JP3108210B2 - Fluoride glass optical waveguide - Google Patents

Fluoride glass optical waveguide

Info

Publication number
JP3108210B2
JP3108210B2 JP04206480A JP20648092A JP3108210B2 JP 3108210 B2 JP3108210 B2 JP 3108210B2 JP 04206480 A JP04206480 A JP 04206480A JP 20648092 A JP20648092 A JP 20648092A JP 3108210 B2 JP3108210 B2 JP 3108210B2
Authority
JP
Japan
Prior art keywords
optical waveguide
fluoride glass
zblan
clad
hff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04206480A
Other languages
Japanese (ja)
Other versions
JPH0656473A (en
Inventor
誠 古口
義隆 飯田
邦男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP04206480A priority Critical patent/JP3108210B2/en
Publication of JPH0656473A publication Critical patent/JPH0656473A/en
Application granted granted Critical
Publication of JP3108210B2 publication Critical patent/JP3108210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01268Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by casting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/24Single mode [SM or monomode]

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主として光通信システ
ムの中継部に使用される光増幅用光導波路(光ファイバ
を含む)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide for optical amplification (including an optical fiber) mainly used in a relay section of an optical communication system.

【0002】[0002]

【従来技術】光通信システムは発光部、中継部および受
光部から構成され、これらの間は光導波路で結ばれてい
る。この中継部は、伝送する信号光が光導波路中を伝搬
する際の伝送損失およびパルスの広がりを補償するもの
である。従来、その構成は信号光を一度電気信号に変換
して補償した後、半導体レーザを用いて信号光に変換す
るというものであった。しかしながら、この方法は装置
の構成が極めて複雑であるため高価であるという欠点が
あった。そこで最近、低価格の中継部を提供するため
に、中継部での発光源として希土類元素を用いることが
考えられている。具体的には、希土類元素をホストガラ
スにドープしたものをコア部として光導波路を作製し、
この光導波路により波長が1.3μmまたは1.55μmの信
号光を直接増幅することが試みられている。特にこれら
の希土類元素のうち、プラセオジウム (Pr) をコア部に
ドープした ZBLAN(ZrF4 -BaF2 -LaF3 -AlF3 -NaF) 系フ
ッ化物ガラスのシングルモード型光導波路は、波長が
1.3μmの信号光を効率よく増幅するものとして注目さ
れている。
2. Description of the Related Art An optical communication system includes a light emitting section, a relay section, and a light receiving section, and these are connected by an optical waveguide. The repeater compensates for transmission loss and pulse spread when the signal light to be transmitted propagates in the optical waveguide. Conventionally, the configuration is such that the signal light is once converted into an electric signal, compensated, and then converted into the signal light using a semiconductor laser. However, this method has a drawback that the apparatus is extremely complicated and expensive. Therefore, recently, in order to provide a low-cost relay unit, it has been considered to use a rare earth element as a light emitting source in the relay unit. Specifically, an optical waveguide is manufactured with a core portion made of a host glass doped with a rare earth element,
Attempts have been made to directly amplify signal light having a wavelength of 1.3 μm or 1.55 μm using this optical waveguide. Among these rare earth elements, the single-mode optical waveguide of ZBLAN (ZrF 4 -BaF 2 -LaF 3 -AlF 3 -NaF) based glass doped with praseodymium (Pr) in the core has a wavelength of
Attention has been focused on amplifying 1.3 μm signal light efficiently.

【0003】通常、この種の ZBLAN系フッ化物ガラス光
導波路は、屈折率を高くするためにコア部全体に PbF2
を、一方クラッド部全体には屈折率を低くするために H
fF4をドープした組成のものが使用されている。
Usually, this kind of ZBLAN-based fluoride glass optical waveguide has a PbF 2
On the other hand, the entire cladding is H to reduce the refractive index.
A composition doped with fF 4 is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、クラッ
ド部にHf、具体的には HfF4 をドープした ZBLAN系フッ
化物ガラス光導波路は、 HfF4 をドープしない ZBLAN系
フッ化物ガラスからなるクラッド部を有する光導波路に
比べて失透しやすく、この失透により光導波路が劣化
し、線引中に破断するという問題があった。ところが、
屈折率を下げる物質としてHfは一般的であり、またその
効果は非常に大きいことが分かっている。現在、Hfに代
わる屈折率を下げる物質が見つかっていないため、問題
が多少あっても使用せざるを得ない状況にある。
However [0007], Hf in the cladding portion, ZBLAN based fluoride glass optical waveguide Specifically doped HfF 4 has a clad portion composed of ZBLAN based fluoride glass not doped HfF 4 There is a problem that the optical waveguide is easily devitrified as compared with the optical waveguide, and the optical waveguide deteriorates due to the devitrification, and breaks during drawing. However,
Hf is generally used as a substance for lowering the refractive index, and its effect has been found to be very large. At present, no substance that lowers the refractive index has been found in place of Hf, so that even if there is some problem, it must be used.

【0005】[0005]

【課題を解決するための手段】本発明の目的は、線引時
に失透しにくい、すなわち、破断しにくい ZBLAN系フッ
化物ガラス光導波路を提供することにある。したがっ
て、本発明によれば、クラッド部が主として ZBLAN系フ
ッ化物ガラスからなり、かつHfも含有されるフッ化物ガ
ラス光導波路において、前記クラッド部の最外層がHfを
含有しないことを特徴とする光導波路が提供される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ZBLAN-based fluoride glass optical waveguide which is hardly devitrified during drawing, that is, hard to break. Therefore, according to the present invention, in a fluoride glass optical waveguide in which the clad portion is mainly made of ZBLAN-based fluoride glass and also contains Hf, the outermost layer of the clad portion does not contain Hf. A wave path is provided.

【0006】[0006]

【作用】クラッド部全体にHf、具体的には HfF4 をドー
プする従来方法では、表1の比較例2〜4に示すように
クラッド部にドープする HfF4 の量が微量であっても、
母材は結晶化により失透することがわかった。この結晶
化の原因は、 HfF4 をドープすることによってガラスの
構造がより疎になり、このことがガラス表面と水分の結
合とに影響を及ぼし、結果として線引時に母材表面の水
分が除去できなくなって結晶化しやすくなったことによ
る、と考えられる。そこで、この対策としてクラッドの
最外層部を HfF4 をドープしない ZBLAN系フッ化物ガラ
スとしたところ実施例に示すように結晶化を抑えること
ができた。
[Action] Hf throughout the cladding portion, in the conventional method specifically doping HfF 4, be an amount of HfF 4 doped into the cladding portion as shown in Comparative Examples 2-4 in Table 1 is trace,
The base material was found to be devitrified by crystallization. The cause of this crystallization is that the doping of HfF 4 makes the structure of the glass more sparse, which affects the bonding of the glass surface and water, and as a result, the water on the surface of the base material is removed during drawing. This is probably due to the fact that it became impossible to crystallize easily. Therefore, it was possible to suppress the crystallization to show the outermost layer portion of the cladding as a countermeasure to the embodiment was a ZBLAN based fluoride glass not doped HfF 4.

【0007】[0007]

【実施例】以下、本発明の実施例を詳細に説明する。実
施例として、 2000ppmのPrと 8mol%の PbF2 をドープし
た ZBLAN系フッ化物ガラスを溶解し鋳型に鋳込むことに
より、外径が 8mmのコア部用ロッドを作成した。次い
で、前記コア部用ロッドを不活性ガス中、具体的にはア
ルゴンガス中で延伸して、外径 3mmのコア部用ロッドを
得た。また、40mol%の HfF4 をドープした ZBLAN系フッ
化物ガラスを溶解し鋳型に鋳込んだ後、穴開け加工を施
して外径15mm、内径 3.5mmのクラッド内層用のパイプを
得た。前記コア部用ロッドを該クラッド内層用パイプの
中に挿入し、不活性ガス中、具体的にはアルゴンガス中
で約 300℃に加熱することによって一体化させ、この後
にさらに延伸することを繰り返して前記コア部とクラッ
ド内層からなる、外径 3mmの光導波路用ガラス母材(ク
ラッド内層径/コア部径比は約10) を得た。また、 HfF
4 を含まない ZBLAN系フッ化物ガラスを溶解させた後、
鋳込みを行い、これに穴開け加工を施して外径10.6mm、
内径 4.0mmのクラッド最外層用パイプを得た。前記光導
波路用ガラス母材を外側に該クラッド最外層用パイプ内
に配し、これをロッドインチューブ法によって、所定の
線速に設定して線引を行った。この線引の際、光導波路
の破断の回数の調査と破断箇所を透過型電子顕微鏡で観
察することによる結晶化の有無の調査を行ったところ、
表1に示すように破断回数が少なく、結晶化の見られな
い光導波路を得ることができた。
Embodiments of the present invention will be described below in detail. As an example, a core rod having an outer diameter of 8 mm was prepared by dissolving a ZBLAN-based fluoride glass doped with 2000 ppm of Pr and 8 mol% of PbF 2 and casting it into a mold. Then, the core rod was stretched in an inert gas, specifically, an argon gas to obtain a core rod having an outer diameter of 3 mm. In addition, a ZBLAN-based fluoride glass doped with 40 mol% of HfF 4 was melted and cast into a mold, and then punched to obtain a pipe for an inner layer of a clad having an outer diameter of 15 mm and an inner diameter of 3.5 mm. The core rod is inserted into the cladding inner layer pipe, and integrated by heating to about 300 ° C. in an inert gas, specifically, an argon gas, and thereafter, further stretching is repeated. Thus, a glass base material for an optical waveguide having an outer diameter of 3 mm (the ratio of the inner diameter of the clad layer to the diameter of the core portion was about 10), comprising the core portion and the inner clad layer, was obtained. Also, HfF
After dissolving ZBLAN-based fluoride glass not containing 4
Casting, drilling this, outer diameter 10.6mm,
A pipe for the outermost layer of the clad having an inner diameter of 4.0 mm was obtained. The glass base material for an optical waveguide was disposed outside in the pipe for the outermost layer of the clad, and this was drawn at a predetermined linear velocity by a rod-in-tube method. At the time of drawing, when the number of breaks of the optical waveguide was investigated and the presence or absence of crystallization was examined by observing the broken part with a transmission electron microscope,
As shown in Table 1, an optical waveguide having a small number of breaks and no crystallization was obtained.

【0008】比較例として、実施例と同様に 2000ppmの
Prと 8mol%の PbF2 をドープしたZBLAN系フッ化物ガラ
スを溶解し鋳型に鋳込むことにより、外径が 8mmのコア
部用ロッドを作成した。次いで、前記コア部用ロッドを
不活性ガス中、具体的にはアルゴンガス中で延伸して、
外径 3mmのコア部用ロッドを得た。また、 HfF4 をそれ
ぞれ、 0、0.5 、10、40mol%含有する (各々順に比較例
1、比較例2、比較例3、比較例4とする) ZBLAN系フ
ッ化物ガラスを溶解し鋳型に鋳込んだ後、穴開け加工を
施して、外径15mm、内径 3.5mmのクラッド部用のパイプ
得た。前記コア部用ロッドを該クラッド部用パイプ中に
挿入し、不活性ガス中、具体的にはアルゴンガス中で約
300℃に加熱することによって一体化させ、光導波路用
ガラス母材(クラッド径/コア径比は約30) を作成し
た。これらの母材を線引炉にセットし、炉内を窒素ガス
で置換した後に約 300℃に加熱しながら、実施例と同一
の線速に設定して線引を行った。この際、実施例と同様
の方法で光導波路の破断の調査、および結晶の有無の調
査を行ったところ、表1のような結果を得た。
[0008] As a comparative example, 2000 ppm of
A core rod having an outer diameter of 8 mm was prepared by dissolving a ZBLAN-based fluoride glass doped with Pr and 8 mol% of PbF 2 and casting it into a mold. Next, the core rod is stretched in an inert gas, specifically, an argon gas,
A core rod having an outer diameter of 3 mm was obtained. In addition, HfF 4 is respectively contained in 0, 0.5, 10, and 40 mol% (compared to Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 4, respectively). ZBLAN-based fluoride glass is melted and cast into a mold. After that, a drilling process was performed to obtain a pipe for a clad part having an outer diameter of 15 mm and an inner diameter of 3.5 mm. The core rod is inserted into the cladding pipe, and the rod is inserted into an inert gas, specifically, an argon gas.
The substrate was integrated by heating to 300 ° C. to prepare a glass base material for an optical waveguide (clad diameter / core diameter ratio is about 30). These base materials were set in a drawing furnace, and the inside of the furnace was replaced with nitrogen gas, and then heated to about 300 ° C., and the drawing was performed at the same drawing speed as in the example. At this time, when the fracture of the optical waveguide was investigated and the existence of crystals was investigated by the same method as in the example, the results shown in Table 1 were obtained.

【0009】実施例および各比較例の結果は、表1に示
すように程度の差はあれ、 HfF4 をドープした ZBLAN系
フッ化物ガラス光導波路は破断回数が多く、その破断箇
所で結晶化が観察されることが分かった。その一方、本
発明によるクラッド最外層がHfF4 を含まない ZBLAN系
フッ化物光導波路と比較例1のクラッド全体が HfF4
含まない ZBLAN系フッ化物ガラス光導波路、すなわち、
どちらもクラッドの一番外側には HfF4 を含まない ZBL
AN系フッ化物ガラス光導波路だけは破断や結晶が観察さ
れなかった。このことからも、結晶化からなる失透を防
止するために、光導波路に HfF4 を含まない最外層を設
けることは有効な手段であることがわかる。尚、実施例
中では、Hfを含まない ZBLAN系フッ化物ガラスよりなる
クラッド最外層は比較的厚くなっているが、該最外層を
設けるのは、Hfを含有するクラッド内層と、例えば大気
中の水分とが直接接触しないようにすることが主目的で
あるから、極めて薄い層であっても、その効果は充分で
ある。
As shown in Table 1, the results of the examples and comparative examples show that the HfF 4 -doped ZBLAN-based fluoride glass optical waveguide has a large number of breaks, and that crystallization occurs at the break points. It was found to be observed. Meanwhile, ZBLAN based fluoride glass optical waveguide entire cladding of Comparative Example 1 clad outermost according to the invention and ZBLAN based fluoride optical waveguide containing no HfF 4 does not include HfF 4, i.e.,
Both the outermost cladding does not include the HfF 4 ZBL
No break or crystal was observed only in the AN-based fluoride glass optical waveguide. This also indicates that providing an outermost layer not containing HfF 4 in the optical waveguide is an effective means to prevent devitrification due to crystallization. In the examples, the clad outermost layer made of the ZBLAN-based fluoride glass not containing Hf is relatively thick.However, the outermost layer is provided by the clad inner layer containing Hf and, for example, in the air. Since the main purpose is to prevent direct contact with moisture, even if it is an extremely thin layer, the effect is sufficient.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【発明の効果】本発明の目的は、線引時に失透せず破断
しにくい、すなわち、長尺の線引が可能なフッ化物ガラ
ス光導波路を提供することである。本発明によれば、ク
ラッド部が主として ZBLAN系フッ化物ガラスからなり、
さらにHfも含有する光導波路において、クラッド部の最
外層にHfを含有しない層を設けたことを特徴とするフッ
化物ガラス光導波路を得ることができる。
An object of the present invention is to provide a fluoride glass optical waveguide which is not devitrified and hardly broken at the time of drawing, that is, can be drawn long. According to the present invention, the clad portion is mainly made of ZBLAN-based fluoride glass,
Furthermore, in the optical waveguide containing Hf, a fluoride glass optical waveguide characterized in that a layer not containing Hf is provided as the outermost layer of the clad portion can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の光導波路の断面図である。FIG. 1 is a sectional view of an optical waveguide according to an embodiment of the present invention.

【図2】本発明の比較例の光導波路の断面図である。FIG. 2 is a cross-sectional view of an optical waveguide according to a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

1 コア部 2 Hfを含む ZBLAN系フッ化物ガラスからなるクラッド
内層 (実施例) またはクラッド部(比較例) 3 Hfを含まない ZBLAN系フッ化物ガラスからなるクラ
ッド最外層
1 core part 2 clad inner layer made of ZBLAN-based fluoride glass containing Hf (Example) or clad part (comparative example) 3 clad outermost layer made of ZBLAN-based fluoride glass containing no Hf

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01S 3/07 H01S 3/07 3/17 3/17 (56)参考文献 特開 平5−323132(JP,A) 特開 平4−342441(JP,A) 特開 昭63−157110(JP,A) 特開 昭63−107841(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03C 13/04 C03B 19/02 C03B 37/012 C03C 3/32 G02B 6/00 376 H01S 3/07 H01S 3/17 ────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI H01S 3/07 H01S 3/07 3/17 3/17 (56) References JP 5-323132 (JP, A) JP Hei 4-342441 (JP, A) JP-A-63-157110 (JP, A) JP-A-63-107841 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03C 13 / 04 C03B 19/02 C03B 37/012 C03C 3/32 G02B 6/00 376 H01S 3/07 H01S 3/17

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コア部と該コア部を覆い、かつ該コア部
の屈折率より小さい屈折率を有するクラッド部を有し、
該クラッド部が主として ZBLAN(ZrF4 -BaF2-LaF3 -AlF
3 -NaF) 系フッ化物ガラスからなり、さらにハフニウム
(Hf)も含有する光導波路において、前記クラッド部の最
外層がHfを含有しないことを特徴とするフッ化物ガラス
光導波路。
A cladding portion covering the core portion and having a refractive index smaller than the refractive index of the core portion;
The cladding is mainly made of ZBLAN (ZrF 4 -BaF 2 -LaF 3 -AlF
3 -NaF) -based fluoride glass and hafnium
An optical waveguide also containing (Hf), wherein the outermost layer of the cladding portion does not contain Hf.
JP04206480A 1992-08-03 1992-08-03 Fluoride glass optical waveguide Expired - Fee Related JP3108210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04206480A JP3108210B2 (en) 1992-08-03 1992-08-03 Fluoride glass optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04206480A JP3108210B2 (en) 1992-08-03 1992-08-03 Fluoride glass optical waveguide

Publications (2)

Publication Number Publication Date
JPH0656473A JPH0656473A (en) 1994-03-01
JP3108210B2 true JP3108210B2 (en) 2000-11-13

Family

ID=16524077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04206480A Expired - Fee Related JP3108210B2 (en) 1992-08-03 1992-08-03 Fluoride glass optical waveguide

Country Status (1)

Country Link
JP (1) JP3108210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646649B2 (en) 2011-03-14 2014-02-11 Katoh Electrical Machinery Co., Ltd. Business card case

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741061B1 (en) * 1995-11-13 1998-03-20 Alcatel Fibres Optiques METHOD FOR MANUFACTURING SINGLE-MODE OPTICAL FIBER AND OPTICAL AMPLIFIER USING SUCH FIBER
WO2000026150A1 (en) * 1998-10-29 2000-05-11 Sumitomo Electric Industries, Ltd. Methods for producing preform and optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646649B2 (en) 2011-03-14 2014-02-11 Katoh Electrical Machinery Co., Ltd. Business card case

Also Published As

Publication number Publication date
JPH0656473A (en) 1994-03-01

Similar Documents

Publication Publication Date Title
US5475528A (en) Optical signal amplifier glasses
US6620748B1 (en) Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
JP4240721B2 (en) Optical amplification glass and manufacturing method thereof
EP1180835B1 (en) Optical amplifying glass
CA1277404C (en) Apparatus comprising raman-active optical fiber
EP0522201B1 (en) Optical fiber amplifier with filter
US5338607A (en) 1.3 micrometer-band amplifying optical fiber preform
US5973824A (en) Amplification by means of dysprosium doped low phonon energy glass waveguides
JP2003183049A (en) Optical amplification glass and optical waveguide
KR20010023536A (en) Low Phonon Energy Glass And Fiber Doped With A Rare Earth
JP3108210B2 (en) Fluoride glass optical waveguide
US5609665A (en) Method of making optical fiber with low melting glass core
JP4862233B2 (en) Light amplification glass
JP2004277252A (en) Optical amplification glass and optical waveguide
JP2001144358A (en) Light-amplifying glass
JP2005145741A (en) Optical amplification glass and optical waveguide
JP3475109B2 (en) Rare earth element doped glass
JP2004168578A (en) Optical amplification glass and optical waveguide
JP4686844B2 (en) Light amplification glass
JPH05294662A (en) Method for drawing fluoride glass optical fiber preform
JP2972366B2 (en) Partial erbium-doped optical fiber coupler and method of manufacturing the same
WO2004028992A1 (en) Tellurite glass, optical fibre, optical amplifier and light source
JPH07211979A (en) Fiber for optical amplifier
JP3493165B2 (en) Amplifying optical fiber and optical fiber amplifier
JPH08333131A (en) Quartz-based glass containing rare earth element and optical fiber for light amplifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees