JP3113762B2 - Separation method of copper and lead from precious metal solution - Google Patents

Separation method of copper and lead from precious metal solution

Info

Publication number
JP3113762B2
JP3113762B2 JP05179868A JP17986893A JP3113762B2 JP 3113762 B2 JP3113762 B2 JP 3113762B2 JP 05179868 A JP05179868 A JP 05179868A JP 17986893 A JP17986893 A JP 17986893A JP 3113762 B2 JP3113762 B2 JP 3113762B2
Authority
JP
Japan
Prior art keywords
noble metal
lead
copper
solution
aqua regia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05179868A
Other languages
Japanese (ja)
Other versions
JPH0711473A (en
Inventor
英世 増田
有光 高柳
博文 中山
佳久 舘野
勇 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP05179868A priority Critical patent/JP3113762B2/en
Publication of JPH0711473A publication Critical patent/JPH0711473A/en
Application granted granted Critical
Publication of JP3113762B2 publication Critical patent/JP3113762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、貴金属廃液等の貴金属
が溶解された溶液から銅(Cu)、鉛(Pb)を分離す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating copper (Cu) and lead (Pb) from a solution in which a noble metal such as a noble metal waste liquid is dissolved.

【0002】[0002]

【従来の技術】従来、この種の分離方法としては、C
u、Pbの含有量が貴金属に比して多い場合、貴金属と
Cu、Pbの王水又は塩酸/塩素溶液を、完全に塩化物
に変えた後、直ちに亜鉛(Zn)を投入して貴金属のみ
還元し黒色粉末としてCu、Pbより分離したり、又、
Cu、Pbの含有量が貴金属に比して少ない場合、貴金
属の大部分を塩化アンモニウム(NH4 Cl)によって
落し、(NH4)2 MCl6の塩として分離し、かつ残液
をZn還元して回収する方法が知られている( 「白金族
と工業的利用」著、昭和31年12月20日産業図書株式会社
発行、第 218頁参照) 。
2. Description of the Related Art Conventionally, this type of separation method includes C
When the contents of u and Pb are large compared to the noble metal, the noble metal and the aqua regia or hydrochloric acid / chlorine solution of Cu and Pb are completely changed to chloride, and then zinc (Zn) is immediately introduced and only the noble metal is added. Reduced and separated from Cu and Pb as black powder, or
When the contents of Cu and Pb are smaller than the noble metal, most of the noble metal is dropped by ammonium chloride (NH 4 Cl), separated as a salt of (NH 4 ) 2 MCl 6 , and the remaining liquid is reduced by Zn. A method of recovering by using is known (see “Platinum Family and Industrial Use”, published by Sangyo Tosho Co., Ltd. on December 20, 1956, page 218).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
分離方法では、多量にCu、Pbが含まれている溶液か
ら貴金属を分離する場合、Znで還元すると、貴金属は
黒色粉末として沈澱するが、Cu、Pbも同時に沈澱す
るため、再度Zn還元を行い、Cu、Pbの含有量を少
なくし、NH4 Clによって落して、貴金属を(NH4)
2 MCl6 の塩として分離してから、再度溶解して湿式
精製するので工程数が多くなる不具合がある。又、Zn
より貴なCu、Pbは、Zn還元で貴金属と完全に分離
できないこともあって、精製工程でもCu、Pbの含有
量が電解で分離した液よりも多いため、純度の高い貴金
属を取り出すには2〜3回精製を繰り返す必要がある。
更に、Zn還元後の残液にも、貴金属が残留する不具合
がある。そこで、本発明は、工程数を削減すると共に、
仕掛期間を短縮し、かつ貴金属のロスが少なくて純度の
高い溶液とし得る貴金属溶液からの銅、鉛の分離方法を
提供することを目的とする。
However, in the conventional separation method, when a noble metal is separated from a solution containing a large amount of Cu and Pb, when the noble metal is reduced with Zn, the noble metal precipitates as a black powder. , And Pb are also precipitated at the same time, so that Zn reduction is performed again to reduce the contents of Cu and Pb, dropped by NH 4 Cl, and the noble metal is reduced to (NH 4 ).
2 Separation as a salt of MCl 6 , then redissolution and wet purification, there is a problem that the number of steps is increased. Also, Zn
Since noble Cu and Pb cannot be completely separated from the noble metal by Zn reduction, the content of Cu and Pb is larger than the solution separated by electrolysis even in the purification step. It is necessary to repeat the purification a few times.
Furthermore, there is a problem that the noble metal remains in the residual liquid after the Zn reduction. Therefore, the present invention reduces the number of processes and
It is an object of the present invention to provide a method for separating copper and lead from a noble metal solution which can shorten a work-in-progress period and have a high purity with a small loss of noble metal.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の貴金属溶液からの銅、鉛の分離方法は、陽
極と陰極を陽イオン交換膜で仕切った電解槽の陽極室に
貴金属陰イオン錯体及び銅、鉛を含む王水又は塩酸/塩
素溶液を入れ、陰極室に水素よりも卑で3価以上の金属
陽イオンを含む電解質溶液を入れて電解することを特徴
とする。前記貴金属は、白金(Pt)、パラジウム(P
d)、ロジウム(Rh)、オスミウム(Os)、イリジ
ウム(Ir)、ルテニウム(Ru)及び金(Au)のう
ちの1種又は2種以上であることを特徴とする。又、前
記貴金属陰イオン錯体及び銅、鉛を含む王水又は塩酸/
塩素溶液は、蒸発により濃縮された後、水により希釈さ
れてpH 0.5〜2に調整されていることを特徴とする。
In order to solve the above-mentioned problems, a method for separating copper and lead from a noble metal solution according to the present invention is characterized in that a noble metal anode is placed in an anode chamber of an electrolytic cell in which an anode and a cathode are separated by a cation exchange membrane. It is characterized in that an aqua regia or a hydrochloric acid / chlorine solution containing an ionic complex and copper and lead is put therein, and an electrolytic solution containing a metal cation which is more base than hydrogen and is trivalent or more than hydrogen is put in a cathode chamber to perform electrolysis. The noble metals are platinum (Pt), palladium (P
d), one or more of rhodium (Rh), osmium (Os), iridium (Ir), ruthenium (Ru) and gold (Au). Also, aqua regia or hydrochloric acid containing the noble metal anion complex and copper or lead /
The chlorine solution is characterized by being concentrated by evaporation and then diluted with water to adjust the pH to 0.5 to 2.

【0005】[0005]

【作用】上記手段においては、貴金属は、陰イオン錯体
なので、陽極室に止まる一方、Cu、Pbは、陽イオン
として存在するため、陽イオン交換膜を通過して陰極室
に移動する。また貴金属陰イオン錯体及び銅、鉛を含む
王水又は、塩酸/塩素溶液のpHを0.5〜2に調整し、
さらにこの調整に水酸化ナトリウム等のアルカリを使用
しないのは、Cu、Pbといった不純金属より輸率の高
いH+ やNa+ などのイオン濃度を不純金属イオン濃度
を十分下げ、貴金属陰イオン錯体の移動を促進させるた
めである。陽極室に入れる電解質溶液に含まれる陽イオ
ンとしては、H+ より卑で、かつ3価以上の金属陽イオ
ンが用いられる理由は、イオン交換膜が有先的に2価以
下の金属陽イオンを通過し、3価以上の金属陽イオン
は、非常にイオン交換膜を通過しずらいことによる。
(但し、長時間電解を続けると3価以上の金属陽イオン
も若干通過したり、交換膜の目づまり現象を起す) 又、電解は、1〜4A/acm2の低電流密度で行われる。
In the above means, since the noble metal is an anion complex, it stops in the anode compartment, while Cu and Pb are present as cations and move through the cation exchange membrane to the cathode compartment. In addition, the pH of aqua regia or a hydrochloric acid / chlorine solution containing a noble metal anion complex and copper or lead is adjusted to 0.5 to 2,
Furthermore, the reason why alkali such as sodium hydroxide is not used for this adjustment is that the concentration of ions such as H + and Na +, which have a higher transport number than that of impurities such as Cu and Pb, is sufficiently reduced to reduce the concentration of impurities such as noble metal anion complex. This is to promote movement. As a cation contained in the electrolyte solution to be put into the anode chamber, a metal cation which is more base than H + and has a valence of 3 or more is used because the ion exchange membrane is proactively made of a metal cation having a valence of 2 or less. The trivalent or higher metal cations that pass therethrough are very difficult to pass through the ion exchange membrane.
(However, if electrolysis is continued for a long time, metal cations having a valency of 3 or more may pass or clogging of the exchange membrane may occur.) Electrolysis is performed at a low current density of 1 to 4 A / acm 2 .

【0006】[0006]

【実施例】以下、本発明の実施例について比較例と共に
説明する。 実施例1〜7 先ず、表1、2に示すように、貴金属(Pt、Pd及び
Rhのうちの1種又は2種以上)の陰イオン錯体及びC
u、Pbを含む各王水 1.4lを、蒸発により50%濃縮
し、 0.7lとした。濃縮前後の各王水中の貴金属及びC
u、Pbの濃度は、それぞれ表1、2に示すとおりであ
った。ついで、 0.7lに濃縮した各王水を純水でpH
0.5〜 1.5の範囲 (約 3.7倍)、具体的には、 0.7lを
2.5lに希釈し、約pH 1.0に調整した。上述したよう
に 2.5lに希釈された各王水中の貴金属及びCu、Pb
の濃度は、それぞれ表1、2に示すとおりであった。
Hereinafter, examples of the present invention will be described together with comparative examples. Examples 1 to 7 First, as shown in Tables 1 and 2, an anionic complex of a noble metal (one or more of Pt, Pd and Rh) and C
1.4 L of each aqua regia containing u and Pb was concentrated to 50 L by evaporation to 0.7 L. Precious metals and C in each aqua regia before and after concentration
The concentrations of u and Pb were as shown in Tables 1 and 2, respectively. Then, each aqua regia concentrated to 0.7 l was purified with pure water to pH
0.5-1.5 range (approximately 3.7 times), specifically, 0.7l
Diluted to 2.5 l and adjusted to about pH 1.0. Precious metals and Cu, Pb in each aqua regia diluted to 2.5 l as described above
Were as shown in Tables 1 and 2, respectively.

【0007】次に、上記 2.5lに希釈された各王水を、
陽極 (Ti−Pt板)と陰極(Ti板)を陽イオン交換
膜(例えばセレミオンCMV又はナフィオン324)で仕切
った電解槽の陽極室に入れる一方、陰極室にH+ より卑
で3価以上の金属陽イオンを含む電解質としてAlCl
3 150g/l溶液を入れ、アノードの電流密度を表1、2
に示すようにして24時間電解を行った。電解後の陽極室
の各液の貴金属及びCu、Pbの濃度と、貴金属溶液の
純度はそれぞれ表1、2に示すようになり、又、各陰極
板には、Cu、Pbと微量の貴金属が電着して分解さ
れ、この微量の貴金属は、陽極室の貴金属に対する割合
は、それぞれ表1、2に示すとおりであった。又、アノ
ードの電流密度は、それぞれ表1、2に示す範囲で行う
ことが好ましい。アノード電密が、下限未満であるとH
2 の発生が多く陽極室でメタル化する一方、上限を超え
ると貴金属の漏浅が著しく多くなる。
Next, each aqua regia diluted to 2.5 liters is
An anode (Ti-Pt plate) and a cathode (Ti plate) are placed in an anode compartment of an electrolytic cell partitioned by a cation exchange membrane (for example, Selemion CMV or Nafion 324), while a cathode compartment which is lower than H + and has a valence of 3 or more. AlCl as electrolyte containing metal cations
3 Add 150 g / l solution and check the current density of the anode in Tables 1 and 2.
The electrolysis was performed for 24 hours as shown in (1). The concentrations of the noble metals and Cu and Pb in each solution in the anode chamber after electrolysis and the purity of the noble metal solutions are as shown in Tables 1 and 2, respectively. In each cathode plate, Cu, Pb and trace amounts of noble metals are contained. The trace amount of the noble metal was decomposed by electrodeposition, and the ratio of the trace amount of the noble metal to the noble metal in the anode chamber was as shown in Tables 1 and 2, respectively. The current density of the anode is preferably set in the ranges shown in Tables 1 and 2, respectively. If the anode congestion is below the lower limit, H
While the generation of 2 is large and metallization occurs in the anode chamber, if the upper limit is exceeded, the leakage of the precious metal increases significantly.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】比較例1〜7 比較のため、表3、4に示すように、先ず、実施例1〜
7と同様の貴金属の陰イオン錯体及びCu、Pbを含む
各王水をZnで還元し、貴金属の黒色粉末を沈澱させ
た。この還元に際し、表3、4に示す割合の貴金属がZ
n還元液中に残留し、又、沈澱物中にCu、Pbが吸着
や液の巻込等により表3、4に示す割合で入り込んだ。
ついで、沈澱物をろ過し、この際不要な塩を洗浄して除
去した。その後、ろ過物を焼成し、不要な塩類を除去し
た。これによって約1%程度除去できた。この焼成の
際、若干であるが貴金属のロスが発生した。次に、各焼
成物を王水又は塩酸/塩素溶液で溶解したところ、それ
ぞれ貴金属溶液の純度は、表3、4に示すようになっ
た。一方、Zn還元廃液中には、貴金属が表3、4に示
すようにロスとして残留しており、この中より貴金属を
取り出すことは困難であった(Zn濃度は、約80g/lと
高濃度) 。すなわち、Zn還元廃液からCuを分離する
には、亜硝酸ソーダ還元によりCuを水酸化物沈澱させ
て分離させるが、この時、水酸化物中に貴金属が吸着等
により5〜10%入り込むためである。
Comparative Examples 1 to 7 For comparison, as shown in Tables 3 and 4, first, Examples 1 to 7
Noble metal anion complex similar to 7 and each aqua regia containing Cu and Pb were reduced with Zn to precipitate a black powder of the noble metal. At the time of this reduction, the noble metal in the proportions shown in Tables 3 and 4
n and remained in the reduced solution, and Cu and Pb entered into the precipitate at the ratios shown in Tables 3 and 4 by adsorption and entrainment of the solution.
Subsequently, the precipitate was filtered, and unnecessary salts were removed by washing. Thereafter, the filtrate was calcined to remove unnecessary salts. As a result, about 1% could be removed. During this firing, a slight loss of the noble metal occurred. Next, when each fired product was dissolved in aqua regia or hydrochloric acid / chlorine solution, the purity of the noble metal solution became as shown in Tables 3 and 4, respectively. On the other hand, the noble metal remained in the Zn reduction waste liquid as a loss as shown in Tables 3 and 4, and it was difficult to remove the noble metal from the noble metal (the Zn concentration was as high as about 80 g / l). ). That is, in order to separate Cu from the waste liquid of Zn reduction, Cu is precipitated by hydroxide reduction by sodium nitrite reduction and separated, but at this time, 5 to 10% of the noble metal enters the hydroxide by adsorption or the like. is there.

【0011】[0011]

【表3】 [Table 3]

【0012】[0012]

【表4】 [Table 4]

【0013】表1〜4からわかるように、上記実施例1
〜7によれば、貴金属のロスを少なくして純度の高い貴
金属溶液を得ることが可能であると共に、工程数を削減
し、かつ仕掛時間を短縮し得ることがわかる。
As can be seen from Tables 1 to 4, Example 1
According to Nos. To 7, it can be seen that a high-purity noble metal solution can be obtained by reducing the loss of the noble metal, and the number of steps can be reduced and the in-process time can be shortened.

【0014】[0014]

【発明の効果】以上説明したように、本発明の貴金属溶
液からの銅、鉛の分離方法によれば、貴金属は、陰イオ
ン錯体なので、陽極室に止まる一方、Cu、Pbは、陽
イオンとして存在するため、陽イオン交換膜を通過して
陰極室に移動するので、従来の分離方法に比して貴金属
のロスを少なくして純度の高い貴金属溶液を得ることが
でき、ひいては貴金属の回収率を格段に向上することが
できるると共に、工程数を削減でき、かつ仕掛期間を短
縮できる効果を奏する。
As described above, according to the method for separating copper and lead from a noble metal solution of the present invention, since the noble metal is an anion complex, it stops in the anode compartment, while Cu and Pb are converted as cations. Since it is present, it passes through the cation exchange membrane and moves to the cathode compartment, so that noble metal loss can be reduced and a highly pure noble metal solution can be obtained as compared with the conventional separation method. Can be significantly improved, the number of steps can be reduced, and the in-process period can be shortened.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川野 勇 千葉県市川市高谷2015番地7 田中貴金 属工業株式会社市川工場内 審査官 有田 恭子 (56)参考文献 特開 昭61−246395(JP,A) 特開 昭60−128279(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25C 1/00 - 7/08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Isamu Kawano 2015-7 Takaya, Ichikawa-shi, Chiba Investigator, Tanaka Kikinzoku Kogyo Co., Ltd. Ichikawa Plant Kyoko Arita (56) References JP-A-61-246395 (JP, A) JP-A-60-128279 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25C 1/00-7/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極と陰極を陽イオン交換膜で仕切った
電解槽の陽極室に貴金属陰イオンを錯体及び銅、鉛を含
む王水又は塩酸/塩素溶液を入れ、陰極室に水素よりも
卑で3価以上の金属陽イオンを含む電解質溶液を入れて
電解することを特徴とする貴金属溶からの銅、鉛の分離
方法。
1. A noble metal anion is charged with a complex and an aqua regia or a hydrochloric acid / chlorine solution containing copper and lead in an anode chamber of an electrolytic cell in which an anode and a cathode are separated by a cation exchange membrane. 3. A method for separating copper and lead from a noble metal solution, wherein an electrolyte solution containing a metal cation having a valence of 3 or more is added to perform electrolysis.
【請求項2】 前記貴金属が白金、パラジウム、ロジウ
ム、オスミウム、イリジウム、ルテニウム及び金のうち
の1種又は2種以上であることを特徴とする請求項1記
載の貴金属溶液からの銅、鉛の分離方法。
2. The method according to claim 1, wherein the noble metal is one or more of platinum, palladium, rhodium, osmium, iridium, ruthenium and gold. Separation method.
【請求項3】 前記貴金属陰イオン錯体及び銅、鉛を含
む王水又は塩酸/塩素溶液は、蒸発により濃縮された
後、水により希釈されてpH 0.5〜2に調整されている
ことを特徴とする請求項1又は2記載の貴金属溶液から
の銅、鉛の分離方法。
3. The aqua regia or hydrochloric acid / chlorine solution containing the noble metal anion complex and copper and lead is concentrated by evaporation and then diluted with water to adjust the pH to 0.5 to 2. The method for separating copper and lead from a noble metal solution according to claim 1 or 2.
JP05179868A 1993-06-25 1993-06-25 Separation method of copper and lead from precious metal solution Expired - Fee Related JP3113762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05179868A JP3113762B2 (en) 1993-06-25 1993-06-25 Separation method of copper and lead from precious metal solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05179868A JP3113762B2 (en) 1993-06-25 1993-06-25 Separation method of copper and lead from precious metal solution

Publications (2)

Publication Number Publication Date
JPH0711473A JPH0711473A (en) 1995-01-13
JP3113762B2 true JP3113762B2 (en) 2000-12-04

Family

ID=16073319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05179868A Expired - Fee Related JP3113762B2 (en) 1993-06-25 1993-06-25 Separation method of copper and lead from precious metal solution

Country Status (1)

Country Link
JP (1) JP3113762B2 (en)

Also Published As

Publication number Publication date
JPH0711473A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
JPH0382720A (en) Method for recovering indium
KR20150082163A (en) Method for improving the performance of nickel electrodes
CN101534948A (en) Method of extracting platinum group metals from waste catalists through electrochemical process
JP3113762B2 (en) Separation method of copper and lead from precious metal solution
JP3227656B2 (en) Method for extracting high purity platinum from platinum alloy by electrolysis
US6846470B2 (en) Methods for producing indium-containing aqueous solutions containing reduced amounts of metal impurities
JP2021143378A (en) Method for mutually separating platinum-group element
CA2563435A1 (en) Precious metal recovery
JPH11229172A (en) Method and apparatus for producing high-purity copper
JP2002194581A (en) Method for recovering platinum group metal from metal electrode
US2612470A (en) Selective electrodeposition of silver
RU2100484C1 (en) Process of winning of silver from its alloys
EP0715000B1 (en) Electroless plating bath of iridium
JP2021036069A (en) Method for mutually separating of platinum group elements
JP2000178664A (en) Method for collectively separating platinum group element by solvent extraction
JP2619893B2 (en) Precious metal recovery method
EP0530872B1 (en) Process for producing a titanium III-sulphate solution
JP2622019B2 (en) Method for producing granular copper fine powder
JP2619892B2 (en) Precious metal recovery method
AU5207186A (en) An electrolytic process for the simultaneous deposition of gold and replenishment of elemental iodine
JPS6353267B2 (en)
JP2571591B2 (en) Precious metal recovery method
RU2792512C1 (en) Method for purification of rhodium solution from impurities
JP2001262206A (en) Method for producing silver oxide and method for producing silver powder
JPS62205294A (en) Method for recovering pd, pt and rh from dichlorodiammine-pd filtrate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees