JP2005145741A - Optical amplification glass and optical waveguide - Google Patents

Optical amplification glass and optical waveguide Download PDF

Info

Publication number
JP2005145741A
JP2005145741A JP2003383831A JP2003383831A JP2005145741A JP 2005145741 A JP2005145741 A JP 2005145741A JP 2003383831 A JP2003383831 A JP 2003383831A JP 2003383831 A JP2003383831 A JP 2003383831A JP 2005145741 A JP2005145741 A JP 2005145741A
Authority
JP
Japan
Prior art keywords
glass
optical
mol
less
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003383831A
Other languages
Japanese (ja)
Other versions
JP4314468B2 (en
Inventor
Hideaki Hayashi
英明 林
Naoki Sugimoto
直樹 杉本
Katsuhiro Ochiai
克弘 落合
Yasushi Fukazawa
寧司 深澤
Moriteru Ohara
盛輝 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003383831A priority Critical patent/JP4314468B2/en
Publication of JP2005145741A publication Critical patent/JP2005145741A/en
Application granted granted Critical
Publication of JP4314468B2 publication Critical patent/JP4314468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass

Abstract

<P>PROBLEM TO BE SOLVED: To hardly cause the variation of optical amplification gain even when the water content in a core glass is varied by each lot. <P>SOLUTION: The optical amplification glass contains 20-80 mol% Bi<SB>2</SB>O<SB>3</SB>, 0.1-15 mol% Y<SB>2</SB>O<SB>3</SB>+La<SB>2</SB>O<SB>3</SB>+Gd<SB>2</SB>O<SB>3</SB>+Yb<SB>2</SB>O<SB>3</SB>, 0.1-4.5 mol% Er<SB>2</SB>O<SB>3</SB>and 1-15 mol% B<SB>2</SB>O<SB>3</SB>. The optical amplification glass substantially comprises 20-80% Bi<SB>2</SB>O<SB>3</SB>, 1-10% B<SB>2</SB>O<SB>3</SB>, 15-50% SiO<SB>2</SB>, 8-30% Al<SB>2</SB>O<SB>3</SB>+Ga<SB>2</SB>O<SB>3</SB>+In<SB>2</SB>O<SB>3</SB>, 0.1-15% Y<SB>2</SB>O<SB>3</SB>+La<SB>2</SB>O<SB>3</SB>+Gd<SB>2</SB>O<SB>3</SB>+Yb<SB>2</SB>O<SB>3</SB>, 0-2% CeO<SB>2</SB>and 0.1-4.5% Er<SB>2</SB>O<SB>3</SB>by mol. The optical waveguide uses the optical amplification glass as a core. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は波長が1530〜1630nm、典型的にはCバンドの光の増幅に好適な光増幅ガラスおよび光導波路に関する。   The present invention relates to an optical amplifying glass and an optical waveguide suitable for amplifying light having a wavelength of 1530 to 1630 nm, typically C band.

Cバンドの光(波長:1530〜1565nm)を信号光とする波長多重(WDM)光通信方式においてはこの光を増幅する増幅器(典型的には光ファイバ増幅器)が必須である。
光ファイバ増幅器においてはEr添加石英系光ファイバが従来用いられているがその長さは通常20m以上となり、これを増幅器容器の中に収容するためにはボビン状に巻かなければならない問題があった。
In a wavelength division multiplexing (WDM) optical communication system using C-band light (wavelength: 1530 to 1565 nm) as signal light, an amplifier (typically an optical fiber amplifier) that amplifies this light is essential.
In an optical fiber amplifier, an Er-doped silica optical fiber is conventionally used, but its length is usually 20 m or more, and there is a problem that it must be wound into a bobbin in order to accommodate it in an amplifier container. It was.

このような問題を解決するべく、Cバンドの光をたとえば8cm以下の長さで増幅できるガラスとして、モル%でBi 42.7%、SiO 31.4%、Ga 17.8%、La 4.3%、Al 3.6%、CeO 0.2%、からなるマトリクスガラス100質量部に1.22質量部の割合でErが添加されているBi系ガラスが提案されている(特許文献1参照)。 In order to solve such a problem, as a glass capable of amplifying C-band light with a length of 8 cm or less, for example, Bi 2 O 3 42.7%, SiO 2 31.4%, Ga 2 O 3 17 in mol%. Er is added at a ratio of 1.22 parts by mass to 100 parts by mass of matrix glass composed of 0.8%, La 2 O 3 4.3%, Al 2 O 3 3.6%, CeO 2 0.2%. Bi 2 O 3 glass is proposed (see Patent Document 1).

特開2003−183049号公報(表1)JP 2003-183049 A (Table 1)

先に述べたようなBi系ガラスは通常溶融法で作製され、これをコアとする光ファイバが作製される。しかし、空気中で溶融して作製されたBi系ガラス中の水分量は溶融時の条件によって変動し、その結果ロットによって光増幅利得が変動する問題があった。
本発明はこのような利得のロット変動が起こりにくい光増幅ガラスおよび光導波路の提供を目的とする。
Bi 2 O 3 based glass as described above is usually produced by a melting method, and an optical fiber having this as a core is produced. However, the amount of moisture in Bi 2 O 3 glass produced by melting in air fluctuates depending on the melting conditions, and as a result, there is a problem that the optical amplification gain varies depending on the lot.
An object of the present invention is to provide an optical amplifying glass and an optical waveguide in which such a lot fluctuation of the gain hardly occurs.

本発明は、Biを20〜80モル%、Y、La、GdおよびYbからなる群から選ばれる1種以上の酸化物を合計で0.1〜15モル%、Erを0.1〜4.5モル%の範囲でそれぞれ含有する光増幅ガラスであって、Bを1〜15モル%含有することを特徴とする光増幅ガラスを提供する。
また、前記光増幅ガラスをコアとする光導波路を提供する。
本発明者はガラス中にBを特定量含有させることによりガラス中の水分量の変動があっても光増幅利得変動を小さくできることを見出し本発明に至った。
The present invention provides a total of one or more oxides selected from the group consisting of 20 to 80 mol% Bi 2 O 3 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 and Yb 2 O 3. .1-15 mol% and Er 2 O 3 in the range of 0.1 to 4.5 mol%, respectively, characterized in that B 2 O 3 is contained in an amount of 1 to 15 mol%. An optical amplification glass is provided.
Moreover, the optical waveguide which uses the said optical amplification glass as a core is provided.
The present inventor has found that by containing a specific amount of B 2 O 3 in the glass, fluctuations in the optical amplification gain can be reduced even if there is a fluctuation in the amount of water in the glass, and the present invention has been achieved.

ガラス中の水分量が変動しても光増幅利得の変動が起こりにくい光増幅ガラスおよび光導波路が得られる。   Even if the amount of moisture in the glass fluctuates, it is possible to obtain an optical amplifying glass and an optical waveguide in which the fluctuation of the optical amplifying gain hardly occurs.

本発明の光増幅ガラス(以下、本発明のガラスという。)は通常、コア/クラッド構造の光導波路、たとえば同構造のガラスファイバまたは同構造の平面導波路のコアとして使用される。なお、このような光導波路は本発明の光導波路である。
本発明の光導波路は、1530〜1630nmの波長の光、特にCバンドの光を短い長さで増幅するのに好適である。
この増幅は、増幅されるべき光(信号光)とともに励起光をコアに入射することによって行われ、前記励起光としては通常、波長が970〜990nmまたは1470〜1490nmのレーザー光が使用される。通常、Cバンドの光の増幅には波長が970〜990nmの励起光が使用されるがこれに限定されない。
The optical amplification glass of the present invention (hereinafter referred to as the glass of the present invention) is usually used as an optical waveguide having a core / cladding structure, for example, a glass fiber having the same structure or a core of a planar waveguide having the same structure. Such an optical waveguide is the optical waveguide of the present invention.
The optical waveguide of the present invention is suitable for amplifying light having a wavelength of 1530 to 1630 nm, particularly C-band light with a short length.
This amplification is performed by making excitation light enter the core together with light to be amplified (signal light), and laser light having a wavelength of 970 to 990 nm or 1470 to 1490 nm is usually used as the excitation light. Usually, excitation light having a wavelength of 970 to 990 nm is used for amplification of C-band light, but is not limited thereto.

本発明のガラスをコアとする光ファイバ(以下、本発明の光ファイバという。)におけるコア径、クラッド径はそれぞれ典型的には2〜10μm、100〜200μmである。
本発明の光ファイバをボビン状に巻かずに光ファイバ増幅器(EDFA)に使用する場合、その長さは8cm以下であることが好ましい。より好ましくは6cm以下、特に好ましくは5cm以下である。
The core diameter and clad diameter of an optical fiber having the glass of the present invention as a core (hereinafter referred to as the optical fiber of the present invention) are typically 2 to 10 μm and 100 to 200 μm, respectively.
When the optical fiber of the present invention is used in an optical fiber amplifier (EDFA) without being wound in a bobbin shape, the length is preferably 8 cm or less. More preferably, it is 6 cm or less, and particularly preferably 5 cm or less.

本発明の光ファイバにおいてクラッドの屈折率nとコアすなわち本発明のガラスの屈折率nとは次式を満足することが好ましい。なお、nは典型的には1.8〜2.2である。
0.0005≦(n−n)/n≦0.1
また、前記クラッドはガラスからなることが好ましく、たとえば、下記酸化物基準のモル%表示で本質的に、Bi 20〜80%、B 1〜10%、SiO 15〜50%、Al+Ga+In 8〜30%、Y+La+Gd+Yb 0.1〜15%、CeO 0〜2%、からなるガラスが挙げられる。
本発明の光ファイバはたとえば、クラッドガラスと本発明のガラスからなるコアガラスとを複合化したプリフォームを周知の押出し成形法によって作製し、このプリフォームを延伸して作製される。
It is preferable that the refractive index n 1 of glass having a refractive index n 2 and the core i.e. the invention of the cladding in the optical fiber of the present invention satisfies the following equation. Incidentally, n 1 is typically 1.8 to 2.2.
0.0005 ≦ (n 1 −n 2 ) / n 1 ≦ 0.1
The clad is preferably made of glass. For example, Bi 2 O 3 20 to 80%, B 2 O 3 1 to 10%, SiO 2 15 to 50 are essentially expressed in terms of mol% based on the following oxides. %, Al 2 O 3 + Ga 2 O 3 + In 2 O 3 8~30%, Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Yb 2 O 3 0.1~15%, CeO 2 0~2%, from Glass.
The optical fiber of the present invention is produced, for example, by preparing a preform in which a clad glass and a core glass made of the glass of the present invention are combined by a well-known extrusion molding method, and stretching the preform.

本発明のガラスのガラス転移点Tは360℃以上であることが好ましい。Tが360℃未満では、励起光として強度の大きいレーザー光を使用したときにガラスの温度が局所的に高くなって熱的に損傷し、その結果伝搬損失が増加して光増幅が不充分となるおそれがある。より好ましくは400℃以上、特に好ましくは420℃以上である。 Glass transition point T g of the glass of the present invention is preferably 360 ° C. or higher. The T g of less than 360 ° C., the temperature of the glass when using a large laser beam intensity as the excitation light is locally thermally damaged is high, insufficient optical amplification result propagation loss is increased There is a risk of becoming. More preferably, it is 400 degreeC or more, Most preferably, it is 420 degreeC or more.

次に、本発明のガラスの成分について説明する。なお、各成分の含有量はモル%を単に%として表示する。
Erは光学活性成分(Erイオンは光学活性イオン)であり必須である。0.1%未満では充分な利得が得られない。好ましくは0.3%以上である。4.5%超ではガラス化が困難になる、または濃度消光のためにかえって利得が低下する。好ましくは2.9%以下、より好ましくは2%以下である。
Next, the components of the glass of the present invention will be described. The content of each component is simply expressed as mol%.
Er 2 O 3 is an optically active component (Er ions are optically active ions) and is essential. If it is less than 0.1%, a sufficient gain cannot be obtained. Preferably it is 0.3% or more. If it exceeds 4.5%, vitrification becomes difficult, or the gain is lowered due to concentration quenching. Preferably it is 2.9% or less, more preferably 2% or less.

本発明のガラスを、ボビン状に巻かずにEDFAに使用される光ファイバ(その長さは典型的には8cm以下)に使用する場合、または光増幅に使用されるコンパクトな平面導波路(その大きさは典型的には8cm以下)に使用する場合Er含有量は、好ましくは0.5%以上、より好ましくは1%以上であり、また、典型的には3%以下である。
本発明のガラスを、Lバンドを含む波長帯の光の増幅に用いる場合、Er含有量は0.1〜1%であることが好ましい。より好ましくは0.2%以上、特に好ましくは0.4%以上である。また、より好ましくは0.7%以下、特に好ましくは0.6%以下である。
When the glass of the present invention is used for an optical fiber (its length is typically 8 cm or less) used for an EDFA without being wound in a bobbin shape, or a compact planar waveguide (that is used for optical amplification) When used for a size of typically 8 cm or less), the Er 2 O 3 content is preferably 0.5% or more, more preferably 1% or more, and typically 3% or less. .
When the glass of the present invention is used for amplification of light in a wavelength band including the L band, the Er 2 O 3 content is preferably 0.1 to 1%. More preferably, it is 0.2% or more, and particularly preferably 0.4% or more. Further, it is more preferably 0.7% or less, particularly preferably 0.6% or less.

Biは必須成分である。その含有量が20%未満では利得が得られる波長幅Δλが小さい、屈折率が小さすぎるために所望の利得が得られない、または溶解温度が高くなりすぎてガラス融液中に金属ビスマスが析出するおそれがある。好ましくは29%以上である。80%超では、ガラス化が困難になる、ファイバ加工時に結晶が析出する、またはTが低くなりすぎる。好ましくは70%以下、より好ましくは60%以下、特に好ましくは50%以下である。 Bi 2 O 3 is an essential component. If the content is less than 20%, the wavelength width Δλ at which gain is obtained is small, the refractive index is too small to obtain a desired gain, or the melting temperature becomes too high, and metal bismuth is precipitated in the glass melt. There is a risk. Preferably it is 29% or more. In 80%, vitrification tends to be difficult, crystals precipitate during fiber processing, or T g is too low. Preferably it is 70% or less, More preferably, it is 60% or less, Most preferably, it is 50% or less.

、La、GdおよびYbはErイオンの濃度消光を起こりにくくするための成分または利得を増大させるための成分であり、いずれか1種以上の成分を含有しなければならない。これら希土類酸化物の含有量の合計が0.1%未満では濃度消光が起こりやすくなる、または利得が小さくなる。好ましくは0.5%以上である。15%超ではガラス化が困難になる、またはファイバ加工時に結晶が析出しやすくなる。好ましくは12%以下、より好ましくは10%以下である。 Y 2 O 3 , La 2 O 3 , Gd 2 O 3, and Yb 2 O 3 are components for preventing concentration quenching of Er ions or increasing gain, and any one or more components Must be included. If the total content of these rare earth oxides is less than 0.1%, concentration quenching tends to occur or the gain becomes small. Preferably it is 0.5% or more. If it exceeds 15%, vitrification becomes difficult, or crystals tend to precipitate during fiber processing. Preferably it is 12% or less, More preferably, it is 10% or less.

本発明のガラスを、ボビン状に巻かずにEDFAに使用される光ファイバに使用する前述の場合、および光増幅に使用されるコンパクトな平面導波路に使用する前述の場合、Erの添加割合が典型的には1%以上と高くなるので、Erによる濃度消光を抑制するためにLaは1%以上とすることが好ましい。 In the above case where the glass of the present invention is used in an optical fiber used for an EDFA without being wound in a bobbin shape, and in the above case where the glass is used in a compact planar waveguide used for optical amplification, Er 2 O 3 Since the addition ratio is typically as high as 1% or more, La 2 O 3 is preferably 1% or more in order to suppress concentration quenching due to Er.

はガラス中の水分量によって光増幅利得が変動するのを抑制する成分であり、必須である。1%未満ではそのような抑制効果が小さくなる。好ましくは2%以上、より好ましくは3%以上である。15%超では利得または耐水性が低下するおそれがある。好ましくは10%以下、より好ましくは8%以下である。 B 2 O 3 is a component that suppresses fluctuations in the optical amplification gain depending on the amount of moisture in the glass, and is essential. If it is less than 1%, such a suppressing effect becomes small. Preferably it is 2% or more, more preferably 3% or more. If it exceeds 15%, the gain or water resistance may be lowered. Preferably it is 10% or less, More preferably, it is 8% or less.

本発明のガラスの必須成分は以上述べたとおりであるが目的に応じてそれ以外の成分を含有してもよい。そのような成分について下記好ましい態様(以下、態様Aという。)を例にして説明する。
本発明のガラスは下記酸化物基準で、Bi 20〜80%、B 1〜10%、SiO 15〜50%、Al+Ga+In 8〜30%、Y+La+Gd+Yb 0.1〜15%、CeO 0〜2%、Er 0.1〜4.5%、から本質的になることが好ましい。
The essential components of the glass of the present invention are as described above, but other components may be contained depending on the purpose. Such components will be described with reference to the following preferred embodiment (hereinafter referred to as embodiment A).
The glass of the present invention in following oxides, Bi 2 O 3 20~80%, B 2 O 3 1~10%, SiO 2 15~50%, Al 2 O 3 + Ga 2 O 3 + In 2 O 3 8~ Essentially from 30%, Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Yb 2 O 3 0.1-15%, CeO 2 0-2%, Er 2 O 3 0.1-4.5% It is preferable to become.

SiOはネットワークフォーマであり、ガラス作製時の結晶析出を抑制してガラス形成を容易にする成分である。態様Aにおいては、SiOは必須でありその含有量は20〜45%であることがより好ましい。 SiO 2 is a network former and is a component that suppresses crystal precipitation during glass production and facilitates glass formation. In the aspect A, SiO 2 is essential and the content thereof is more preferably 20 to 45%.

Al、GaおよびInはガラス作製時の結晶析出を抑制してガラス形成を容易にする成分、またはファイバ加工時の結晶析出を抑制する成分である。態様Aにおいてはこれらのいずれか1種以上を含有しなければならず、それらの含有量合計は15〜27%であることがより好ましい。また、同態様においては、Al+Gaは15〜25%、Alは2〜10%、Gaは10〜20%、であることが好ましい。 Al 2 O 3 , Ga 2 O 3, and In 2 O 3 are components that suppress crystal precipitation during glass production and facilitate glass formation, or components that suppress crystal precipitation during fiber processing. In aspect A, one or more of these must be contained, and the total content thereof is more preferably 15 to 27%. Also, in the embodiment, Al 2 O 3 + Ga 2 O 3 is 15-25% Al 2 O 3 is 2 to 10% Ga 2 O 3 is preferably 10 to 20%.

CeOは、Biがガラス融液中で金属ビスマスとなって析出しガラスの透過率を低下させるのを防止する成分である。態様AにおいてCeOは必須ではないが、CeOを含有する場合その含有量は0.1〜0.5%であることが好ましい。なお、透過率を高めたい場合はCeOを含有しないことが好ましい。 CeO 2 is a component that prevents Bi 2 O 3 from depositing as metal bismuth in the glass melt and reducing the transmittance of the glass. In Embodiment A, CeO 2 is not essential, but when CeO 2 is contained, its content is preferably 0.1 to 0.5%. Incidentally, if you want to increase the transmittance preferably contains no CeO 2.

態様Aのガラスは本質的に上記成分からなるがそれ以外の成分を含有してもよい。その場合そのような成分の含有量の合計は、好ましくは30%以下、より好ましくは20%以下、特に好ましくは10%以下である。
前記それ以外の成分としては以下のような成分が例示される。
The glass of aspect A consists essentially of the above components, but may contain other components. In that case, the total content of such components is preferably 30% or less, more preferably 20% or less, and particularly preferably 10% or less.
Examples of the other components include the following components.

WO、TaおよびTeOはΔλを大きくする成分であり、たとえば態様Aでは合計で10%まで含有してもよい。
GeOはガラス形成を容易にする成分または屈折率を高くする成分であり、たとえば態様Aでは10%まで含有してもよい。
TiOおよびSnOはファイバ加工時の結晶析出を抑制する成分であり、たとえば態様Aでは合計で10%まで含有してもよい。
その他、ガラス形成を容易にする成分またはファイバ加工時の結晶析出を抑制する成分として、MgO、CaO、SrO、BaO、NaO、KO、ZrO、ZnO、CdO、PbO等が挙げられる。
WO 3 , Ta 2 O 5 and TeO 2 are components that increase Δλ. For example, in the aspect A, the total amount may be up to 10%.
GeO 2 is a component that facilitates glass formation or a component that increases the refractive index. For example, in embodiment A, it may be contained up to 10%.
TiO 2 and SnO 2 are components that suppress crystal precipitation during fiber processing. For example, in the aspect A, the TiO 2 and SnO 2 may be contained up to 10% in total.
Other components that facilitate glass formation or suppress crystal precipitation during fiber processing include MgO, CaO, SrO, BaO, Na 2 O, K 2 O, ZrO 2 , ZnO, CdO, and PbO. .

本発明のガラスの製造方法については特に制限はなく、たとえば、原料を調合して混合し、金ルツボ、アルミナルツボ、石英ルツボやイリジウムルツボ中に入れ、800〜1300℃で空気中で溶解し、得られた融液を所定のモールドにキャストする溶融法によって製造できる。また、ゾルゲル法や気相蒸着法などの溶融法以外の方法で製造してもよい。   There is no particular limitation on the method for producing the glass of the present invention. For example, the raw materials are prepared and mixed, placed in a gold crucible, an alumina crucible, a quartz crucible or an iridium crucible, and melted in the air at 800 to 1300 ° C. The obtained melt can be manufactured by a melting method in which the melt is cast into a predetermined mold. Moreover, you may manufacture by methods other than melting methods, such as a sol-gel method and a vapor deposition method.

表1にモル%表示で示す組成のガラスを、1150℃で溶解する溶融法により作製した。例1は本発明のガラスの実施例、例2は比較例、例1c、2cはいずれもクラッド用ガラスである。
これらガラスについて、ガラス転移点T(単位:℃)を示差熱分析(DTA)により、波長1.55μmにおける屈折率nをプリズムカプラによりそれぞれ測定した。結果を表1に示す。
Glasses having compositions shown in mol% in Table 1 were produced by a melting method that melts at 1150 ° C. Example 1 is an example of the glass of the present invention, Example 2 is a comparative example, and Examples 1c and 2c are clad glasses.
For these glasses, the glass transition point T g (unit: ° C.) was measured by differential thermal analysis (DTA), and the refractive index n at a wavelength of 1.55 μm was measured by a prism coupler. The results are shown in Table 1.

Figure 2005145741
Figure 2005145741

例1、2のガラスをそれぞれ3ロット作製し、各ロットのガラスのαOH(単位:cm−1)を測定したところ、例1のガラスは、0、0.5、3.0cm−1、例2のガラスは、0.45、0.62、2.13cm−1であった。なお、αOHはガラス中の水分に起因する吸収バンド(典型的には波長が2700〜3500nmの領域に存在)のピークにおける吸収係数であり、ガラス中の水分量に比例する。 Three lots of each of the glasses of Examples 1 and 2 were prepared, and α OH (unit: cm −1 ) of the glass of each lot was measured. As a result, the glass of Example 1 was 0, 0.5, 3.0 cm −1 , The glass of Example 2 was 0.45, 0.62, and 2.13 cm −1 . Note that α OH is an absorption coefficient at the peak of an absorption band (typically existing in a region of 2700 to 3500 nm in wavelength) due to moisture in the glass, and is proportional to the amount of moisture in the glass.

例1の各ロットのガラスをコア、例1cのガラスをクラッドとするプリフォームを周知の押出し成形法によって作製し、得られたプリフォームを延伸して、コア径が4μm、クラッド径が124μm、長さが5cmである光ファイバ1を得た(3ロット)。同様にして例2の各ロットのガラスをコア、例2cのガラスをクラッドとする光ファイバ2を得た(3ロット)。   A preform having the glass of each lot of Example 1 as a core and the glass of Example 1c as a clad was prepared by a well-known extrusion method, and the obtained preform was stretched to have a core diameter of 4 μm, a clad diameter of 124 μm, An optical fiber 1 having a length of 5 cm was obtained (3 lots). Similarly, an optical fiber 2 was obtained in which the glass of each lot of Example 2 was the core and the glass of Example 2c was the cladding (3 lots).

光ファイバ1、2に、波長980nm、強度300mWのレーザー光(励起光)と波長が1560nmの信号光(強度=1mW)とを入射して利得G(単位:dB)を測定した。各光ファイバのGをコアガラスのαOHと対応させる形で表2に示す。
Gは信号光の光ファイバへの入射強度Iinと光ファイバからの出射強度Ioutとから次式によって算出される。
G=10×log((Iout−Iin)/Iin
GはαOHが3cm−1においても7dB以上であることが好ましい。
Laser light (excitation light) having a wavelength of 980 nm and an intensity of 300 mW and signal light (intensity = 1 mW) having a wavelength of 1560 nm were incident on the optical fibers 1 and 2, and the gain G (unit: dB) was measured. Table 2 shows G of each optical fiber in correspondence with α OH of the core glass.
G is calculated by the following equation from the incident intensity I in of the signal light to the optical fiber and the emission intensity I out from the optical fiber.
G = 10 × log ((I out −I in ) / I in )
G is preferably 7 dB or more even when α OH is 3 cm −1 .

表2の|ΔG|/ΔαOH(単位:dB/cm−1)の欄には、隣り合うαOHの差ΔαOHによってそれらに対応するGの差の絶対値|ΔG|値を除して得た値を示し、平均の欄にはそれらの平均値を示す。
|ΔG|/ΔαOHは、ロットによってコアガラス水分量が変動したときの利得の変動しやすさを示す量であり、αOHが0.5cm−1以上の範囲において1.0dB/cm−1以下であることが好ましく、αOHが0.6cm−1以上の範囲において0.5dB/cm−1以下であることがより好ましい。
In the column of | ΔG | / Δα OH (unit: dB / cm −1 ) in Table 2, the absolute value | ΔG | value of the difference of G corresponding thereto is divided by the difference Δα OH of adjacent α OH. The obtained values are shown, and the average value is shown in the average column.
| ΔG | / Δα OH is an amount indicating the variability of the gain when the core glass moisture content varies depending on the lot, and is 1.0 dB / cm −1 in the range where α OH is 0.5 cm −1 or more. The α OH is preferably 0.5 dB / cm −1 or less in the range of 0.6 −1 or more.

Figure 2005145741
Figure 2005145741

Claims (3)

Biを20〜80モル%、Y、La、GdおよびYbからなる群から選ばれる1種以上の酸化物を合計で0.1〜15モル%、Erを0.1〜4.5モル%の範囲でそれぞれ含有する光増幅ガラスであって、Bを1〜15モル%含有することを特徴とする光増幅ガラス。 Bi 2 O 3 20-80 mol%, Y 2 O 3 , La 2 O 3 , Gd 2 O 3 and one or more oxides selected from the group consisting of Yb 2 O 3 in total 0.1-15 A light amplifying glass containing mol% and Er 2 O 3 in a range of 0.1 to 4.5 mol%, respectively, and containing 1 to 15 mol% of B 2 O 3 . 下記酸化物基準のモル%表示で、Bi 20〜80%、B 1〜10%、SiO 15〜50%、Al+Ga+In 8〜30%、Y+La+Gd+Yb 0.1〜15%、CeO 0〜2%、Er 0.1〜4.5%、から本質的になる請求項1に記載の光増幅ガラス。 Bi 2 O 3 20 to 80%, B 2 O 3 1 to 10%, SiO 2 15 to 50%, Al 2 O 3 + Ga 2 O 3 + In 2 O 3 8 to 30 in terms of mol% based on the following oxides %, Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Yb 2 O 3 0.1-15%, CeO 2 0-2%, Er 2 O 3 0.1-4.5% The light amplification glass according to claim 1. 請求項1または2に記載の光増幅ガラスをコアとする光導波路。
An optical waveguide having the optical amplification glass according to claim 1 as a core.
JP2003383831A 2003-11-13 2003-11-13 Optical amplification glass and optical waveguide Expired - Fee Related JP4314468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383831A JP4314468B2 (en) 2003-11-13 2003-11-13 Optical amplification glass and optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383831A JP4314468B2 (en) 2003-11-13 2003-11-13 Optical amplification glass and optical waveguide

Publications (2)

Publication Number Publication Date
JP2005145741A true JP2005145741A (en) 2005-06-09
JP4314468B2 JP4314468B2 (en) 2009-08-19

Family

ID=34692436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383831A Expired - Fee Related JP4314468B2 (en) 2003-11-13 2003-11-13 Optical amplification glass and optical waveguide

Country Status (1)

Country Link
JP (1) JP4314468B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103641A (en) * 2005-10-04 2007-04-19 Asahi Glass Co Ltd Optical fiber for amplification
JP2007149766A (en) * 2005-11-24 2007-06-14 Kyoto Univ Photonic band gap fiber
EP2415723A3 (en) * 2010-08-05 2012-05-30 Schott North America, Inc. Rare earth aluminoborosilicate glass system
CN102627404A (en) * 2012-04-16 2012-08-08 陕西科技大学 Preparation method of bismuth-containing paramagnetic Faraday optical rotation glass
CN107523298A (en) * 2017-08-07 2017-12-29 温州大学 A kind of yttrium cerium composite oxides base up-conversion luminescent material and preparation method thereof
CN108147659A (en) * 2017-12-13 2018-06-12 上海应用技术大学 A kind of fiber amplifier is co-doped with bismuthates laser glass and preparation method thereof with erbium cerium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103641A (en) * 2005-10-04 2007-04-19 Asahi Glass Co Ltd Optical fiber for amplification
JP2007149766A (en) * 2005-11-24 2007-06-14 Kyoto Univ Photonic band gap fiber
EP2415723A3 (en) * 2010-08-05 2012-05-30 Schott North America, Inc. Rare earth aluminoborosilicate glass system
US8361917B2 (en) 2010-08-05 2013-01-29 Schott Corporation Rare earth aluminoborosilicate glass composition
CN102627404A (en) * 2012-04-16 2012-08-08 陕西科技大学 Preparation method of bismuth-containing paramagnetic Faraday optical rotation glass
CN107523298A (en) * 2017-08-07 2017-12-29 温州大学 A kind of yttrium cerium composite oxides base up-conversion luminescent material and preparation method thereof
CN107523298B (en) * 2017-08-07 2021-04-30 温州大学 Yttrium cerium composite oxide based up-conversion luminescent material and preparation method thereof
CN108147659A (en) * 2017-12-13 2018-06-12 上海应用技术大学 A kind of fiber amplifier is co-doped with bismuthates laser glass and preparation method thereof with erbium cerium

Also Published As

Publication number Publication date
JP4314468B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4240721B2 (en) Optical amplification glass and manufacturing method thereof
US6620748B1 (en) Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
JP4240720B2 (en) Light amplification glass
EP1180835B1 (en) Optical amplifying glass
JPH07291652A (en) Glass for optical signal amplifier and production of opticalsignal amplifier
JP4232414B2 (en) Optical amplification glass and optical waveguide
US6413891B1 (en) Glass material suitable for a waveguide of an optical amplifier
US20030045421A1 (en) Optical tellurite glasses for optical waveguide amplifiers and oscillators, and process for producing them
US6515795B1 (en) Borosilicate cladding glasses for germanate core thulium-doped amplifiers
KR20130119048A (en) Optical glass for gain medium with high fluorescence efficiency and optical fiber using the optical glass
JPH11317561A (en) Light amplifying glass
JP4314468B2 (en) Optical amplification glass and optical waveguide
JP4862233B2 (en) Light amplification glass
JP4250830B2 (en) Light amplification glass
JP2004277252A (en) Optical amplification glass and optical waveguide
JP2004102210A (en) Glass, method for manufacturing optical waveguide and optical waveguide
WO2010053057A1 (en) Light-amplifying glass
JP4686844B2 (en) Light amplification glass
US20030007759A1 (en) Optical amplifying glass fiber
JP2004168578A (en) Optical amplification glass and optical waveguide
JP2005145759A (en) Method for manufacturing optical amplification glass and optical waveguide
JP4348987B2 (en) Optical amplification glass and optical waveguide
JP2004002060A (en) Optical amplifying glass and process for manufacturing optically amplifying waveguide
JP2001185789A (en) Light amplifying medium and resin coat light amplifying medium and light amplifier and laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees