JP3111220B1 - Oriented single-layer ferroelectric oxide thin film, method for producing the same, and switching element using the ferroelectric thin film - Google Patents

Oriented single-layer ferroelectric oxide thin film, method for producing the same, and switching element using the ferroelectric thin film

Info

Publication number
JP3111220B1
JP3111220B1 JP29512199A JP29512199A JP3111220B1 JP 3111220 B1 JP3111220 B1 JP 3111220B1 JP 29512199 A JP29512199 A JP 29512199A JP 29512199 A JP29512199 A JP 29512199A JP 3111220 B1 JP3111220 B1 JP 3111220B1
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric oxide
oxide thin
ferroelectric
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29512199A
Other languages
Japanese (ja)
Other versions
JP2001114597A (en
Inventor
滋樹 酒井
裕之 太田
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP29512199A priority Critical patent/JP3111220B1/en
Application granted granted Critical
Publication of JP3111220B1 publication Critical patent/JP3111220B1/en
Publication of JP2001114597A publication Critical patent/JP2001114597A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

【要約】 【課題】平滑な表面を有し、高品質なスイッチング素子
の作製ために有用な配向性単層強誘電体酸化物薄膜及び
その工業的に有利な製造方法並びに該平滑な表面を有す
る強誘電体酸化物薄膜上に導電体薄膜を積層してなる高
品質なスイッチング素子を提供すること。 【解決手段】単結晶基板上に平滑な表面を有する強誘電
体酸化物薄膜が形成されてなる配向性単層強誘電体酸化
物薄膜。単結晶基板上に強誘電体酸化物薄膜形成用塗布
液を塗布・乾燥し、ついで仮焼を施す工程を複数回繰り
返すことにより所定の膜厚を有する強誘電体酸化物仮焼
薄膜を堆積させた後、当該仮焼薄膜を結晶化させる。
Kind Code: A1 An oriented single-layer ferroelectric oxide thin film having a smooth surface and useful for producing a high-quality switching element, an industrially advantageous production method thereof, and having the smooth surface To provide a high-quality switching element in which a conductive thin film is laminated on a ferroelectric oxide thin film. An oriented single-layer ferroelectric oxide thin film is formed by forming a ferroelectric oxide thin film having a smooth surface on a single crystal substrate. A coating liquid for forming a ferroelectric oxide thin film is applied and dried on a single crystal substrate, and then a step of performing calcination is repeated a plurality of times to deposit a calcined ferroelectric oxide thin film having a predetermined thickness. After that, the calcined thin film is crystallized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平滑な表面を有す
る強誘電体酸化物薄膜及びその工業的に有利な製造方法
並びに該強誘電体酸化物薄膜上に導電体薄膜を積層して
なるスイッチング素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric oxide thin film having a smooth surface, an industrially advantageous production method thereof, and a switching method comprising laminating a conductive thin film on the ferroelectric oxide thin film. It relates to an element.

【0002】[0002]

【従来の技術】強誘電体酸化物薄膜例えば、強誘電体ジ
ルコニウム・チタン酸鉛(以下、PZTという)は、ス
パッタリング、レーザーアブレーション法、化学気相成
長法(CVD)、ゾル・ゲル法、有機金属塗布分解方法(M
OD)などによって製造されている。これらの製造方法の
うち、最も製膜作業が簡便で、設備投資、コストが小さ
い製膜方法は有機金属塗布分解法であり、工業的に優れ
た方法と言える。
2. Description of the Related Art Ferroelectric oxide thin films, for example, ferroelectric lead zirconium titanate (hereinafter referred to as PZT) are formed by sputtering, laser ablation, chemical vapor deposition (CVD), sol-gel, organic Metal coating disassembly method (M
OD). Among these production methods, the one with the simplest film-forming operation and the smallest capital investment and cost is the organometallic coating decomposition method, which can be said to be an industrially superior method.

【0003】この有機金属塗布分解法よって、強誘電体
酸化物薄膜、例えばPZT薄膜を得るには、鉛、ジルコニ
ウム、そしてチタンを含む3種類の有機金属溶液(PZT薄
膜形成用塗布液)を用意し、所望とする強誘電体PZTの
組成比となるように、これら3種類のPZT薄膜形成用塗布
液を混合し、基板上に塗布し(塗布工程)、次いで該塗
布基板を適温に保持し有機溶媒を蒸発させ(乾燥工
程)、さらにこの基板を乾燥工程よりも高い適温で仮焼
を行い(仮焼工程)、最後に仮焼工程と同じ温度かさら
に高温で仮焼薄膜を結晶化させる(結晶化工程)工程を
組みあわせるが、一回の塗布工程で得られるPZT薄膜の
膜厚は限られているので、所望の膜厚を有するPZT薄膜
を得るには上記塗布、乾燥、仮焼及び結晶化工程からな
る一連の工程を複数回繰り返すことを必須とする方法が
採用されている。
In order to obtain a ferroelectric oxide thin film, for example, a PZT thin film by this organometallic coating decomposition method, three kinds of organic metal solutions containing Pb, zirconium and titanium (coating liquids for forming a PZT thin film) are prepared. Then, these three kinds of PZT thin film forming coating liquids are mixed so as to have a desired composition ratio of the ferroelectric PZT, and coated on a substrate (a coating step). Then, the coated substrate is kept at an appropriate temperature. The organic solvent is evaporated (drying step), and the substrate is calcined at an appropriate temperature higher than the drying step (calcining step). Finally, the calcined thin film is crystallized at the same temperature or a higher temperature as the calcining step. (Crystallization step) Combine the steps, but since the thickness of the PZT thin film obtained in one coating step is limited, the above coating, drying and calcining are necessary to obtain a PZT thin film having the desired thickness. A series of steps consisting of How as essential it has been adopted.

【0004】しかしながら、この有機金属塗布分解法は
工業的に優れた方法にもかかわらず、二つの問題点があ
った。
However, this organometallic coating / decomposing method has two problems in spite of being an industrially superior method.

【0005】その一つは、得られる強誘電体薄膜の表面
が平滑でなく凹凸が大きいという問題である。すなわ
ち、例えば、図4に示されるように、PZT薄膜形成用塗
布液として、鉛、ジルコニウム、そしてチタンを含む3
種類の有機金属溶液を用い、かつ塗布−乾燥−仮焼−結
晶化の一連の工程を10回繰り返すことにより作製され
たPZT薄膜の表面は図6に示されるように平滑でなく極
めて大きい凹凸が形成されてしまう。ところで、このよ
うな強誘電体酸化物薄膜の代表的な応用例として、PZT
薄膜と導電性薄膜とを接合し、強誘電体PZTに生じる分
極によって、導電薄膜の導電率を制御する素子(スイッ
チング素子)が提案されている(S. Mathews et al.,SC
IENCE vol. 276 (1996) 238.)。このスイッチング素子
は強誘電体PZT薄膜上にさらに導電性薄膜を加熱した条
件のもとで積層することにより作製されるが、図2に示
されるように、その表面に大きな凹凸のある強誘電体PZ
T薄膜を用いた場合には、強誘電体酸化物薄膜と導電性
薄膜の密着性が悪くなり、また生じる凹凸差により導電
性薄膜を流れる電流に不均一が生じ所望とする高品質の
スイッチング素子が得られないと問題が惹起する。
One of the problems is that the surface of the obtained ferroelectric thin film is not smooth and has large irregularities. That is, for example, as shown in FIG. 4, the coating liquid for forming a PZT thin film contains lead, zirconium, and titanium.
As shown in FIG. 6, the surface of the PZT thin film produced by using a series of organic metal solutions and repeating a series of steps of coating, drying, calcining, and crystallization ten times has extremely large irregularities as shown in FIG. Will be formed. By the way, as a typical application example of such a ferroelectric oxide thin film, PZT
An element (switching element) that joins a thin film and a conductive thin film and controls the conductivity of the conductive thin film by polarization generated in a ferroelectric PZT has been proposed (S. Mathews et al., SC
IENCE vol. 276 (1996) 238.). This switching element is manufactured by further laminating a conductive thin film on a ferroelectric PZT thin film under the condition of heating, and as shown in FIG. PZ
When a T thin film is used, the adhesion between the ferroelectric oxide thin film and the conductive thin film deteriorates, and the unevenness of the generated unevenness causes the current flowing through the conductive thin film to become non-uniform. If not, problems will arise.

【0006】その二つ目は、所望の膜厚を有する強誘電
体酸化物薄膜の形成のためにその都度たとえば600℃
以上という高温条件にある結晶化工程を必要とする点で
ある。先に述べたように、従来PZT薄膜を作製する場
合、塗布−乾燥−仮焼−結晶化の一連の工程を例えば1
0回以上繰り返す操作を余儀なくされ、そのために従来
法では結晶化工程の緻密な管理体制及び多大なエネルギ
ーコストの支出を必要とする問題がありそのための改善
が強く要望されていた。
The second is to form a ferroelectric oxide thin film having a desired film thickness, for example, at 600 ° C. each time.
This is a point that requires a crystallization step under the high temperature conditions described above. As described above, when a conventional PZT thin film is manufactured, a series of steps of coating, drying, calcining, and crystallization is performed by, for example, one step.
The operation has to be repeated zero or more times. Therefore, in the conventional method, there is a problem that a precise control system of the crystallization step and a large expenditure of energy cost are required. Therefore, improvement for such a problem has been strongly demanded.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記従来技術
の事情に鑑みなされたものであって、平滑な表面を有
し、高品質なスイッチング素子の作製するために有用な
配向性単層強誘電体酸化物薄膜及びその工業的に有利な
製造方法並びに該強誘電体酸化物薄膜上に導電体薄膜を
積層してなる高品質なスイッチング素子を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances of the prior art, and has an oriented single-layer structure having a smooth surface and useful for producing a high-quality switching element. It is an object of the present invention to provide a dielectric oxide thin film, an industrially advantageous production method thereof, and a high-quality switching element obtained by laminating a conductive thin film on the ferroelectric oxide thin film.

【0008】[0008]

【課題を解決する手段】本発明者らは、上記課題を解決
するために鋭意検討した結果、従来の常識に反し、単結
晶基板上に強誘電体酸化物薄膜形成用塗布液を塗布・乾
燥し、ついで仮焼を施す工程を複数回繰り返すことによ
り予め所定の膜厚を有する強誘電体酸化物仮焼薄膜を堆
積しておき、しかる後該仮焼薄膜を一回の結晶化工程に
付すことにより、平滑な表面を有する強誘電体酸化物薄
膜が得られることを見出し本発明を完成するに至った。
すなわち、本発明によれば、 第一に、単結晶基板上
に、分子層レベルの凹凸からなる平滑な表面を有する、
単層の強誘電体酸化物薄膜が形成されてなる配向性単層
強誘電体酸化物薄膜が提供される。第二に、第一の発明
において、配向性単層強誘電体酸化物薄膜が、一般式 Pb(ZrTi1−x)O (式中、xは0.3≦x≦0.7の数値を表す) で示される、強誘電体ジルコニウム・チタン酸鉛である
配向性単層強誘電体酸化物薄膜が提供される。第三に、
単結晶基板上に強誘電体酸化物薄膜形成用塗布液を塗布
・乾燥し、ついで仮焼を施す工程を複数回繰り返すこと
により所定の膜厚を有する強誘電体酸化物仮焼薄膜を堆
積した後、当該仮焼薄膜を結晶化することを特徴とする
第一又は第二の発明記載の配向性単層強誘電体酸化物薄
膜の作製方法が提供される。第四に、第三の発明におい
て、結晶化温度が600℃以上であることを特徴とする
配向性単層強誘電体酸化物薄膜の作製方法が提供され
る。第五に、配向性単層強誘電体酸化物薄膜が、一般式 Pb(ZrTi1−x)O (式中、xは0.3≦x≦0.7の数値を表す) で示される、強誘電体ジルコニウム・チタン酸鉛である
第三又は第四発明の配向性単層強誘電体酸化物薄膜の作
製方法が提供される。第六に、第一乃至第五何れかの発
明で得られる配向性単層誘電体酸化物薄膜上に導電性薄
膜を積層してなるスイッチング素子が提供される。
Means for Solving the Problems The present inventors have solved the above problems.
As a result of intensive examination to make
Coating liquid for ferroelectric oxide thin film formation
And then repeat the process of calcining several times.
A calcined thin film of ferroelectric oxide having a predetermined thickness in advance.
After that, the calcined thin film is subjected to one crystallization step.
By attaching, a ferroelectric oxide thin film having a smooth surface
It was found that a film was obtained, and the present invention was completed.
That is, according to the present invention, first, on a single crystal substrate
ToHaving a smooth surface consisting of irregularities at the molecular layer level,
Single layerOriented monolayer formed with ferroelectric oxide thin film
A ferroelectric oxide thin film is provided. Second, the first invention
In the above, the oriented single-layer ferroelectric oxide thin film has the general formula Pb (ZrxTi1-x) O3  (Where x represents a numerical value of 0.3 ≦ x ≦ 0.7), which is a ferroelectric zirconium lead titanate.
An oriented single-layer ferroelectric oxide thin film is provided. Third,
Coating solution for forming ferroelectric oxide thin film on single crystal substrate
・ Repeating the process of drying and then calcining several times
Deposit a calcined thin film of ferroelectric oxide
After stacking, the calcined thin film is crystallized.
The oriented single-layer ferroelectric oxide thin film according to the first or second invention.
A method of making a membrane is provided. Fourth, in the third invention
Wherein the crystallization temperature is at least 600 ° C.
A method for producing an oriented single-layer ferroelectric oxide thin film is provided.
You. Fifth, the oriented single-layer ferroelectric oxide thin film has the general formula Pb (ZrxTi1-x) O3  (Where x represents a numerical value of 0.3 ≦ x ≦ 0.7), which is a ferroelectric zirconium lead titanate.
Fabrication of the oriented single-layer ferroelectric oxide thin film of the third or fourth invention
A manufacturing method is provided. Sixth, any of the first to fifth issues
Conductive thin film on oriented single-layer dielectric oxide thin film
A switching element formed by stacking films is provided.

【0009】[0009]

【発明の実施の形態】以下、本発明について、更に詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0010】本発明に係る配向性強誘電体酸化物薄膜
は、平滑な表面を有し、かつ単層であることを特徴とし
ている。ここで、「平滑な表面」とは、分子層レベルの
深さの凹凸より成る表面と定義される。また、本発明に
おける「単層」なる用語は、「単結晶基板上に強誘電体
酸化物薄膜形成用塗布液を塗布・乾燥し、ついで仮焼を
施す工程を複数回繰り返すことにより予め所定の膜厚を
有する強誘電体酸化物仮焼薄膜を堆積しておき、しかる
後、該仮焼薄膜を一回の結晶化工程に付すことによって
形成された薄膜層」を意味する。従って、同じ強誘電体
酸化物薄膜形成用塗布液を使用したとしても、従来のよ
うに結晶化工程を少なくとも複数繰り返すことにより形
成される薄膜層は「多層」或いは「複層」として取り扱
われ、本発明の「単層」には含まれない。
The oriented ferroelectric oxide thin film according to the present invention is characterized in that it has a smooth surface and is a single layer. Here, “smooth surface” refers to the molecular layer level.
It is defined as a surface consisting of irregularities of depth. In addition, the term “single layer” in the present invention refers to a “predetermined by repeating a process of applying and drying a coating liquid for forming a ferroelectric oxide thin film on a single crystal substrate and then performing calcination a plurality of times. Means a thin film layer formed by depositing a calcined ferroelectric oxide thin film having a thickness and then subjecting the calcined thin film to a single crystallization step. Therefore, even if the same ferroelectric oxide thin film forming coating liquid is used, a thin film layer formed by repeating at least a plurality of crystallization steps as in the past is treated as a “multilayer” or “multilayer”, It is not included in the “single layer” of the present invention.

【0011】本発明の対象となる強誘電体酸化物として
は、例えば、PbTiO, (Pb,La)(Ti,Zr)O, BiTiO
12, SrBiTaOなど、従来公知のものが全て適用
できるが、下記一般式 Pb(ZrTi1−x)O (式中、xは0.3≦x≦0.7の数値を表す)で示されるジル
コニウム・チタン酸鉛が好ましく使用される。
As a ferroelectric oxide which is an object of the present invention,
Is, for example, PbTiO3, (Pb, La) (Ti, Zr) O3, Bi4Ti3O
12, SrBi2Ta2O9Conventionally all known applications
The following general formula Pb (ZrxTi1-x) O3  (Where x represents a numerical value of 0.3 ≦ x ≦ 0.7)
Conium lead titanate is preferably used.

【0012】本発明に係る配向性単層強誘電体酸化物薄
膜は、単結晶基板上に強誘電体酸化物薄膜形成用塗布液
を塗布・乾燥し、ついで仮焼を施す工程を複数回繰り返
すことにより所定の膜厚を有する強誘電体酸化物仮焼薄
膜を予め堆積した後、当該仮焼薄膜を結晶化することに
よって作製される。
In the oriented single-layer ferroelectric oxide thin film according to the present invention, a step of applying and drying a coating liquid for forming a ferroelectric oxide thin film on a single crystal substrate and then performing calcination is repeated a plurality of times. Thus, the ferroelectric oxide calcined thin film having a predetermined film thickness is deposited in advance, and then the calcined thin film is crystallized.

【0013】基板としては、単結晶のものであれば何れ
のものも使用できるが、強誘電体酸化物薄膜の表面の平
滑性の向上性からみて、その結晶構造が強誘電体酸化物
と類似しているか同じものを使用することが好ましい。
例えば、強誘電体酸化物としてジルコニウム・チタン酸
鉛(PZT)を用いた場合には、単結晶基板としては、結
晶構造がPZTと類似若しくは同一である、単結晶のSrTiO
, NbドープSrTiO, LaドープSrTiO, LaAlO, YAl
O, LaGaO,LaSrGaO, LaSrAlO, NdGaO, AlO
, MgO, CeO, イットリウム安定化ジルコニア(YS
Z)、BiSrCuO, BiSrCaCun+1O2n+6(n
=1,2), YBaCuO7+d等の酸化物を使用すればよ
い。なお、本発明でいう、単結晶基板とは、強誘電体酸
化物と接触する層が単結晶構造を有していればよく、例
えばその下面に他の種々の層が設けらた多層構成のもの
でも構わない。このような多層基板の例としては、例え
ば、Siウエハー上に形成された単結晶のSrTiO, Nbド
ープSrTiO, LaドープSrTiO, LaAlO, YAlO, LaG
aO, LaSrGaO, LaSrAlO, NdGaO, AlO, MgO,
CeO, イットリウム安定化ジルコニア(YSZ)、BiSr
CuO, BiSrCaCun+1O2n+6(n=1,2), YBa
CuO7+d等の薄膜基板、または単結晶基板の裏面
に多結晶の金属膜を蒸着した基板などが挙げられる。
The substrate may be any single-crystal substrate.
Can be used, but the flat surface of the ferroelectric oxide thin film
From the viewpoint of lubricity, its crystal structure is ferroelectric oxide
It is preferable to use something similar or the same as.
For example, zirconium titanate as a ferroelectric oxide
When lead (PZT) is used, a single-crystal substrate
Single crystal SrTiO with crystal structure similar or identical to PZT
3, Nb-doped SrTiO3, La-doped SrTiO3, LaAlO3, YAl
O3, LaGaO3, LaSrGaO4, LaSrAlO4, NdGaO3, Al2O
3, MgO, CeO2, Yttrium stabilized zirconia (YS
Z), Bi2Sr2CuOx, Bi2Sr2CanCun + 1O2n + 6(n
= 1,2), YBa2Cu3O7 + dUse an oxide such as
No. In the present invention, a single crystal substrate is a ferroelectric acid.
It is sufficient that the layer in contact with the oxide has a single crystal structure.
For example, a multilayer structure with various other layers provided on its lower surface
But it doesn't matter. Examples of such a multilayer substrate include, for example,
For example, single crystal SrTiO formed on Si wafer3, Nb
OP SrTiO3, La-doped SrTiO3, LaAlO3, YAlO3, LaG
aO3, LaSrGaO4, LaSrAlO4, NdGaO3, Al2O3, MgO,
 CeO2, Yttrium stabilized zirconia (YSZ), Bi2Sr
2CuOx, Bi2Sr2CanCun + 1O2n + 6(n = 1,2), YBa
2Cu3O7 + dThin film substrate, etc.
And a substrate on which a polycrystalline metal film is deposited.

【0014】単結晶基板上に塗布される強誘電体酸化物
薄膜形成用塗布液としては、従来公知の金属アルコキシ
ド或いは有機酸金属塩類などが全て適用でき、これらは
アルコール類、ケトン類、エステル類、脂肪酸などの有
機溶媒に溶解させた後、塗布工程に供される。例えば、
PZT薄膜を作製するためには、単結晶基板に塗布される
塗布液としては、鉛、ジルコニウム、チタンを各々含む
3種類の有機金属化合物の溶液が用意され、これらの混
合溶液を所定の組成比(Pb(ZrTi1−x)O(0.3≦x≦
0.7))になるよう混合され、単結晶基板上に塗布され
る。
As the coating liquid for forming a ferroelectric oxide thin film applied on a single crystal substrate, any of conventionally known metal alkoxides or metal salts of organic acids can be used, and these include alcohols, ketones and esters. And then dissolved in an organic solvent such as a fatty acid, and then subjected to a coating step. For example,
In order to produce a PZT thin film, the coating liquid applied to the single crystal substrate includes lead, zirconium, and titanium, respectively.
Solutions of three kinds of organometallic compounds are prepared, and a mixed solution of these is mixed at a predetermined composition ratio (Pb (Zr x Ti 1-x ) O 3 (0.3 ≦ x ≦
0.7)) and applied on a single crystal substrate.

【0015】上記強誘電体酸化物薄膜形成用塗布液は単
結晶基板に塗布されるが、この塗布工程は、スピン塗布
法やディップ法の従来公知の塗布方法によって行われ
る。
The coating liquid for forming a ferroelectric oxide thin film is applied to a single crystal substrate. This application step is performed by a conventionally known application method such as spin coating or dipping.

【0016】単結晶基板上に塗布された強誘電体酸化物
は、ついで、ホットプレートなどの加熱手段により乾燥
され、それに含まれる有機溶媒が除去される。この乾燥
工程は好ましくは80〜300℃の温度下で行われる。
The ferroelectric oxide applied on the single crystal substrate is dried by a heating means such as a hot plate to remove the organic solvent contained therein. This drying step is preferably performed at a temperature of 80 to 300 ° C.

【0017】次に、乾燥工程後の強誘電体酸化物は仮焼
工程に供されるが、該強誘電体酸化物の膜厚が必要な膜
厚に達していない場合には所定の膜厚が得られるまで上
記塗布工程と乾燥工程を更に繰り返し行った後、仮焼工
程に移す。もちろん第一回目の塗布−乾燥工程で所定の
膜厚が得られたならばそのまま仮焼工程に移せばよい。
Next, the ferroelectric oxide after the drying step is subjected to a calcining step, and when the thickness of the ferroelectric oxide has not reached a required thickness, the ferroelectric oxide has a predetermined thickness. After the above-mentioned coating step and drying step are further repeated until is obtained, the process is moved to a calcination step. Of course, if a predetermined film thickness is obtained in the first coating-drying step, it may be directly transferred to the calcining step.

【0018】必要な膜厚に相当する強誘電体酸化物を単
結晶基板上に堆積し、有機溶媒を乾燥した後、強誘電体
酸化物の仮焼を行う。この仮焼工程は、好ましくは35
0℃〜500℃より選ばれる温度に反応炉の温度を保持
しておき、次いで酸素、または酸素を含む混合ガスを反
応炉内に流した後、単結晶基板上に堆積された強誘電体
酸化物を反応炉に入れて加熱する態様を採ることが好ま
しい。
A ferroelectric oxide having a required thickness is deposited on a single crystal substrate, and after drying the organic solvent, the ferroelectric oxide is calcined. This calcining step is preferably performed at 35
The temperature of the reaction furnace is maintained at a temperature selected from 0 ° C. to 500 ° C., and then oxygen or a mixed gas containing oxygen is flowed into the reaction furnace, and then the ferroelectric oxidation deposited on the single crystal substrate is performed. It is preferable to adopt a mode in which the substance is placed in a reaction furnace and heated.

【0019】なお、塗布工程・乾燥工程が多数回に及ぶ
場合は、塗布工程・乾燥工程を3ないし5回繰り返した
後、一旦仮焼工程を行い、その後また、塗布工程・乾燥
工程を繰り返した後、仕上げの仮焼工程を行ってもよ
い。
When the coating and drying steps are repeated many times, the coating and drying steps are repeated three to five times, then the calcining step is performed once, and then the coating and drying steps are repeated. Thereafter, a finishing calcination step may be performed.

【0020】仮焼工程により、単結晶基板上に堆積され
た所定の膜厚を有する強誘電体酸化物仮焼薄膜は、つい
で結晶化工程に供される。この結晶化工程は、好ましく
は600℃以上750℃以下より選ばれる温度に反応炉
を保持し、ついで酸素、または酸素を含む混合ガスを反
応炉内に流した後、単結晶基板上に堆積された強誘電体
酸化物薄膜を反応炉に入れて加熱する態様を採ることが
好ましい。
In the calcining step, the ferroelectric oxide calcined thin film having a predetermined thickness deposited on the single crystal substrate is then subjected to a crystallization step. In this crystallization step, the reaction furnace is preferably maintained at a temperature selected from 600 ° C. or more and 750 ° C. or less, and then oxygen or a mixed gas containing oxygen is allowed to flow into the reaction furnace and then deposited on the single crystal substrate. Preferably, the ferroelectric oxide thin film is placed in a reactor and heated.

【0021】本発明においては、従来の常識に反し、単
結晶基板上に強誘電体酸化物薄膜形成用塗布液を塗布・
乾燥し、ついで仮焼を施す工程を複数回繰り返すことに
より予め所定の膜厚を有する強誘電体酸化物仮焼薄膜を
堆積しておき、しかる後該仮焼薄膜を一回の結晶化工程
に付したことから、平滑な表面を有する配向性強誘電体
酸化物単層薄膜が得られる。
In the present invention, contrary to conventional wisdom, a coating liquid for forming a ferroelectric oxide thin film is applied to a single crystal substrate.
The ferroelectric oxide calcined thin film having a predetermined film thickness is deposited in advance by repeating the process of drying and then calcining a plurality of times, and then the calcined thin film is subjected to one crystallization step. As a result, an oriented ferroelectric oxide single-layer thin film having a smooth surface can be obtained.

【0022】従って、かかる配向性強誘電体酸化物単層
薄膜に導電性薄膜を積層させたスイッチング素子は図1
に示されるように基板との密着性に優れると共に均一な
電流が流れ、しかも良好なスイッチング特性を有するも
のである。
Therefore, a switching element in which a conductive thin film is laminated on such an oriented ferroelectric oxide single-layer thin film is shown in FIG.
As shown in (1), it has excellent adhesion to the substrate, allows a uniform current to flow, and has good switching characteristics.

【0023】本発明において、このようなスイッチング
素子を作製するには、前記で得た強誘電体酸化物薄膜上
にさらに導電性薄膜を加熱した条件のもとで積層させれ
ばよい。導電性薄膜としては、従来公知のものが何れも
使用できるが、強誘電体酸化物薄膜と界面での反応性が
小さく、強誘電体酸化物薄膜の結晶化温度以下例えば5
50℃以下の温度でも結晶成長するものが好ましく使用
される。このような導電性薄膜としては、例えば、Bi
SrCuO、PbSrCuO,PbSr CaCuO, ZnO等が挙
げられる。導電性薄膜を結晶成長させるには、従来公知
の成長方法例えば分子線エピタキシー法、レーザーアブ
レーション法、電子ビーム蒸着法、化学気相成長法、ゾ
ル・ゲル法、有機金属塗布分解法などの成長方法を用
い、好ましくは強誘電体酸化物薄膜の結晶化温度以下例
えば550℃以下の温度を採用すればよい。
In the present invention, such switching
To fabricate the device, the ferroelectric oxide thin film obtained above
The conductive thin film is further laminated under heated conditions.
I just need. As the conductive thin film, any conventionally known conductive thin film can be used.
Can be used, but reactivity at the interface with the ferroelectric oxide thin film
Smaller than the crystallization temperature of the ferroelectric oxide thin film, for example, 5
It is preferable to use one that can grow crystals even at a temperature of 50 ° C or less.
Is done. As such a conductive thin film, for example, Bi2
Sr2CuOx, PbSr2CuOy, PbSr 2CaCu2Oz, ZnO, etc.
I can do it. Conventionally known methods for crystal growth of conductive thin films
Growth methods such as molecular beam epitaxy and laser ablation
Method, electron beam evaporation, chemical vapor deposition,
Use growth methods such as gel-gel method and organometallic coating decomposition method
Below, preferably below the crystallization temperature of the ferroelectric oxide thin film
For example, a temperature of 550 ° C. or less may be employed.

【0024】[0024]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0025】実施例1 [PZT薄膜の作製]図3に示すフローチャートに沿ってP
ZT薄膜を作製した。まず、鉛、チタン、ジルコニウム原
子を各々含む三種類の有機金属化合物溶液を用意した
((株)高純度化学社製、有機鉛溶液; SYM-PB05, 有
機チタン溶液; SYM-TI05, 有機ジルコニウム溶液; SY
M-ZR04)。なお、これらの溶液に含まれる鉛、チタン、
ジルコニウム原子のモル濃度は、それぞれ0.5mol/リッ
トル、0.5mol/リットル、0.4mol/リットルであった。
Example 1 [Preparation of PZT thin film] According to the flowchart shown in FIG.
A ZT thin film was prepared. First, three kinds of organometallic compound solutions each containing a lead, titanium and zirconium atom were prepared (manufactured by Kojundo Chemical Co., Ltd., organic lead solution; SYM-PB05, organic titanium solution; SYM-TI05, organic zirconium solution). SY
M-ZR04). In addition, lead, titanium,
The molar concentrations of the zirconium atoms were 0.5 mol / liter, 0.5 mol / liter and 0.4 mol / liter, respectively.

【0026】次にこれらの溶液を鉛、ジルコニウム、チ
タンのモル比が1.1:0.5:0.5となるよう混合した。た
だし混合溶液に含まれる鉛は化学量論比よりも前記のよ
うに10パーセント過剰に混合した。これにより、熱処
理中の鉛の脱離が補償される。次に、この混合溶液をNb
ドープSrTiO(001)基板上にスポイトで2ないし3回
ほど滴下し、スピン塗布法により基板上に塗布した(塗
布工程)。スピン塗布法の条件は500回転/秒で10
秒ほど基板を回転し、さらに続いて、4000回転/秒
で30秒ほど基板を回転させる。1回の塗布工程によっ
て約40nmのPZT薄膜の積層に必要な原料が堆積された。
Next, these solutions were mixed such that the molar ratio of lead, zirconium, and titanium was 1.1: 0.5: 0.5. However, the lead contained in the mixed solution was mixed by 10% in excess of the stoichiometric ratio as described above. This compensates for the desorption of lead during the heat treatment. Next, this mixed solution was
The solution was dropped onto a doped SrTiO 3 (001) substrate about two or three times with a dropper, and applied onto the substrate by a spin coating method (coating step). The spin coating condition is 10 at 500 revolutions / second.
The substrate is rotated for about second, and subsequently, the substrate is rotated at 4000 revolutions / second for about 30 seconds. The raw material necessary for laminating a PZT thin film of about 40 nm was deposited by one coating process.

【0027】次にこの基板をホットプレート上で、80
℃で3分、250℃で10分加熱して有機溶媒を乾燥さ
せた(乾燥工程)。さらにこれらの塗布工程と乾燥工程
とを4回繰り返した(合計5回行う)。
Next, the substrate is placed on a hot plate at 80
The organic solvent was dried by heating at 300C for 3 minutes and 250C for 10 minutes (drying step). Further, these application step and drying step were repeated four times (a total of five times).

【0028】次にこの試料を480℃に加熱した反応炉
に入れ、酸素ガス気流中で20分間の加熱を行った(仮
焼工程)。その後また前記塗布工程と乾燥工程を5回繰
り返し、同じ条件で仮焼した。
Next, this sample was placed in a reaction furnace heated to 480 ° C., and was heated in an oxygen gas stream for 20 minutes (calcination step). Thereafter, the coating step and the drying step were repeated five times and calcined under the same conditions.

【0029】最後にこの試料を650℃に加熱した反応
炉に入れ、酸素気流中で20分間の加熱を行った(結晶
化工程)。以上の工程により、NbドープSrTiO(001)
基板上に膜厚400nmを有するPZT薄膜を作製することがで
きた。
Finally, this sample was placed in a reactor heated to 650 ° C., and heated in an oxygen stream for 20 minutes (crystallization step). Through the above steps, Nb-doped SrTiO 3 (001)
A PZT thin film having a thickness of 400 nm was successfully fabricated on the substrate.

【0030】上記で得たPZT薄膜の結晶構造をX線回折
(θ/2θスキャン)により測定した。その結果、PZT薄
膜はPZT[001]//NbドープSrTiO[001]なる関係をもっ
て、エピタキシャル成長していることが分かった。さら
に、X線回折(ポールフィギュア)の測定結果によれ
ば、面内はPZT薄膜はPZT[100]//NbドープSrTiO[10
0]なる関係をもってエピタキシャル成長していることが
分かった。 また、この薄膜の表面を原子間力顕微鏡(A
FM)によって観察した。その結果を図5に示す。図5か
ら薄膜表面には突起状の粒子などは観察されず極めて平
滑であることが分かる。また、AFMの観察結果から計算
された、薄膜の平均2乗粗さはわずか0.9nmであった。
The crystal structure of the PZT thin film obtained above was measured by X-ray diffraction (θ / 2θ scan). As a result, it was found that the PZT thin film was epitaxially grown with a relationship of PZT [001] // Nb-doped SrTiO 3 [001]. Furthermore, according to the measurement result of X-ray diffraction (pole figure), the in-plane PZT thin film is PZT [100] // Nb-doped SrTiO 3 [10
[0] was found to have been epitaxially grown. In addition, the surface of this thin film was cleaned with an atomic force microscope (A
FM). The result is shown in FIG. From FIG. 5, it can be seen that no protrusion-like particles are observed on the surface of the thin film and that the film is extremely smooth. The mean square roughness of the thin film calculated from the AFM observation was only 0.9 nm.

【0031】比較例1 [比較用のPZT薄膜の作製]結晶化工程が一回のみであ
ることが重要であることを示すため、図3に示されるフ
ローチャートに代えて図4に示される従来公知の結晶化
工程を10回繰り返すフローチャートに沿って作製した
以外は実施例1と同様にして比較用のPZT薄膜を作製し
た。この薄膜の表面を実施例1と同様にして原子間力顕
微鏡(AFM)によって観察した。その結果を図6に示す。
図6から薄膜表面には著しい凹凸が形成されていること
が分かる。また、AFMの観察結果から計算された、薄膜
の平均2乗粗さは3.6nmという極めて大きな値であっ
た。
COMPARATIVE EXAMPLE 1 [Preparation of Comparative PZT Thin Film] In order to show that it is important that the crystallization step is performed only once, the conventional method shown in FIG. 4 is used instead of the flowchart shown in FIG. A PZT thin film for comparison was produced in the same manner as in Example 1 except that the crystallization step was repeated 10 times. The surface of the thin film was observed with an atomic force microscope (AFM) in the same manner as in Example 1. FIG. 6 shows the result.
From FIG. 6, it can be seen that significant irregularities are formed on the surface of the thin film. Further, the average square roughness of the thin film calculated from the AFM observation result was an extremely large value of 3.6 nm.

【0032】実施例2 [スイッチング素子の作製]実施例1で得られた平滑な
PZT薄膜上に、導電性薄膜を成長させて本発明のスイッ
チング素子を作製した。まずPZT薄膜を高真空(1x10
−8 mbar) の分子線エピタキシー装置に導入した。次
にPZT薄膜表面にオゾンガスを照射した。この時のエピ
タキシー装置内の真空度は約5x10−6 mbarである。こ
の状態で基板を550℃とすることで、わずか9nmの極
めて薄いBiSrCuO薄膜をすることができた。この
ようにして得られたBiSrCuO薄膜は抵抗率約0.1Ω
cmの導電体であった。(図1参照)
Example 2 [Preparation of switching element]
A switching element of the present invention was fabricated by growing a conductive thin film on a PZT thin film. First, the PZT thin film is placed in a high vacuum (1x10
(−8 mbar) molecular beam epitaxy apparatus. Next, the surface of the PZT thin film was irradiated with ozone gas. At this time, the degree of vacuum in the epitaxy apparatus is about 5 × 10 −6 mbar. By setting the substrate to 550 ° C. in this state, an extremely thin Bi 2 Sr 2 CuO x thin film of only 9 nm could be formed. The Bi 2 Sr 2 CuO x thin film thus obtained has a resistivity of about 0.1Ω.
cm conductor. (See Fig. 1)

【0033】次に、上記で得た、BiSrCuO薄膜/P
ZT薄膜/NbドープSrTiO基板構造の、 BiSrCuO
薄膜上に図7に示すように 2つ金の電極を電子ビーム蒸
着法により蒸着した。金電極の膜厚は140nmで、これら
は各々ソース電極、ドレイン電極と呼ばれる。これによ
り導電性のNbドープSrTiO基板をゲート電極とする、
3端子のスイッチング素子が作製された。かかるスイッ
チング素子の概略図を図7に示す。この素子はそのゲー
ト電極に電圧を印加すると強誘電体PZTが分極し、その
分極電荷によりBiSrCuO薄膜の導電率が制御され
る。なお、PZTの分極により電流on状態と電流off状
態の間のスイッチングを行うためには、導電性薄膜を薄
くするのが好ましい。このスイッチング素子にゲート電
極に−3V及び3Vの電圧を印加した時の特性を図8に示
す。3Vのゲート電圧を印加した場合には801が示すよ
うに殆ど電流の流れない電流off状態となっている一
方、−3Vのゲート電圧を印加した場合には802が示すよ
うに電流が流れ、電流on状態となっている。即ち本発明
のスイッチング素子は良好なスイッチング特性をもつこ
とが分かる。これは、実施例2で用いたPZT薄膜が図5
に示すように平滑であったので、PZT上に膜厚が9nmとい
う極めて薄くかつ導電性を有するBiSrCuOが積層
可能となった為と思われる。
Next, the Bi 2 Sr 2 CuO x thin film / P obtained above
Bi 2 Sr 2 CuO x with ZT thin film / Nb-doped SrTiO 3 substrate structure
As shown in FIG. 7, two gold electrodes were deposited on the thin film by an electron beam evaporation method. The thickness of the gold electrode is 140 nm, and these are called a source electrode and a drain electrode, respectively. As a result, a conductive Nb-doped SrTiO 3 substrate is used as a gate electrode.
A three-terminal switching element was produced. FIG. 7 shows a schematic diagram of such a switching element. In this device, when a voltage is applied to its gate electrode, the ferroelectric PZT is polarized, and the conductivity of the Bi 2 Sr 2 CuO x thin film is controlled by the polarization charge. The current is turned on and the current is turned off by the polarization of PZT.
To switch between states, the conductive thin film must be thin
Preferably. FIG. 8 shows the characteristics when voltages of −3 V and 3 V are applied to the gate electrode of this switching element. When a gate voltage of 3 V is applied, the current is in an off state where almost no current flows as shown by 801. On the other hand, when a gate voltage of -3 V is applied, a current flows as shown by 802 and the current is turned off. It is in the on state. That is, it is understood that the switching element of the present invention has good switching characteristics. This is because the PZT thin film used in Example 2 is shown in FIG.
It is considered that the very smooth and conductive Bi 2 Sr 2 CuO x having a thickness of 9 nm can be laminated on the PZT because of the smoothness as shown in FIG.

【0034】比較例2 [比較用スイッチング素子の作製]実施例2において、
PZT薄膜を比較例1のものに代えた以外は実施例2と同
様にして比較用のスイッチング素子を作製した(なお、
このスイッチング素子は本発明者らにより報告されてい
るものでもある。太田 他、1999年 第60回応用物理学会
学術講演会 講演予稿集 No. 1 pp.154 (1p-ZV-6)参
照)。この比較用のスイッチング素子は図6に記載のよ
うにPZT薄膜の表面の凹凸が大きいために、 BiSrCu
O薄膜を22nmほど積層しないとソース・ドレイン電極
間に十分な導電性が得られなかった。図9に比較用スイ
ッチング素子のスイッチング特性を示す。図9では901
が示す特性を仮に「電流off状態」、902が示す特性を電
流on状態とした。しかし、「電流off状態」にも拘わら
ずon状態と同じ程度の電流が流れており、実施例2に記
載のスイッチング素子に比べてスイッチング特性が極め
て劣るものであった。この理由としては、比較例2で用
いたPZT薄膜の凹凸が図6に記載のように激しいので、P
ZT上に積層する BiSrCuO薄膜の膜厚を22nmと、実
施例2と比較して厚くしないと導電性が得られなかっ
た。この厚い膜厚のため、スイッチングが困難になった
為と推定される。
Comparative Example 2 [Preparation of Comparative Switching Element]
A switching element for comparison was fabricated in the same manner as in Example 2 except that the PZT thin film was replaced with that of Comparative Example 1.
This switching element has also been reported by the present inventors. Ota et al., Proceedings of the 60th Annual Conference of the Japan Society of Applied Physics 1999, No. 1 pp.154 (1p-ZV-6)). As shown in FIG. 6, the switching element for comparison has a large unevenness on the surface of the PZT thin film, so that Bi 2 Sr 2 Cu
O x thin film sufficient conductivity unless laminated between the source and drain electrodes as 22nm is not obtained. FIG. 9 shows the switching characteristics of the comparative switching element. In FIG. 9, 901
The characteristic indicated by was temporarily set to “current off state”, and the characteristic indicated by 902 was set to current on state. However, despite the “current off state”, a current of the same level as in the on state was flowing, and the switching characteristics were extremely inferior to those of the switching element described in Example 2. The reason for this is that the unevenness of the PZT thin film used in Comparative Example 2 is severe as shown in FIG.
Unless the film thickness of the Bi 2 Sr 2 CuO x thin film laminated on the ZT was 22 nm, which was larger than that in Example 2, conductivity could not be obtained. It is presumed that switching became difficult due to this thick film thickness.

【0035】[0035]

【発明の効果】本発明においては、従来の常識に反し、
単結晶基板上に強誘電体酸化物薄膜形成用塗布液を塗布
・乾燥し、ついで仮焼を施す工程を複数回繰り返すこと
により予め所定の膜厚を有する強誘電体酸化物仮焼薄膜
を形成しておき、しかる後該仮焼薄膜を一回の結晶化工
程に付したことから、分子層レベルの凹凸からなる平滑
な表面を有し、単層の配向性強誘電体酸化物単層薄膜が
得られる。従って、かかる配向性強誘電体酸化物単層薄
膜に導電性薄膜を積層させたスイッチング素子は図1に
示されるように基板との密着性に優れる共に均一な電流
が流れ、しかも良好なスイッチング特性を有し、工業的
に極めて有用なものである。また本発明の強誘電体酸化
物単層薄膜の作製方法によれば、分子層レベルの凹凸か
らなる平滑な表面を有し、単層の、結晶学的にも優れた
強誘電体酸化物薄膜を簡略された工程で簡単にかつ安価
に作製できる。
According to the present invention, contrary to conventional common sense,
A process for applying and drying a coating liquid for forming a ferroelectric oxide thin film on a single crystal substrate and then performing a calcining process a plurality of times to form a calcined thin film of a predetermined thickness in advance. After that, since the calcined thin film was subjected to one crystallization step, the smoothness comprising irregularities at the molecular layer level was obtained.
A single-layer oriented ferroelectric oxide single-layer thin film having a stable surface is obtained. Therefore, a switching element in which a conductive thin film is laminated on such an oriented ferroelectric oxide single-layer thin film has excellent adhesion to a substrate and a uniform current flows as shown in FIG. Which is industrially extremely useful. Further, according to the method for producing a ferroelectric oxide single-layer thin film of the present invention , unevenness at the molecular layer level
A single-layer ferroelectric oxide thin film having a smooth surface and excellent in crystallographic properties can be easily and inexpensively formed by a simple process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例2の工程により作製された、
酸化物単結晶/PZT強誘電体膜/導電性膜からなるスイ
ッチング素子基板の概略図。
FIG. 1 is produced by the steps of Example 2 of the present invention.
FIG. 2 is a schematic view of a switching element substrate composed of an oxide single crystal / PZT ferroelectric film / conductive film.

【図2】従来工程により作製された、酸化物単結晶/PZ
T強誘電体膜/導電性膜からなるスイッチング素子基板
の概略図。
FIG. 2 Oxide single crystal / PZ produced by conventional process
FIG. 2 is a schematic view of a switching element substrate composed of a T ferroelectric film / conductive film.

【図3】本発明の実施例1に係るPZT薄膜の作製フロー
チャート図。
FIG. 3 is a flowchart of the production of a PZT thin film according to the first embodiment of the present invention.

【図4】比較例1(従来例)に係る PZT薄膜の作製フロ
ーチャート図。
FIG. 4 is a flow chart of the production of a PZT thin film according to Comparative Example 1 (conventional example).

【図5】本発明の実施例1に係るPZT薄膜のAFM像と起伏
を示すグラフ。
FIG. 5 is a graph showing AFM images and undulations of a PZT thin film according to Example 1 of the present invention.

【図6】比較例1(従来例)に係る PZT薄膜のAFM像と
起伏を示すグラフ。
FIG. 6 is a graph showing AFM images and undulations of a PZT thin film according to Comparative Example 1 (conventional example).

【図7】本発明の実施例2に係るスイッチング素子の概
略図。
FIG. 7 is a schematic diagram of a switching element according to a second embodiment of the present invention.

【図8】本発明の実施例2に係るスイッチング素子の1
特性を示すグラフ。
FIG. 8 illustrates a switching element according to a second embodiment of the present invention.
Graph showing characteristics.

【図9】比較例2に係るスイッチング素子の1特性を示
すグラフ。
FIG. 9 is a graph showing one characteristic of the switching element according to Comparative Example 2.

【符号の説明】[Explanation of symbols]

101 導電性薄膜 102 PZT薄膜 103 酸化物単結晶 201 PZTの凹凸により電流が寸断しているところ 202 電流の方向を示す矢印 203 導電性薄膜 204 PZT薄膜 205 酸化物単結晶 501 PZT薄膜のAFM像 502 1μmの長さを示す線分 503 起伏を測定した線分 504 503に示す黒の線分に沿って測定された起伏の度合 601 PZT薄膜のAFM像 602 1μmの長さを示す線分 603 起伏を測定した線分 604 603に示す黒の線分に沿って測定された起伏の度合 701 定電圧源 702 ドレイン電流(I)の向きを示す矢印 703 負荷抵抗 704 電圧計(VDS) 705 電極(ドレイン) 706 導電性薄膜 707 PZT薄膜 708 NbドープSrTiO単結晶基板(導電性がある。ゲー
ト電極。) 709 PZTに分極を生じさせるゲート電圧源(VGS) 710 電極(ソース) 801 電流off状態(VGS =3V) 802 電流on状態(VGS =-3V) 901 電流off状態(VGS =3V) 902 電流on状態(VGS =-3V)
101 Conductive thin film 102 PZT thin film 103 Oxide single crystal 201 Where current is interrupted due to unevenness of PZT 202 Arrow indicating current direction 203 Conductive thin film 204 PZT thin film 205 Oxide single crystal 501 AFM image of PZT thin film 502 1 μm length line segment 503 Line measured undulation 504 Degree of undulation measured along black line shown in 503 601 AFM image of PZT thin film 602 Line segment showing 1 μm length 603 Undulation Measured line segment 604 Degree of undulation measured along black line shown at 603 701 Constant voltage source 702 Arrow indicating direction of drain current ( ID ) 703 Load resistance 704 Voltmeter ( VDS ) 705 Electrode ( Drain) 706 Conductive thin film 707 PZT thin film 708 Nb-doped SrTiO 3 single crystal substrate (conductive; gate electrode) 709 Gate voltage source (V GS ) 710 causing polarization in PZT 710 Electrode (source) 801 Current off state (V GS = 3V) 802 Current on state (V GS = -3V) 901 Current off state (V GS = 3V) 9 02 Current on state (V GS = -3V)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Kyong−Moo Lee et al.,”Effects of He at Treatment on Ep itaxy and Surface Morphology of Pb(Z r,Ti)03 Films on Nb −Doped SrTi03(100)Su bstrates by Spin−C oating”,Journal of the Korean Cerami c Society,Vol.35,N o.8,1998,pp.791−794 (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 CA(STN) JICSTファイル(JOIS) REGISTRY(STN)──────────────────────────────────────────────────続 き Continued on the front page (56) References Kyong-Moo Lee et al. , "Effects of Heat on Treatment on Epitaxy and Surface Morphology of Pb (Zr, Ti) 03 Films on Nb. 35, No. 8, 1998 pp. 791-794 (58) Field surveyed (Int. Cl. 7 , DB name) C30B 1/00-35/00 CA (STN) JICST file (JOIS) REGISTRY (STN)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単結晶基板上に、分子層レベルの凹凸から
なる平滑な表面を有する、単層の強誘電体酸化物薄膜が
形成されてなる配向性単層強誘電体酸化物薄膜。
1. The method according to claim 1, wherein the surface of the single-crystal substrate is formed on the surface of a single crystal substrate.
An oriented single-layer ferroelectric oxide thin film formed by forming a single-layer ferroelectric oxide thin film having a smooth surface .
【請求項2】配向性単層強誘電体酸化物薄膜が、一般式 Pb(ZrTi1−x)O (式中、xは0.3≦x≦0.7の数値を表す) で示される、強誘電体ジルコニウム・チタン酸鉛である
請求項1の配向性単層強誘電体酸化物薄膜。
2. An oriented single-layer ferroelectric oxide thin film has a general formula Pb (ZrxTi1-x) O3  (Where x represents a numerical value of 0.3 ≦ x ≦ 0.7), which is a ferroelectric zirconium lead titanate.
The oriented single-layer ferroelectric oxide thin film according to claim 1.
【請求項3】単結晶基板上に強誘電体酸化物薄膜形成用
塗布液を塗布・乾燥し、ついで仮焼を施す工程を複数回
繰り返すことにより所定の膜厚を有する強誘電体酸化物
仮焼薄膜を堆積した後、当該仮焼薄膜を結晶化すること
を特徴とする請求項1又は2記載の配向性単層強誘電体
酸化物薄膜の作製方法。
3. A process for applying and drying a coating solution for forming a ferroelectric oxide thin film on a single crystal substrate and then performing a calcining process a plurality of times to temporarily prepare a ferroelectric oxide thin film having a predetermined film thickness. 3. The method for producing an oriented single-layer ferroelectric oxide thin film according to claim 1, wherein the calcined thin film is crystallized after depositing the calcined thin film.
【請求項4】結晶化温度が600℃以上であることを特
徴とする請求項3記載の配向性単層強誘電体酸化物薄膜
の作製方法。
4. The method for producing an oriented single-layer ferroelectric oxide thin film according to claim 3, wherein the crystallization temperature is 600 ° C. or higher.
【請求項5】配向性単層強誘電体酸化物薄膜が、一般式 Pb(ZrTi1−x)O (式中、xは0.3≦x≦0.7の数値を表す) で示される、強誘電体ジルコニウム・チタン酸鉛である
請求項3又は4記載の配向性単層強誘電体酸化物薄膜の
作製方法。
5. An oriented single-layer ferroelectric oxide thin film represented by the general formula Pb (ZrxTi1-x) O3  (Where x represents a numerical value of 0.3 ≦ x ≦ 0.7), which is a ferroelectric zirconium lead titanate.
The oriented single-layer ferroelectric oxide thin film according to claim 3 or 4.
Production method.
【請求項6】請求項1乃至5何れか記載の配向性単層強
誘電体酸化物薄膜上に導電性薄膜を積層してなるスイッ
チング素子。
6. A switching element obtained by laminating a conductive thin film on the oriented single-layer ferroelectric oxide thin film according to claim 1.
JP29512199A 1999-10-18 1999-10-18 Oriented single-layer ferroelectric oxide thin film, method for producing the same, and switching element using the ferroelectric thin film Expired - Lifetime JP3111220B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29512199A JP3111220B1 (en) 1999-10-18 1999-10-18 Oriented single-layer ferroelectric oxide thin film, method for producing the same, and switching element using the ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29512199A JP3111220B1 (en) 1999-10-18 1999-10-18 Oriented single-layer ferroelectric oxide thin film, method for producing the same, and switching element using the ferroelectric thin film

Publications (2)

Publication Number Publication Date
JP3111220B1 true JP3111220B1 (en) 2000-11-20
JP2001114597A JP2001114597A (en) 2001-04-24

Family

ID=17816570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29512199A Expired - Lifetime JP3111220B1 (en) 1999-10-18 1999-10-18 Oriented single-layer ferroelectric oxide thin film, method for producing the same, and switching element using the ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP3111220B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172698B2 (en) * 2011-11-10 2017-08-02 国立研究開発法人産業技術総合研究所 Inorganic crystal film and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Kyong−Moo Lee et al.,"Effects of Heat Treatment on Epitaxy and Surface Morphology of Pb(Zr,Ti)03 Films on Nb−Doped SrTi03(100)Substrates by Spin−Coating",Journal of the Korean Ceramic Society,Vol.35,No.8,1998,pp.791−794

Also Published As

Publication number Publication date
JP2001114597A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
US5434102A (en) Process for fabricating layered superlattice materials and making electronic devices including same
Pontes et al. Study of the dielectric and ferroelectric properties of chemically processed BaxSr1− xTiO3 thin films
JP3436617B2 (en) Manufacturing method of ferroelectric thin film
Schwartz et al. Control of microstructure and orientation in solution‐deposited BaTiO3 and SrTiO3 thin films
JP3482883B2 (en) Ferroelectric thin film element and method of manufacturing the same
US5576564A (en) Ferroelectric thin film with intermediate buffer layer
US20180282896A1 (en) Ferroelectric crystal film, electronic component, manufacturing method of ferroelectric crystal film, and manufacturing apparatus therefor
Meng et al. Growth of (1 0 0)-oriented LaNiO3 thin films directly on Si substrates by a simple metalorganic decomposition technique for the highly oriented PZT thin films
US6072207A (en) Process for fabricating layered superlattice materials and making electronic devices including same
EP0665981B1 (en) Process for fabricating layered superlattice materials and electronic devices including same
CN1265224A (en) Process for fabricating layered superlattice materials and ABO3, type metal oxides and making electronic devices including same without exposure to oxygen
JPH09110592A (en) Thin laminated film, substrate for electronic device, electronic device and production of thin laminated film
JP2000169297A (en) Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
JPH0927601A (en) Manufacture of memory and ferroelectric memory
KR100515124B1 (en) Epitaxial compound structure and device comprising same
Nunes et al. Microstructural and ferroelectric properties of PbZr1− xTixO3 thin films prepared by the polymeric precursor method
Wakiya et al. Nucleation and growth behavior of epitaxial Pb (Zr, Ti) O3/MgO (100) observed by atomic force microscopy
JP3111220B1 (en) Oriented single-layer ferroelectric oxide thin film, method for producing the same, and switching element using the ferroelectric thin film
JPH08111411A (en) Manufacturing for ferroelectric thin film
KR100530404B1 (en) Vapor phase growth method of oxide dielectric film
JP4399059B2 (en) Thin film structure
Fan et al. Perovskite structure development and electrical properties of PZN based thin films
EP0877100B1 (en) Process for fabricating solid-solution of layered perovskite materials
Tabata et al. Heteroepitaxy of Strained and Not-Strained Ferroelectric Superlattices and their Electric Properties.
US7507290B2 (en) Flux assisted solid phase epitaxy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3111220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term