じ屈折率で
あることが好ましいからである。フローセル11と凸レ
ンズ12とは、これらと略同じ屈折率を有する接着剤を
用いて固着してもよい。しかしながら流路11aに流れ
る試料の性質に影響を受けるような、即ち剥離するよう
なことは好ましくなく、この点、融点付近まで加熱して
表面付近を溶かすことによって一体化させる密着接合が
好ましい。尚フローセル11は、凸レンズ12を設けた
フローセル構成部材を含む4枚の矩形状のフローセル構
成部材を張り合わせて形成する。
Here, the same material is used because it is preferable that the flow cell 11 and the convex lens 12 have the same refractive index. The flow cell 11 and the convex lens 12 may be fixed using an adhesive having substantially the same refractive index as these. However, it is not preferable that the sample is affected by the properties of the sample flowing in the flow channel 11a, that is, it is not peeled off. The flow cell 11 is formed by laminating four rectangular flow cell components including the flow cell component provided with the convex lens 12.

【0014】次に本実施例の作用について述べる。図1
において、光源1から射出された光L1は照射光学系2
を介して、フローセル11の流路11aを照射する。図
2(b)で示す如く、流路11aを矢印F方向に通過す
る試料流体中に粒子が存在する場合には、当該粒子に散
乱光L2が生じる。この散乱光L2は図2(a)で示す
如く集光角βの範囲で凸レンズ12に入射される。凸レ
ンズ12は照射領域Z、即ち検出対象となる粒子のごく
近傍に位置することとなるため、従来の集光角αに較べ
て散乱光L2を大きな角度で集光することが可能とな
る。しかして散乱光L2は、凸レンズ12、フローセル
11の側壁を介し、更に集光光学系13によって光電変
換器5上に集められる。
Next, the operation of this embodiment will be described. FIG.
, The light L1 emitted from the light source 1
Irradiates the flow channel 11a of the flow cell 11 via. As shown in FIG. 2B, when particles are present in the sample fluid passing through the flow path 11a in the direction of arrow F, scattered light L2 is generated on the particles. This scattered light L2 is incident on the convex lens 12 within the range of the converging angle β as shown in FIG. Since the convex lens 12 is located very close to the irradiation area Z, that is, the particle to be detected, the scattered light L2 can be collected at a larger angle than the conventional light collection angle α. Thus, the scattered light L <b> 2 is collected on the photoelectric converter 5 through the convex lens 12 and the side wall of the flow cell 11 and further by the condensing optical system 13.

【0015】(その他の実施例) (1)上述の実施例においては、凸レンズ12として円
形凸レンズを使用しているが、図3に示すようにシリン
ドリカルレンズ22を用いてもよい。円形凸レンズを使
用した場合には、流路方向から見て円形凸レンズの両脇
にデッドスペースが形成されるが、シリンドリカルレン
ズ22を使用した場合には試料流体はシリンドリカルレ
ンズ22の前面をすべて通過することにより、デッドス
ペースが形成されず、即ち粒子の損失がなくなり、粒子
の検出効率が一段と高まる。
(Other Embodiments) (1) In the above embodiment, a circular convex lens is used as the convex lens 12, but a cylindrical lens 22 may be used as shown in FIG. When a circular convex lens is used, a dead space is formed on both sides of the circular convex lens when viewed from the flow path direction. However, when the cylindrical lens 22 is used, the sample fluid passes through the entire front surface of the cylindrical lens 22. As a result, no dead space is formed, that is, there is no loss of particles, and the detection efficiency of particles is further increased.

【0016】(2)上述の実施例においては、照射光学
系2の光軸は集光光学系13の光軸およびフローセル1
1の流路方向に対して直交するように構成されている
が、本発明はこれに限らず、要は集光光学系13に照射
光が入射しなければよいのだから、その他の構成が採用
されてもよい。
(2) In the above embodiment, the optical axis of the irradiation optical system 2 is the same as the optical axis of the condenser optical system 13 and the flow cell 1
Although it is configured so as to be orthogonal to the direction of the flow path 1, the present invention is not limited to this, and it is essential that the irradiation light does not enter the condensing optical system 13. May be done.

【0017】[0017]

【発明の効果】上述したように本発明によれば下記の効
果がえられる。 (1)凸レンズがフローセル内壁面に突出形成されてい
る為、当該部位において流路部の横断面積は小さくな
る。従って、エネルギー密度を大きくすべく照射光を細
くしても、検出効率は低下することなく、検出感度を高
めることができる。 (2)凸レンズの存在により、当該部位においてのみ、
局部的に流路が狭まっているにすぎない為、さほど流路
抵抗が大きくならず、粘性の大きな流体もサンプリング
でき真空下での吸引、大流量のサンプリングを妨げな
い。 (3)凸レンズを流路中に突出形成している為、凸レン
ズのごく近傍に存在する粒子を測定することとなる。従
って、粒子からの散乱光を効率よく集光でき、検出感度
を向上させることができる。 (4)凸レンズは、その平らな一面を、照射領域に対応
する1枚のフローセル構成部材の内壁に密着接合して流
路内に突出形成するので、容易に作製できる。また、凸
レンズは、照射領域に近接することになるので、大きな
開口数が得られる。
As described above, according to the present invention, the following effects can be obtained. (1) Since the convex lens is formed so as to protrude from the inner wall surface of the flow cell, the cross-sectional area of the flow path portion at the relevant portion is reduced. Therefore, even if the irradiation light is narrowed to increase the energy density, the detection sensitivity can be increased without lowering the detection efficiency. (2) Due to the presence of the convex lens,
Since the flow path is only locally narrow, the flow path resistance does not increase so much, and a viscous fluid can be sampled, so that suction under a vacuum and sampling of a large flow rate are not hindered. (3) Since the convex lens is formed so as to protrude into the flow channel, particles existing very close to the convex lens are measured. Therefore, the scattered light from the particles can be efficiently collected, and the detection sensitivity can be improved. (4) The convex lens can be easily manufactured because one flat surface thereof is in close contact with the inner wall of one flow cell component member corresponding to the irradiation area and is formed to protrude into the flow channel. Also convex
The lens will be close to the illuminated area,
A numerical aperture is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光散乱式粒子検出装置の要部を示
す断面図である。
FIG. 1 is a sectional view showing a main part of a light scattering type particle detection device according to the present invention.

【図2】(a)は図1のフローセルの拡大図であり、
(b)は図1のフローセルの一部切欠き側面図である。
FIG. 2 (a) is an enlarged view of the flow cell of FIG. 1,
FIG. 2B is a partially cutaway side view of the flow cell of FIG. 1.

【図3】(a)は本発明の他の実施例を示すフローセル
の断面図であり、(b)は同じくフローセルの一部切欠
き側面図である。
FIG. 3A is a cross-sectional view of a flow cell showing another embodiment of the present invention, and FIG. 3B is a partially cutaway side view of the flow cell.

【図4】従来の光散乱式粒子検出装置の要部を示す断面
図である。
FIG. 4 is a cross-sectional view showing a main part of a conventional light scattering type particle detection device.

【符号の説明】[Explanation of symbols]

1…光源、5…光電変換器、11…フローセル、11a
…流路、12、22…凸レンズ、L1…照射光、L2…
散乱光、Z…照射領域
DESCRIPTION OF SYMBOLS 1 ... Light source, 5 ... Photoelectric converter, 11 ... Flow cell, 11a
... Flow path, 12, 22 ... Convex lens, L1 ... Irradiation light, L2 ...
Scattered light, Z: Irradiation area

フロントページの続き (56)参考文献 特開 平4−369463(JP,A) 特開 平3−100440(JP,A) 特開 昭58−103615(JP,A) 特開 昭60−214238(JP,A) 実開 平3−76151(JP,U) 実開 平2−118244(JP,U)Continuation of front page (56) References JP-A-4-369463 (JP, A) JP-A-3-100440 (JP, A) JP-A-58-103615 (JP, A) JP-A-60-214238 (JP) , A) Japanese Utility Model Application Hei 3-76151 (JP, U) Japanese Utility Model Application Hei 2-118244 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フローセル内の流路の照射領域を通過す
る試料流体に含まれる微粒子に対して、照射光を照射す
ることにより得られる散乱光を光電変換器により光電変
換して測定データを得る光散乱式粒子検出装置におい
て、この検出装置は、角筒状のフローセルを備え、この
角筒状フローセルは4枚の矩形状のフローセル構成部材
を張り合わせて構成され、該4枚の矩形状のフローセル
構成部材のうち、上記照射領域に対応する1枚のフロー
セル構成部材の内壁に、上記照射領域の粒子に生じる散
乱光を集光する一面が平らな凸レンズを密着接合し、上
記凸レンズを上記流路内に突出形成したことを特徴とす
る光散乱式粒子検出装置。
1. Scattered light obtained by irradiating irradiation light to fine particles contained in a sample fluid passing through an irradiation area of a flow path in a flow cell is photoelectrically converted by a photoelectric converter to obtain measurement data. In the light scattering type particle detection device, the detection device includes a square cylindrical flow cell,
Square tubular flow cell is composed of four rectangular flow cell components
And the four rectangular flow cells.
Among the constituent members, the flow of one corresponding to the irradiation area
A light-scattering particle, characterized in that a convex lens having a flat surface for condensing scattered light generated in the irradiation area particles is tightly joined to the inner wall of the cell constituent member , and the convex lens is formed to project into the flow path. Detection device.
【請求項2】 請求項1に記載の光散乱式粒子検出装置
において、上記一面が平らな凸レンズは、円形平凸レン
ズであることを特徴とする光散乱式粒子検出装置。
2. The light scattering type particle detecting device according to claim 1, wherein said convex lens having a flat surface is a circular plano-convex lens.
【請求項3】 請求項1に記載の光散乱式粒子検出装置
において、上記一面が平らな凸レンズは、シリンドリカ
ルレンズであることを特徴とする光散乱式粒子検出装
置。
3. The light scattering type particle detecting device according to claim 1, wherein the convex lens having a flat surface is a cylindrical lens.
JP06315269A 1994-12-19 1994-12-19 Light scattering particle detector Expired - Fee Related JP3124989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06315269A JP3124989B2 (en) 1994-12-19 1994-12-19 Light scattering particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06315269A JP3124989B2 (en) 1994-12-19 1994-12-19 Light scattering particle detector

Publications (2)

Publication Number Publication Date
JPH08178831A JPH08178831A (en) 1996-07-12
JP3124989B2 true JP3124989B2 (en) 2001-01-15

Family

ID=18063393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06315269A Expired - Fee Related JP3124989B2 (en) 1994-12-19 1994-12-19 Light scattering particle detector

Country Status (1)

Country Link
JP (1) JP3124989B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782593B2 (en) 2006-03-13 2011-09-28 株式会社日立製作所 Photodetector
US7982875B2 (en) * 2009-06-15 2011-07-19 Wyatt Technology Corporation Method and apparatus for measuring the scattered light signals from a liquid sample
EP2333515A1 (en) * 2009-12-11 2011-06-15 Bayer Technology Services GmbH Device for detecting luminous and/or light-diffusing particles in flowing liquids
JP2018080925A (en) * 2016-11-14 2018-05-24 東レエンジニアリング株式会社 Component concentration detector

Also Published As

Publication number Publication date
JPH08178831A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
US8174697B2 (en) Non-orthogonal particle detection systems and methods
US5127729A (en) Method and apparatus for guiding and collecting light in photometry or the like
US4917496A (en) Particle size measuring instrument with direct scattered light detection
JP4540509B2 (en) Fluorescence detection method, flow cell unit and flow cytometer
JP3124989B2 (en) Light scattering particle detector
JP4050748B2 (en) Particle measuring device
JPH05172732A (en) Method and apparatus for detecting particle in liquid
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JP4763159B2 (en) Flow cytometer
CN112730180B (en) High-sensitivity dust particle counting sensor with double detectors
US20020030815A1 (en) Light scattering type particle detector
JPH1019779A (en) Weak fluorescence measuring apparatus
JPH04369463A (en) Light scattering type particle detector
JPH01232235A (en) Flow cell for fine-particle measuring instrument
JP2006242623A (en) Flow cytometer and fluorescence collecting method
JPH0552895B2 (en)
JPS6093944A (en) Light-scattering particle measuring apparatus
JP3301049B2 (en) Gas analyzer using ultraviolet fluorescence analysis
JPH04369464A (en) Light scattering type particle detector
JPS62285043A (en) Flowcell with condenser
JPH0736051U (en) Gas analyzer
JP2000266661A (en) Flow cell and particle-measuring apparatus using the same
JP2509906Y2 (en) Liquid chromatograph detector
JPS62269042A (en) Flow cell for particle analyser
KR100860933B1 (en) Flow cell and particle measuring apparatus using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees