JP2007103641A - Optical fiber for amplification - Google Patents

Optical fiber for amplification Download PDF

Info

Publication number
JP2007103641A
JP2007103641A JP2005291088A JP2005291088A JP2007103641A JP 2007103641 A JP2007103641 A JP 2007103641A JP 2005291088 A JP2005291088 A JP 2005291088A JP 2005291088 A JP2005291088 A JP 2005291088A JP 2007103641 A JP2007103641 A JP 2007103641A
Authority
JP
Japan
Prior art keywords
optical fiber
light
amplification
core
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005291088A
Other languages
Japanese (ja)
Inventor
Moriteru Ohara
盛輝 大原
Tatsuo Nagashima
達雄 長嶋
Tomoharu Hasegawa
智晴 長谷川
Naoki Sugimoto
直樹 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005291088A priority Critical patent/JP2007103641A/en
Publication of JP2007103641A publication Critical patent/JP2007103641A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber for amplification for amplifying a short-pulse by lowering influence on spread of spectrum. <P>SOLUTION: The optical fiber for amplification uses an Er-doped core and ensures non-linear refractive index for the light in the wavelength of 1,550 nm of 1×10<SP>-20</SP>cm<SP>2</SP>/W or higher. Absorption peak of 100 dB/m or higher exists in the wavelength region of 1,525 to 1,532 nm, and effective core cross-section for the light is 35 μm<SP>2</SP>or higher. The core is formed of the glass obtained by doping Er to the matrix glass including Bi<SB>2</SB>O<SB>3</SB>of 20 to 80% in terms of mol%, any of B<SB>2</SB>O<SB>3</SB>and SiO<SB>2</SB>in total of 5 to 75%, and any of Ga<SB>2</SB>O<SB>3</SB>and Al<SB>2</SB>O<SB>3</SB>in total of 0.1 to 30%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光通信、パルスレーザー等のパルス光の増幅に好適な光ファイバに関する。   The present invention relates to an optical fiber suitable for amplification of pulsed light such as optical communication and pulsed laser.

光を増幅するためのファイバとして、石英系のガラスに希土類を添加されたものが知られている。代表例として、コアガラスにEr3+イオンを添加した石英系光ファイバが挙げられ、その1530nm帯の吸光度は4〜20dB/m程度である。 As a fiber for amplifying light, a silica glass in which a rare earth is added is known. A typical example is a silica-based optical fiber in which Er 3+ ions are added to a core glass, and its absorbance in the 1530 nm band is about 4 to 20 dB / m.

一方、光通信の伝送容量の拡大のために光時間分割多重通信方式(OTDM)が提案されており、データ速度の増加に伴い信号パルス時間幅は短パルス化されている(特許文献1参照)。また、加工用ファイバーレーザ等にはピークパワーの強い短パルスが使われている。   On the other hand, an optical time division multiplex communication system (OTDM) has been proposed in order to increase the transmission capacity of optical communication, and the signal pulse time width is shortened as the data rate increases (see Patent Document 1). . Also, short pulses with strong peak power are used for fiber lasers for processing.

特開2005−223369号公報JP 2005-223369 A

短パルスを光ファイバで増幅すると、一般に光ファイバの非線形現象によりスペクトルが歪んで広がる現象がある。この現象は、基本的に非線形定数が大きいほど、またファイバ長が長いほど顕著になる。
非線形定数γは、非線形屈折率n、有効コア断面積Aeff、光周波数ω、光速cを用いて次式で表せ、有効コア断面積が大きいほどγは小さくなる。
γ=(n×ω)/(c×Aeff
スペクトルの歪みは10ピコ秒程度以上のパルス幅では問題ないが、ピコ秒またはそれ以下のパルス幅ではスペクトルの広がりに大きな影響を与えるという問題がある。
本発明は、スペクトルの広がりへの影響を小さくして短パルス増幅ができる増幅用光ファイバの提供を目的とする。
When a short pulse is amplified by an optical fiber, there is generally a phenomenon that the spectrum is distorted and spread due to a nonlinear phenomenon of the optical fiber. This phenomenon becomes more prominent as the nonlinear constant increases and the fiber length increases.
The nonlinear constant γ can be expressed by the following equation using the nonlinear refractive index n 2 , the effective core area A eff , the optical frequency ω 0 , and the speed of light c, and γ decreases as the effective core area increases.
γ = (n 2 × ω 0 ) / (c × A eff )
Spectral distortion has no problem with a pulse width of about 10 picoseconds or more, but with a pulse width of picoseconds or less, there is a problem that the spread of the spectrum is greatly affected.
An object of the present invention is to provide an optical fiber for amplification capable of performing short pulse amplification while reducing the influence on the spectrum spread.

本発明は、コアにErが添加されており波長1550nmの光に対する非線形屈折率が1×10−20cm/W以上である光ファイバであって、1525〜1532nmの波長域に100dB/m以上の吸収ピークを有し、前記光に対する有効コア断面積が35μm以上である増幅用光ファイバを提供する。 The present invention is an optical fiber in which Er is added to the core and the nonlinear refractive index with respect to light having a wavelength of 1550 nm is 1 × 10 −20 cm 2 / W or more, and is 100 dB / m or more in a wavelength region of 1525 to 1532 nm. And an amplification optical fiber having an effective core area for the light of 35 μm 2 or more.

本発明によればスペクトルの広がりへの影響を小さくして短パルス増幅ができる。   According to the present invention, short pulse amplification can be performed while reducing the influence on the spread of the spectrum.

本発明の光ファイバはピコ秒パルスの光を増幅するのに好適である。
この増幅は、増幅されるべきパルス光(光通信においては信号光)とともに励起光をコアに入射することによって行われ、前記励起光としては通常、波長が970〜990nmまたは1460〜1490nmのレーザー光が使用される。
The optical fiber of the present invention is suitable for amplifying picosecond pulsed light.
This amplification is performed by making excitation light incident on the core together with pulsed light (signal light in optical communication) to be amplified. As the excitation light, laser light having a wavelength of 970 to 990 nm or 1460 to 1490 nm is usually used. Is used.

本発明の光ファイバにおける前記吸収ピークは100dB/m以上であるので、単位長さあたりの吸光度が多いことにより、ファイバ長を短くすることができる。好ましくは150dB/m以上である。   Since the absorption peak in the optical fiber of the present invention is 100 dB / m or more, the fiber length can be shortened by increasing the absorbance per unit length. Preferably it is 150 dB / m or more.

本発明の有効コア断面積は35μm以上であるので、非線形効果を抑制でき、短パルスにおいてもスペクトルの歪みなく、またはその歪を大きくすることなく増幅することができる。好ましくは50μm以上である。また、200μm以下であることが好ましい。200μm超では単一モードで光を伝播することが困難になるおそれがある。好ましくは150μm以下である。 Since the effective core area of the present invention is 35 μm 2 or more, the nonlinear effect can be suppressed, and even a short pulse can be amplified without spectral distortion or without increasing the distortion. Preferably it is 50 μm 2 or more. Moreover, it is preferable that it is 200 micrometers 2 or less. If it exceeds 200 μm 2 , it may be difficult to propagate light in a single mode. Preferably it is 150 μm 2 or less.

ピコ秒以下のパルス幅の信号光を増幅する時には本発明の光ファイバの長さは1m以下であることが好ましい。ファイバ長が1m超では、スペクトルの歪みが生じる、またはスペクトルの歪みが大きくなるおそれがある。好ましくは0.8m以下、より好ましくは0.5m以下、最も好ましくは0.3m以下である。一方、ファイバ長は好ましくは0.01m以上である。0.01m未満では信号光を十分に増幅できないおそれがある。より好ましくは0.03m以上、最も好ましくは0.05m以上である。   When amplifying signal light having a pulse width of picosecond or less, the length of the optical fiber of the present invention is preferably 1 m or less. If the fiber length exceeds 1 m, spectral distortion may occur or spectral distortion may increase. Preferably it is 0.8 m or less, more preferably 0.5 m or less, and most preferably 0.3 m or less. On the other hand, the fiber length is preferably 0.01 m or longer. If it is less than 0.01 m, the signal light may not be sufficiently amplified. More preferably, it is 0.03 m or more, and most preferably 0.05 m or more.

本発明の光ファイバのコアガラスの屈折率nは典型的には1.8〜2.3である。
本発明の光ファイバのコアは、Biを20〜80モル%、BおよびSiOの少なくともいずれか一方を合計で5〜75モル%、GaおよびAlの少なくともいずれか一方を合計で0.1〜30モル%含有するマトリクスガラスにErが添加されたガラスからなることが好ましい。
Refractive index n 1 of the core glass of the optical fiber of the present invention is typically 1.8 to 2.3.
The core of the optical fiber according to the present invention has a Bi 2 O 3 content of 20 to 80 mol%, a total of at least one of B 2 O 3 and SiO 2 of 5 to 75 mol%, Ga 2 O 3 and Al 2 O 3. It is preferable that it consists of the glass which added Er to the matrix glass which contains 0.1-30 mol% in total of at least any one of these.

次に、前記マトリクスガラスの組成についてモル%を単に%と表示して説明する。
Biは必須成分である。その含有量が20%未満では添加できるErの量が少なくなり、1530nm近傍に現れる吸光度が十分に得られなくなる。好ましくは30%以上、より好ましくは35%以上、特に好ましくは40%以上である。80%超では、ガラス化が困難になる、またはファイバ加工時に失透する。好ましくは70%以下、より好ましくは60%以下である。なお、ここでいう失透とは結晶析出の顕著なものであり、ファイバ加工時にファイバ切れを起こしたり、光ファイバとしての使用時にファイバ破壊を起こしたりするものである。
Next, the composition of the matrix glass will be described by simply indicating mol% as%.
Bi 2 O 3 is an essential component. If the content is less than 20%, the amount of Er that can be added decreases, and the absorbance appearing near 1530 nm cannot be obtained sufficiently. Preferably it is 30% or more, more preferably 35% or more, and particularly preferably 40% or more. If it exceeds 80%, vitrification becomes difficult or devitrification occurs during fiber processing. Preferably it is 70% or less, More preferably, it is 60% or less. The devitrification referred to here is remarkable crystal precipitation, which causes fiber breakage during fiber processing or fiber breakage when used as an optical fiber.

およびSiOはネットワークフォーマであり、ガラス形成を容易にするために、少なくともいずれか一方を含有しなければならない。これらの含有量の合計B+SiOが5%未満では、ガラス化が困難になる。より好ましくは10%以上、さらに好ましくは15%以上、特に好ましくは19%以上、最も好ましくは25%以上である。75%超では利得が低下する。より好ましくは60%以下、さらに好ましくは50%以下である。 B 2 O 3 and SiO 2 are network formers and must contain at least one of them in order to facilitate glass formation. If the total B 2 O 3 + SiO 2 of these contents is less than 5%, vitrification becomes difficult. More preferably, it is 10% or more, more preferably 15% or more, particularly preferably 19% or more, and most preferably 25% or more. If it exceeds 75%, the gain decreases. More preferably, it is 60% or less, More preferably, it is 50% or less.

AlおよびGaは失透を抑制する成分であり、少なくともいずれかを含有しなければならない。これらの含有量の合計Al+Gaが0.1%未満では失透しやすくなる。好ましくは3%以上、より好ましくは5%以上、特に好ましくは10%以上である。30%超では利得が低下する。好ましくは25%以下である。 Al 2 O 3 and Ga 2 O 3 are components that suppress devitrification and must contain at least one of them. When the total Al 2 O 3 + Ga 2 O 3 of these contents is less than 0.1%, devitrification is likely to occur. Preferably it is 3% or more, More preferably, it is 5% or more, Most preferably, it is 10% or more. If it exceeds 30%, the gain decreases. Preferably it is 25% or less.

前記マトリクスガラスは本質的に上記成分からなるものであることが好ましいが、他の成分を本発明の目的を損なわない範囲で含有してもよい。他の成分を含有する場合、それら成分の含有量の合計は20%以下であることが好ましい。
このような成分としてたとえば、ファイバ加工時の失透を抑制するまたはガラス化を容易にすることを目的とするMgO、CaO、SrO、BaO、ZrO、ZnO、CdO、In、PbO、CeO等の成分、濃度消光または失透を抑制することを目的とするLa、Yb等の成分が挙げられる。
The matrix glass is preferably essentially composed of the above components, but other components may be contained within a range that does not impair the object of the present invention. When other components are contained, the total content of these components is preferably 20% or less.
Examples of such components include MgO, CaO, SrO, BaO, ZrO 2 , ZnO, CdO, In 2 O 3 , PbO, which are intended to suppress devitrification during fiber processing or to facilitate vitrification. Examples include components such as CeO 2 and components such as La 2 O 3 and Yb 2 O 3 for the purpose of suppressing concentration quenching or devitrification.

コアおよびクラッドがそれぞれ表1に示す組成を有するガラスからなり、クラッド径が125μm、コア径が5.3μmである光ファイバを作製し、この光ファイバにUV硬化性アクリル樹脂をコーティングし直径250μmのファイバとした。なお、表1においてコアガラスの組成は、マトリクスガラスを構成する成分であるBiからLaまでの含有量についてはモル%表示で、添加成分であるErの含有量についてはマトリクスガラスを100質量部とする質量部表示で示し、クラッドガラスの組成はモル%表示で示す。
このようにして得られたファイバの波長1550nmの光に対する非線形屈折率は3×10−20cm/W、同光に対する有効コア断面積は71μmであった。また、波長1529nmに吸収ピークを有し同波長における吸光度は202dB/mであった。
Each of the core and the clad is made of glass having the composition shown in Table 1, an optical fiber having a clad diameter of 125 μm and a core diameter of 5.3 μm is manufactured, and this optical fiber is coated with a UV curable acrylic resin and having a diameter of 250 μm. A fiber was used. In Table 1, the composition of the core glass is expressed in mol% for the contents of Bi 2 O 3 to La 2 O 3 which are components constituting the matrix glass, and the matrix for the content of Er which is the additive component. It shows by the mass part display which makes glass 100 mass parts, and shows the composition of a clad glass by mol% display.
The fiber thus obtained had a nonlinear refractive index of 3 × 10 −20 cm 2 / W with respect to light having a wavelength of 1550 nm, and an effective core area of 71 μm 2 with respect to the light. Further, it had an absorption peak at a wavelength of 1529 nm and the absorbance at the same wavelength was 202 dB / m.

Figure 2007103641
Figure 2007103641

前記ファイバの長さを0.22mとし、これに波長980nmの励起光と波長1560nm、パルス幅0.6ps、繰り返し周波数48.2MHz、平均強度−6.8dBmの信号光とを合波した光を入射した。   The length of the fiber is 0.22 m, and this is the combined light of excitation light with a wavelength of 980 nm and signal light with a wavelength of 1560 nm, a pulse width of 0.6 ps, a repetition frequency of 48.2 MHz, and an average intensity of −6.8 dBm. Incident.

得られた利得G(単位:dB)とスペクトルの半値全幅Δλ(単位:nm)の関係を表2に示す。
なお、Gは信号光のファイバへの入射強度Iinとファイバからの出射強度Ioutとから次式によって算出される。
G=10×log(Iout/Iin)。
また、Δλはオプティカルスペクトラルアナライザで測定したスペクトル形状から求めた。
表2に示した結果から、本発明のファイバはピコ秒以下のパルス増幅においてもスペクトルの広がりなく増幅できることがわかる。
Table 2 shows the relationship between the gain G (unit: dB) obtained and the full width at half maximum Δλ (unit: nm) of the spectrum.
G is calculated from the incident intensity I in of the signal light into the fiber and the emission intensity I out from the fiber by the following equation.
G = 10 × log (I out / I in ).
Δλ was obtained from the spectrum shape measured with an optical spectral analyzer.
From the results shown in Table 2, it can be seen that the fiber of the present invention can be amplified without spectral broadening even in pulse amplification of picoseconds or less.

Figure 2007103641
Figure 2007103641

光通信、パルスレーザー等のパルス光の増幅に利用できる。
It can be used for amplification of pulsed light such as optical communication and pulsed laser.

Claims (2)

コアにErが添加されており波長1550nmの光に対する非線形屈折率が1×10−20cm/W以上である光ファイバであって、1525〜1532nmの波長域に100dB/m以上の吸収ピークを有し、前記光に対する有効コア断面積が35μm以上である増幅用光ファイバ。 An optical fiber in which Er is added to the core and the nonlinear refractive index for light having a wavelength of 1550 nm is 1 × 10 −20 cm 2 / W or more, and has an absorption peak of 100 dB / m or more in the wavelength region of 1525 to 1532 nm. An amplification optical fiber having an effective core area for the light of 35 μm 2 or more. 請求項1に記載の増幅用光ファイバであって、コアが、Biを20〜80モル%、BおよびSiOの少なくともいずれか一方を合計で5〜75モル%、GaおよびAlの少なくともいずれか一方を合計で0.1〜30モル%含有するマトリクスガラスにErが添加されたガラスからなる増幅用光ファイバ。
2. The amplification optical fiber according to claim 1, wherein the core has a Bi 2 O 3 content of 20 to 80 mol%, a total of at least one of B 2 O 3 and SiO 2 of 5 to 75 mol%, Ga An amplification optical fiber made of glass in which Er is added to matrix glass containing a total of 0.1 to 30 mol% of at least one of 2 O 3 and Al 2 O 3 .
JP2005291088A 2005-10-04 2005-10-04 Optical fiber for amplification Withdrawn JP2007103641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291088A JP2007103641A (en) 2005-10-04 2005-10-04 Optical fiber for amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291088A JP2007103641A (en) 2005-10-04 2005-10-04 Optical fiber for amplification

Publications (1)

Publication Number Publication Date
JP2007103641A true JP2007103641A (en) 2007-04-19

Family

ID=38030287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291088A Withdrawn JP2007103641A (en) 2005-10-04 2005-10-04 Optical fiber for amplification

Country Status (1)

Country Link
JP (1) JP2007103641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018765A (en) * 2009-07-08 2011-01-27 Furukawa Electric Co Ltd:The Optical fiber for optical amplification, optical fiber amplifier, and optical fiber laser
JPWO2009104612A1 (en) * 2008-02-18 2011-06-23 旭硝子株式会社 Fiber laser

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255563A (en) * 2000-03-08 2001-09-21 Sumitomo Electric Ind Ltd Optical transmission system
JP2002296441A (en) * 2001-03-30 2002-10-09 Furukawa Electric Co Ltd:The Optical fiber and optical communication system using the same
JP2003183049A (en) * 2001-10-10 2003-07-03 Asahi Glass Co Ltd Optical amplification glass and optical waveguide
JP2003232952A (en) * 2002-02-13 2003-08-22 Furukawa Electric Co Ltd:The Optical fiber and optical communication system using the same
JP2004184524A (en) * 2002-11-29 2004-07-02 Sumitomo Electric Ind Ltd Optical module, optical fiber and optical transmission system
JP2005064025A (en) * 2003-08-12 2005-03-10 Fujitsu Ltd Optical material, optical amplifier, and its manufacturing method
JP2005145741A (en) * 2003-11-13 2005-06-09 Asahi Glass Co Ltd Optical amplification glass and optical waveguide
JP2005209949A (en) * 2004-01-23 2005-08-04 Asahi Glass Co Ltd Optical amplifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255563A (en) * 2000-03-08 2001-09-21 Sumitomo Electric Ind Ltd Optical transmission system
JP2002296441A (en) * 2001-03-30 2002-10-09 Furukawa Electric Co Ltd:The Optical fiber and optical communication system using the same
JP2003183049A (en) * 2001-10-10 2003-07-03 Asahi Glass Co Ltd Optical amplification glass and optical waveguide
JP2003232952A (en) * 2002-02-13 2003-08-22 Furukawa Electric Co Ltd:The Optical fiber and optical communication system using the same
JP2004184524A (en) * 2002-11-29 2004-07-02 Sumitomo Electric Ind Ltd Optical module, optical fiber and optical transmission system
JP2005064025A (en) * 2003-08-12 2005-03-10 Fujitsu Ltd Optical material, optical amplifier, and its manufacturing method
JP2005145741A (en) * 2003-11-13 2005-06-09 Asahi Glass Co Ltd Optical amplification glass and optical waveguide
JP2005209949A (en) * 2004-01-23 2005-08-04 Asahi Glass Co Ltd Optical amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009104612A1 (en) * 2008-02-18 2011-06-23 旭硝子株式会社 Fiber laser
JP2011018765A (en) * 2009-07-08 2011-01-27 Furukawa Electric Co Ltd:The Optical fiber for optical amplification, optical fiber amplifier, and optical fiber laser
US8537458B2 (en) 2009-07-08 2013-09-17 Furukawa Electric Co., Ltd. Optical fiber for optical amplification, optical fiber amplifier, and optical fiber laser

Similar Documents

Publication Publication Date Title
Tanabe et al. Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier
US6620748B1 (en) Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
JP4240721B2 (en) Optical amplification glass and manufacturing method thereof
JPH07291652A (en) Glass for optical signal amplifier and production of opticalsignal amplifier
US6589895B2 (en) Thulium-doped germanate glass composition and device for optical amplification
JPWO2005077851A1 (en) Glass composition emitting fluorescence in infrared wavelength region, and method for amplifying signal light using the same
JP4232414B2 (en) Optical amplification glass and optical waveguide
RU2648795C9 (en) BROADENING OF RARE-EARTH ION EMISSION BANDWIDTH, INCREASING EMISSION CROSS SECTION AND / OR SHIFTING PEAK EMISSION WAVELENGTH IN ALUMINUM OR SILICATE GLASSES Nd-DOPED
KR101095193B1 (en) Glass for optical amplifier fiber
US20140146841A1 (en) Ultra-broad bandwidth laser glasses for short-pulse and high peak power lasers
RU2636985C2 (en) Adjustment of emission wavelength of rare-earth ion in phosphate-based glass using cerium oxide
JPWO2005085148A1 (en) Glass composition emitting fluorescence in infrared wavelength region, and method for amplifying signal light using the same
JP2007103641A (en) Optical fiber for amplification
US8053383B2 (en) Light-amplifying glass
JP2004277252A (en) Optical amplification glass and optical waveguide
JP4250830B2 (en) Light amplification glass
JP4314468B2 (en) Optical amplification glass and optical waveguide
JP2004168578A (en) Optical amplification glass and optical waveguide
JP2007149766A (en) Photonic band gap fiber
JP2005145759A (en) Method for manufacturing optical amplification glass and optical waveguide
Strek et al. Optical properties of Nd3+-doped silica fibers obtained by sol-gel method
EP1064234A2 (en) Erbium doped optical glass
JP2005322696A (en) Waveguide added with rare-earth element, light source and optical amplifier
JPH06216439A (en) Light amplifier
Kobelke et al. Arsenic sulfide single mode fibres for 1.3 μm amplification.: Preparation–gain potential–power stability limits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101203