JP3108405B2 - 機器の診断方法 - Google Patents
機器の診断方法Info
- Publication number
- JP3108405B2 JP3108405B2 JP10208270A JP20827098A JP3108405B2 JP 3108405 B2 JP3108405 B2 JP 3108405B2 JP 10208270 A JP10208270 A JP 10208270A JP 20827098 A JP20827098 A JP 20827098A JP 3108405 B2 JP3108405 B2 JP 3108405B2
- Authority
- JP
- Japan
- Prior art keywords
- state
- model
- calculating
- discriminant
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Description
とくに機器の状態を診断する方法に関する。
見はいくつかの方法で行われる。機器自身が故障検出手
段をもち、警告を発する等の処置を施す場合は、ある程
度それに任せることもできるが、機器の側ですべての故
障が想定できているとは考えにくく、必要に応じて機器
外部で診断する必要が生じる。例えば回転機械の内面に
微小な傷が生じた場合など、故障の検出は概して難し
い。そうした場合、機器が正常なときに予め振動の周波
数を計測しておき、これを運転中計測した周波数と随時
比較する方法がある。比較の結果、両者の差がある程度
大きくなれば、機器を検査し、故障があれば修理する。
この方法なら機器を常時運転しながら診断できる点、お
よび内部の検査が困難な機器でも実現できる点で有効で
ある。
作業者の経験に頼る部分も大きい。上述の回転機械の場
合、周波数がどの程度外れたとき故障とみなすか、試行
錯誤に頼らざるを得ない。機器の運転状況によって当然
周波数は変化するし、いろいろな要因が周波数に変動を
もたらす。機器によっては運転の中止や再開、機器の内
部検査等に時間や費用がかかるものもあり、故障の判断
が、いわば熟練者の勘に依存する状況は、きわめて心も
とないといわざるを得ない。
のであり、その目的は、いろいろな運転状況下にあって
機器の状態(正常、異常など)を客観的に高い確度で判
断することのできる機器の診断方法を提供することにあ
る。本発明の別の目的は、診断の精度を高めるためにあ
る程度多くのデータを扱いつつ計算負荷を抑える方法の
提供にある。
備ステップと判定ステップを含む。準備ステップは、第
一の状態(例えば正常状態)における機器の動作変量を
計測する。また、その計測結果を利用して第二の状態
(例えば異常状態)における機器の動作変量を推定す
る。「動作変量」とは、機器の動作に関連するパラメー
タをいい、例えば振動の周波数がある。この方法では、
第二の状態については動作変量を実測する必要がない。
したがって、第二の状態が異常状態に対応する場合、例
えば機器の内面に傷をつける等、異常状態を実際につく
り出す必要がない。このため、機器のいろいろな状態を
想定して動作変量を準備することができる。
量を実測する。しかる後、実測された動作変量が第一の
状態における動作変量と第二の状態における動作変量の
いずれにより近いかを判定する。このため、例えば判定
を数値的に行うことにより、診断の客観性が増す。
テップを含む。準備ステップは、機器の複数の状態のそ
れぞれについて機器の動作変量を記述するモデルを構築
する。「モデル」とは、ARモデルであり、動作変量を
設定することで構築できる。
を行うタイミングで機器の動作変量を計測する。つづい
て、この動作変量をもとに現在の機器の状態におけるA
Rモデルを準備ステップと同様の手順で求める。その
後、そのARモデルと準備ステップで構築された複数の
ARモデルのいずれが近いかを、それらのARモデルに
含まれる多変量どうしの近さをもとに判定する。すなわ
ち、準備として求めた複数のARモデルについて、その
予測係数についてマハラノビスの距離の判別式をそれぞ
れ算出しておく。そして、求められた複数のマハラノビ
スの距離の判別式に計測値から得た動作変量に基づくA
Rモデルの予測係数を代入することで、判別を行う。
構築は、機器の挙動を支配する方程式をもとに機器の状
態を想定し、その状態で得られるべき動作変量を予測す
ることで行える。「機器の挙動を支配する方程式」は機
器の動作原理によって多種多様であるが、運動方程式、
振動や波動の方程式、熱力学に関する方程式、化学反応
を支配する方程式、電磁気現象を支配する方程式など、
一般に自然法則を記述する方程式、またはそれらから導
出される方程式をいう。
実測し、それをもとに準備ステップ同様の手順でいった
んARモデルを立て、その予測係数を求め、これを代入
して行う。この方法によれば、予測モデルどうしの近さ
が例えば数値的に判定できるため、作業者の経験や勘に
頼る必要がない。
図面を参照しながら説明する。
複数を想定して各状態における変量データを推定してお
く。次に各状態の変量データから線形予測モデルを立
て、モデルごとに決まる複数の線形予測係数を多変量と
して取得する。本明細書では、線形予測係数をデータと
して扱うとき、これを「係数データ」とも呼ぶ。
変量データを機器から取得し、それに基づいて線形予測
モデルを立て、係数データを多変量として取得する。つ
ぎに多変量どうしの近さを判定することで機器の状態を
判断する。ここで注意すべきは、多変量として変量デー
タそのものではなく、係数データを用いる点である。
にとる。準備として、本実施の形態で用いる多変量解析
手法と、線形予測モデルと、回転機械の診断に必要な予
備知識を説明する。
し」(以下文献1という)の4.3章「マハラノビスの
距離による判別分析」には、多変量で記述される事象ま
たは状態どうしの近さを判定する方法が以下のように説
明されている。
のグループG2についてそれぞれ同一の検査を行い、グ
ループG1については、{22,20,23,23,1
7,24,23,18,22,19}という結果、グル
ープG2については、{24,19,11,6,9,1
0,3,15,14,20}という変量データがそれぞ
れ得られたとし、いま「18」という検査結果のA氏が
いずれのグループに属する可能性が高いかを判定する。
グループG1の平均は21.1、グループG2のそれは
13.1であり、平均からの距離でいえば「18」はグ
ループG1により近い。しかし、グループの分散が違う
ため、平均による単純比較はできない。
れぞれ2.42、6.57である。したがって、データ
の標準化の観点から、 (x−13.1)/6.57=(21.1−x)/2.
42 となるx=18.95は、「G2に属するのに誤ってG
1に属すると判断される確率」と「G1に属するのに誤
ってG2に属すると判断される確率」が等しくなる値で
あり、検査結果が18.95より大きな人はグループG
1、小さな人はグループG2に入ると判定することが妥
当である。したがって、A氏はグループG2に属する可
能性が高い。そこでこれを判定結果とする。
散も考慮に入れたマハラノビスの距離(Mahalanobis' g
eneralized distance)という判別式が知られており、
いまグループG1、G2それぞれに関するマハラノビス
の距離D1、D2は、 D1=|x−G1の分散|/(G1の分散)1/2 D2=|x−G2の分散|/(G2の分散)1/2 である。A氏の場合、D1=1.28、D2=0.75
であり、D1>D2であるから、距離の小さなグループ
G2に入ると判定される。
だが、文献1では多変量の場合のマハラノビスの距離も
説明している。図1、図2がそれぞれp個の変量x1〜
xpからなるグループG1、G2の変量であるとき、ま
ずG1の分散共分散行列は、
数の分散、S12 (1)はグループG1の一次の係数と二次
の係数の共分散である。A1なる行列を、
ビスの距離D22が以下のように求められる。
グループG2に属し、D12<D22であればグループG
1に属すると判定する。
regressive model、以下ARモデルともいう)を用い
る。予測モデルを利用する主眼は、変量の予測ではな
く、モデル化による計算負荷の軽減にある。以下、
[2]の説明は主に中溝高好著、コロナ社「信号解析と
システム同定」の3章に基づく。
xt-2,…,xt-p}から時刻tにおける変量データxt
を予測する線形予測器を次式で表す。
る。右辺の負号は便宜上付している。このとき予測誤差
eiは、
の数学的期待値)を最小にする係数aiを決めたい。ま
ず、Jをak(k=1〜p)で微分してゼロとおくと、
t-ixt-k}は自己相関関数であり、
ータ{xt:t=0,1,…,N−1}から相関関数を
推定する。この場合、推定値として、
用いている。このとき、線形予測係数を推定するための
Yule−walker(ユール・ウォーカー)方程式
は、
る。ARモデルの次数決定法として赤池のFPE(Fina
l Prediction Error)法がよく知られ、各種分野におけ
るスペクトル解析を中心に広く利用されている。まず予
測誤差の分散σpは次式で推定される。
しく選択されていれば、分散σpは非常に小さな値にな
る。統計的なデータの場合、最終予測誤差、 FPE=(N+p)σp(p)/(N−p) (式6) を最小にする次数pが最適次数として選ばれる。この結
果、式4から線形予測係数が決まり、ARモデルが確定
する。
機械を考え、その内輪にスポット傷が生じる異常状態を
検出するものとする。
受の構造を示す図で、豊田利夫著、日本プラントメンテ
ナンス協会発行「回転機械診断の進め方」(以下、文献
3という)の213ページに掲載されている。[3]の
説明は主に文献3に基づく。
体直径、r1は内輪軌道の半径、r2は外輪軌道の半径、
αは接触角である。文献3の6.3章「ころがり軸受の
診断原理(振動法)」によれば、軸(内輪)の回転周波
数をf0、外輪の回転周波数をfaとすれば、内輪の一
点が1個の転動体と接触する周波数fiは、 fi=(f0−fa)(1+dcosα/D)/2 (式7) であり、外輪の一点が1個の転動体と接触する周波数f
cは、 fc=(fa−f0)(1−dcosα/D)/2 (式8) となる。ここでは保持器を静止座標系として考えてい
る。仮に内輪にスポット傷が生じると、ラジアルすきま
がある通常の場合、 nzfi±f0 または nzfi±fc (式9) の周波数が発生する。ここでzは転動体の数、n=1,
2,…である。文献3には、そのほかに軸受に偏心があ
る場合(たとえば内輪に著しい摩耗がある場合)、転動
体の仕上げ面にうねりがある場合、転動体が不揃いの場
合などについても発生する周波数に関して記述がある。
る。図4は本実施の形態による処理のうち、診断の準備
に関する手順を示すフローチャートである。同図のごと
く、まず機器の正常状態において変量データを計測する
(S1)。変量として[3]で利用した、ころがり軸受
に生じる振動の周波数をとる。これは[3]で紹介した
式を用いて異常状態、つまり故障状態の変量データを推
定できるためである。ただし、[3]以外の式を用いて
故障状態を推定する場合は、当然異なる変量データを採
用することができる。
する集合をX1 (1)と表記する。ここでxi1 (1)の「i」
は時刻t=i(i=0,1,…N−1)を、「1」は1
回目の計測を、「(1)」は機器の状態、つまりグルー
プG1を表す。いま機器は正常であり、これをグループ
G1と決めている。同様に集合X1 (1)の「1」は1回目
の計測を、「(1)」は機器の状態を示し、機器の正常
状態である。本実施の形態では、運転状態、つまり回転
機械の回転速度を変えながらn回にわたって計測を行
い、変量データの集合X1 (1),X2 (1),…Xn (1)を取得
する。これは図1においてn1=nとした場合に対応す
る。なお、集合X1 (1),X2 (1),…Xn (1)を総括して単
にX(1)とも表記する。
る変量データを推定する(S2)。このために、[3]
の式7〜9などを利用する。すなわち、式7〜9によっ
て内輪にスポット傷のある場合に発生する周波数成分が
判明するため、この傷に係わる周波数成分を正常状態で
ある場合の集合X 1 (1) に重畳して(注:重畳するに際し
ては、集合X 1 (1) の周波数成分に対して重畳する必要が
ある)、変量データの推定値を得る。この集合をX 1 (2)
(注:これは正常状態(1)のものに傷が重畳された状
態であり、(2)と表記される)とする。さらに、集合
X 2 (1) ,…X n (1) の各成分にも同様に傷に係わる成分を
重畳して変量データの推定値を得る。これらを集合X1
(2),X2 (2),…Xn (2)とし、その総括表記をX(2)とす
る。
る(S3)。ARモデルは[2]の手順で確定する。す
なわち、まず式3から相関関数の推定値を求め、つづい
て、まず次数pを1と仮定し、式4のユール・ウォーカ
ー方程式を解く。その結果をもとに式5、式6を計算
し、p=1に対するFPEが求まる。
から再度計算しなおし、FPEを求める。pが一定の上
限pmaxに到達するまでFPEを繰り返し求めていく。
その後、FPEを最小にしたpを最適な次数と決める。
これでARモデルが確定し、集合Xi (1)(i=1,2,
…n)に対して線形予測係数の集合Ai (1)=
{a1i (1 ),a2i (1),…api (1)}を決める。a1i (1)は
一次の係数、a2i (1)は二次の係数、以下api (1)はp次
の係数である。
の集合Ai (2)={a1i (2),a2i (2),…api (2)}が決
まる(S4)。図5、6はそれぞれ集合Ai (1)、Ai (2)
の各要素を示す図である。同図のごとく、集合が判明し
た後、各次数の係数の平均を計算しておく(S5)。
スの距離D12の式を求める(S6)。これは[2]の
式1の「x」をすべて「a」で置き換えれば得られる。
この時点で同式のxi(i=1,2,…p)は未知数で
ある。同様の方法でグループG2についてもマハラノビ
スの距離D22の式を求めておく(S7)。以上で準備
が終了する。
を示すフローチャートである。同図のごとく、機器を診
断するとき、診断に必要な変量データを計測する。この
実施の形態では、回転機械の変量データである周波数デ
ータを、 x0d,x1d,…xN-1 d のようにN個取得する(S20)。xidの「i」は時刻
t=iを、「d」は判定(determination)用データで
あることをそれぞれ示す。
の手順でARモデルを立て、線形予測係数、 a1d,a2d,…apd を求める(S21)。
S6とS7で求められたマハラノビスの距離の式に代入
し、その大小を判定する(S22)。具体的には、式
1、2のx1,x2,…xpの箇所にそれぞれa1d,
a2d,…apdを入れていけばよい。この後、D12<D
22なら機器は正常、逆の場合は異常と判定する。
実施の形態によれば、当初の変量データの個数Nを大き
な数にすることで予測の精度、すなわち線形予測係数の
精度を高めることができる。その一方、最適次数探索の
ための上限値pmaxをNよりも小さくすることで、計算
負荷を軽減することができる。後述の、シミュレーショ
ン実験ではN=1000、pmax=20として計算負荷
を軽減しつつ非常に良好な結果が得られている。
形技術が考えられる。
断するとき、診断に必要な変量データxidを1回だけ計
測した。しかし、これも準備工程同様、例えばn回計測
して平均をとってもよい。その場合、当然ながら精度が
改善される。
回転機械の周波数に関するデータを計測した。しかし、
当然これは別のデータでもよい。最終的に機器の挙動を
支配する方程式に投入できるデータ、またはそのデータ
に変換可能なデータであればよい。実際に、実験ではこ
ろがり軸受において回転に起因する変位の加速度を計測
し、利用した。
傷が生じる場合を想定してグループG2の係数データを
求めた。しかし、それ以外の状況を想定してさらに別の
グループG3、G4…を準備してもよい。その場合、機
器の診断時に取得されたデータがいずれのグループに最
も近いかをグループごとに設けられたマハラノビスの距
離の式に入れて判定することができる。
た。しかし、この他いろいろな機器の診断が可能であ
る。例として、エンジンの燃料噴射、エアーコンディシ
ョナーの温度制御、航空機の飛行制御等、制御系全般に
きわめて広い応用が考えられる。例えば温度制御の場
合、従来の故障判定は温度が最終的に目標温度になるか
否かといった程度のものが多かったが、本実施の形態に
よれば、たとえ目標温度が実現されていても、機器に内
在する故障状態を検出することができる。
械の回転数、縦軸はマハラノビスの距離の相対値であ
る。実験では、4つのグループを想定した。それらは、
機器が正常な場合、ボールに傷がある場合、内輪に傷が
ある場合、外輪に傷がある場合である。
な状態で計測した変量データ(既述のごとく、軸受の変
位の加速度)をもとに、診断の準備としてそれぞれマハ
ラノビスの距離の式を立てた。つぎに、実際に機器の運
転中に変量データを計測し、そのときの機器の状態が4
つのいずれのグループに近いかを判定した。
り軸受の外輪に実際に傷がついているものを使った。図
8において、黒丸は正常、黒四角はボールに傷がある場
合、黒三角は内輪に傷がある場合、×は外輪に傷がある
場合をそれぞれ想定して立てられたマハラノビスの距離
の式に、診断用の変量データをもとに求められた係数デ
ータを投入したときの距離である。この結果から、予め
想定された外輪に傷があるグループについてマハラノビ
スの距離が極めて小さくなり、本実施の形態の有効性が
判明した。
範囲で診断したが、マハラノビスの距離の式を立てる準
備段階で変量データを取得した回転数は400〜130
0であった。それにも拘らず、300回転や1400回
転付近でも結果は非常に良好であり、本実施の形態の汎
用性が証明された。診断が客観的な基準で行われ、かつ
回転数にほとんど依存しないため、本発明の有用性は非
常に高い。
変量を示す図である。
変量を示す図である。
示す図である。
ローチャートである。
を示す図である。
を示す図である。
の処理手順を示すフローチャートである。
Claims (3)
- 【請求項1】 第一の状態における機器の動作変量を計
測し、計測した動作変量に基づいて、第一の状態におけ
る自己回帰型の線形予測モデルであるARモデルでの予
測係数を算出するとともに、この予測係数について第一
のマハラノビスの距離の判別式を算出するステップと、 第二の状態における予め定められた変動により前記第一
の状態における動作変量について修正を加え、第二状態
におけるARモデルでの予測係数を算出するとともに、
この予測係数について第二のマハラノビスの距離の判別
式を求める ステップと、 機器の動作変量を計測し、その計測した動作変量に基づ
いて、その機器動作状態におけるARモデルでの予測係
数を算出するとともに、算出した機器動作状態における
予測係数を第一のマハラノビスの距離の判別式および第
二のマハラノビスの距離の判別式に代入して、得られた
2つの計算結果に基づいて機器の動作状態が第一の状態
と第二の状態のいずれに属するかを判別するステップ
と、 を含むことを特徴とする機器の診断方法。 - 【請求項2】 第一の状態および第二の状態の2つの状
態における機器の動作変量を予測し、その2つの状態に
おける自己回帰型の線形予測モデルであるARモデルで
の予測係数を算出するステップと、 その2つの状態における予測係数について、それぞれ第
一および第二のマハラノビスの距離の判別式を算出する
ステップと、 機器の動作変量を計測し、その計測した動作変量に基づ
いて、その機器動作状態におけるARモデルでの予測係
数を算出するとともに、算出した機器動作状態における
予測係数を第一のマハラノビスの距離の判別式および第
二のマハラノビスの距離の判別式に代入して、得られた
2つの計算結果に基づいて機器の動作状態が第一の状態
と第二の状態のいずれに属するかを判別するステップ
と、 を含むことを特徴とする機器の診断方法。 - 【請求項3】 特定の異常状態における機器の挙動を支
配する方程式をもとに、その特定の異常状態における機
器の挙動についての変量データを求め、求められた変量
データにより、別に求められた正常状態の機器の動作変
量を修正し、修正された動作変量を求めるステップと、 求められた動作変量の 状態における自己回帰型の線形予
測モデルであるARモデルでの予測係数を算出するステ
ップと、 算出された予測係数についてマハラノビスの判別式を算
出するステップと、 機器の動作変量を計測し、その計測した動作変量に基づ
いて、機器動作状態におけるARモデルでの予測係数を
算出するステップと、 算出した機器動作状態における予測係数を前記マハラノ
ビスの距離の判別式に代入して、得られた計算結果に基
づいて機器の動作状態の前記想定した状態に対する近さ
を判別するステップと、 を含むことを特徴とする機器の診断方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10208270A JP3108405B2 (ja) | 1998-07-23 | 1998-07-23 | 機器の診断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10208270A JP3108405B2 (ja) | 1998-07-23 | 1998-07-23 | 機器の診断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000046701A JP2000046701A (ja) | 2000-02-18 |
JP3108405B2 true JP3108405B2 (ja) | 2000-11-13 |
Family
ID=16553473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10208270A Expired - Lifetime JP3108405B2 (ja) | 1998-07-23 | 1998-07-23 | 機器の診断方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3108405B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3986752B2 (ja) * | 2000-12-20 | 2007-10-03 | 株式会社日立製作所 | 排ガス計測・監視システム |
US7027935B2 (en) * | 2002-08-07 | 2006-04-11 | Hitachi High Technologies Corp. | Sample dispensing apparatus and automatic analyzer using the same |
JP4396286B2 (ja) | 2004-01-21 | 2010-01-13 | 三菱電機株式会社 | 機器診断装置および機器監視システム |
JP4265982B2 (ja) * | 2004-02-25 | 2009-05-20 | 三菱電機株式会社 | 機器診断装置、冷凍サイクル装置、冷凍サイクル監視システム |
JP4573036B2 (ja) * | 2005-03-16 | 2010-11-04 | オムロン株式会社 | 検査装置および検査方法 |
JP4151679B2 (ja) * | 2005-07-07 | 2008-09-17 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP4151680B2 (ja) * | 2005-07-07 | 2008-09-17 | 三菱電機株式会社 | 冷凍サイクル監視システム |
JP4645422B2 (ja) * | 2005-11-18 | 2011-03-09 | オムロン株式会社 | 判定装置、判定装置の制御プログラム、および判定装置の制御プログラムを記録した記録媒体 |
CN106405384A (zh) * | 2016-08-26 | 2017-02-15 | 中国电子科技集团公司第十研究所 | 模拟电路健康状态评估方法 |
CN107121285B (zh) * | 2017-04-21 | 2019-05-07 | 南京理工大学 | 一种滚动轴承振动信号故障特征提取方法 |
JP6848813B2 (ja) * | 2017-10-25 | 2021-03-24 | 日本製鉄株式会社 | 情報処理装置、情報処理方法及びプログラム |
KR102126427B1 (ko) * | 2017-12-18 | 2020-06-24 | 포스코에너지 주식회사 | 고압 펌프 고장 예지 방법 및 시스템 |
-
1998
- 1998-07-23 JP JP10208270A patent/JP3108405B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000046701A (ja) | 2000-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5539382B2 (ja) | 航空エンジン内の故障の識別 | |
US6898554B2 (en) | Fault detection in a physical system | |
JP3108405B2 (ja) | 機器の診断方法 | |
CN112364567B (zh) | 一种基于退化轨迹相似度一致检验的剩余寿命预测方法 | |
CN108508863A (zh) | 一种基于灰色模型的机电设备故障诊断方法 | |
JP2015075821A (ja) | 状態診断方法および状態診断装置 | |
US20060224367A1 (en) | Inspection apparatus, aid device for creating judgement model therefor, abnormality detection device for endurance test apparatus and endurance test method | |
KR102040179B1 (ko) | 제조 설비의 이상 감지 및 진단 방법 | |
CN102736558A (zh) | 基于时间序列算法的数控机床热误差实时补偿建模方法 | |
CN111637045B (zh) | 一种海洋平台空气压缩机故障诊断方法 | |
CN109187060B (zh) | 列车速度传感器信号异常检测及轴抱死故障诊断方法 | |
CN103197663B (zh) | 一种故障预测方法及系统 | |
CN110716500B (zh) | 用于确定温度敏感区间分段建模点的方法与系统 | |
US5821412A (en) | Apparatus and method for processing engine measurements | |
CN108257365B (zh) | 一种基于全局不确定性证据动态融合的工业报警器设计方法 | |
CN110308713A (zh) | 一种基于k近邻重构的工业过程故障变量识别方法 | |
CN110502590A (zh) | 基于格兰杰因果关系校验构建工业装备故障关系的方法 | |
CN117150425A (zh) | 基于机理数据融合的管片拼装机运动状态预测方法 | |
US11339763B2 (en) | Method for windmill farm monitoring | |
CN110532698B (zh) | 一种基于数据模型的工业设备振动特征值趋势预测方法 | |
JPH04276539A (ja) | 回転機械の損傷・劣化の寿命予測方法 | |
Wang et al. | Degradation pattern identification and remaining useful life prediction for mechanical equipment using SKF-EN | |
CN106339588A (zh) | 基于灰色系统理论的加速退化数据离散建模方法 | |
CN114626162B (zh) | 一种接触球轴承损耗程度定量识别方法 | |
Rizzoni et al. | Real time detection filters for onboard diagnosis of incipient failures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070908 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070908 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080908 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080908 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090908 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110908 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110908 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120908 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130908 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |