JP4686844B2 - Light amplification glass - Google Patents

Light amplification glass Download PDF

Info

Publication number
JP4686844B2
JP4686844B2 JP2000337990A JP2000337990A JP4686844B2 JP 4686844 B2 JP4686844 B2 JP 4686844B2 JP 2000337990 A JP2000337990 A JP 2000337990A JP 2000337990 A JP2000337990 A JP 2000337990A JP 4686844 B2 JP4686844 B2 JP 4686844B2
Authority
JP
Japan
Prior art keywords
glass
less
fiber
optical
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000337990A
Other languages
Japanese (ja)
Other versions
JP2002145636A (en
Inventor
勢津久 田部
直樹 杉本
裕 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000337990A priority Critical patent/JP4686844B2/en
Publication of JP2002145636A publication Critical patent/JP2002145636A/en
Application granted granted Critical
Publication of JP4686844B2 publication Critical patent/JP4686844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/048Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass

Description

【0001】
【発明の属する技術分野】
本発明は光増幅ガラスに関する。特に、1.53〜1.63μmの波長の光に対し広帯域で増幅可能な光増幅ガラスに関する。
【0002】
【従来の技術】
光通信分野への応用を目的として、マトリクスガラスにEr(エルビウム)を添加した光増幅ガラスをコアとした光ファイバ増幅器(EDFA)の研究開発が進められている。従来提案されている代表的なEDFAとして、前記マトリクスガラスが石英系ガラスであるEr添加石英系ファイバ、前記マトリクスガラスがフッ化物ガラスであるEr添加フッ化物ファイバが挙げられる。
一方、将来見込まれる通信サービスの多様化に対応するために、伝送容量の拡大が可能な波長多重光通信方式(WDM)が提案されている。WDMは、波長多重のチャンネル数を増加させて伝送容量の増大を図るものであり、前記EDFAのWDMへの応用も検討されている。
【0003】
【発明が解決しようとする課題】
従来知られているEr添加石英系ファイバには、そのファイバ単位長さあたりの光増幅率を増大させるためにEr添加量を増加していくと濃度消光によって発光効率が低下し、かえってファイバ単位長さあたりの光増幅率が低下する問題があった。たとえば、1999年にAcademic Press社から発行されたErbium doped fiber amplifiers(Erドープファイバ増幅器)という書物の113頁には、Er添加石英系ファイバにおいてEr3+の濃度が0.04モル%でも濃度消光が起こる旨の記載がある。石英系ガラスであるマトリクスガラスを100%としたときの質量百分率表示で前記濃度を表すと0.11%である。
【0004】
Er添加石英系ファイバにおいては、濃度消光のため、Er添加量増加によってファイバ単位長さあたりの光増幅率を増大させ短いファイバによって所望の光増幅率を得ることは困難であり、その使用長は典型的には10〜30mまたはそれ以上であった。
【0005】
また、Er添加フッ化物ファイバには、光増幅のための励起光の強度が大きくなると熱的に損傷するおそれがあった。これはフッ化物ガラスのガラス転移点Tgが低く、典型的には320℃以下であることによる。
【0006】
近年、WDMシステムの開発の進展にともなってコンパクトな光増幅器が求められており、そのような光増幅器に用いられる光増幅媒体のコンパクト化が望まれている。光増幅媒体のコンパクト化、すなわち短い光増幅媒体によって所望の光増幅を得るためには、濃度消光による発光効率の低下が起こりにくいこと、および、励起光による熱的損傷のおそれがないことが求められる。
【0007】
本発明は、以上の課題を解決し、濃度消光による発光効率の低下が起こりにくく、かつTgが高い光増幅ガラスの提供を目的とする。
【0008】
【課題を解決するための手段】
本発明は、マトリクスガラスに質量百分率表示で0.01〜10%のErが添加されている光増幅ガラスであって、該マトリクスガラスがモル%表示で、Bi23を20〜80%、Yb23を0.01〜10%含有し、かつ、B23およびSiO2の少なくともいずれか一方を含有し、B23およびSiO2の含有量の合計が5〜75%であり、Ga23、WO3およびTeO2からなる群の1種以上を含有し、Ga23、WO3およびTeO2の含有量の合計が0.1〜35%である光増幅ガラスを提供する。
【0009】
【発明の実施の形態】
本発明の光増幅ガラス(以下本発明のガラスという。)は光増幅媒体であり、通常、コア/クラッド構造を有するガラスファイバまたは同構造を有する平面導波路のコアガラスとして使用される。
【0010】
本発明のガラスのTgは360℃以上であることが好ましい。その理由は、光増幅のための励起光として強度の大きいレーザー光を使用するとガラスの温度が局所的に高くなり、Tgが360℃未満では、ガラスが熱的に損傷し、その結果光損失が増加して光増幅が不充分となるおそれがあるからである。より好ましくは400℃以上、特に好ましくは420℃以上である。
【0011】
本発明におけるマトリクスガラスには光増幅機能を付与するためにErが添加される。マトリクスガラスを100%としたときのErの質量百分率表示の添加量(Er添加量)が0.01%未満では、所望の光増幅が得られない。好ましくは0.1%以上、より好ましくは0.3%以上である。10%超では、ガラス化が困難になる、または、濃度消光のためにかえって光増幅率が低下する。好ましくは8%以下、より好ましくは5%以下、特に好ましくは4%以下である。光増幅媒体の長さを小さくしたい場合にはEr添加量を多くすることが好ましく、たとえば1%以上とすることが好ましい。
【0012】
次に、本発明におけるマトリクスガラスの成分について、モル%を単に%と表示して以下に説明する。
Bi23は必須成分である。その含有量が20%未満では利得が得られる波長幅Δλが小さい。好ましくは30%以上、より好ましくは35%以上、特に好ましくは40%以上である。80%超では、ガラス化が困難になる、ファイバ加工時に失透する、またはTgが低くなりすぎる。好ましくは70%以下、より好ましくは60%以下、特に好ましくは50%以下である。ここでいう失透とは結晶析出の顕著なものであり、ファイバ加工時にファイバ切れを起こしたり、光増幅ガラスファイバとしての使用時にファイバ破壊を起こしたりするものである。
【0013】
Yb23は濃度消光を起こりにくくする効果または光増幅率を増大させる効果を有し、必須である。0.01%未満では前記効果が小さい。好ましくは0.1%以上、より好ましくは0.5%以上である。10%超ではガラス化が困難になる。好ましくは8%以下、より好ましくは5%以下である。
【0014】
23およびSiO2はネットワークフォーマであり、ガラス作製時の結晶析出を抑制してガラス形成を容易にするために、少なくともいずれか一方は含有しなければならない。これらの含有量の合計が5%未満では、ガラス化が困難になる、またはファイバ加工時に失透する。より好ましくは10%以上、さらに好ましくは15%以上、特に好ましくは19%以上、最も好ましくは25%以上である。75%超では光増幅率が低下する。より好ましくは60%以下、さらに好ましくは55%以下、特に好ましくは45%以下、最も好ましくは40%以下である。
【0015】
23の含有量は75%以下でなければならないが、好ましくは60%以下、より好ましくは45%以下、特に好ましくは30%以下である。B23を含有する場合、その含有量は1%以上であることが好ましい。
【0016】
SiO2の含有量は75%以下でなければならないが、好ましくは60%以下、より好ましくは50%以下、特に好ましくは45%以下、最も好ましくは40%以下である。SiO2を含有する場合、その含有量は1%以上であることが好ましい。より好ましくは10%以上、特に好ましくは19%以上、最も好ましくは25%以上である。
【0017】
Ga23、WO3およびTeO2はΔλを大きくする成分であり、これら3成分の1種以上を含有しなければならない。これらの含有量の合計が0.1%未満ではΔλが小さくなる。好ましくは3%以上、より好ましくは5%以上、特に好ましくは10%以上である。35%超では光増幅率が低下する。好ましくは30%以下、より好ましくは25%以下である。
【0018】
Ga23の含有量は30%以下であることが好ましい。より好ましくは20%以下である。Ga23を含有する場合、その含有量は、好ましくは1%以上、より好ましくは5%以上、特に好ましくは10%以上である。
【0019】
WO3の含有量は30%以下であることが好ましい。より好ましくは20%以下、特に好ましくは10%以下である。WO3を含有する場合、その含有量は、好ましくは1%以上、より好ましくは3%以上である。
【0020】
TeO2の含有量は30%以下であることが好ましい。より好ましくは20%以下である。TeO2を含有する場合、その含有量は、好ましくは1%以上、より好ましくは3%以上である。
【0021】
本発明におけるマトリクスガラスは、下記酸化物基準で、
Bi23 20〜80%、
Yb23 0.01〜10%、
23 0〜60%、
SiO2 0〜60%、
Ga23 0〜30%、
WO3 0〜30%、
TeO2 0〜30%、
Al23 0〜10%、
GeO2 0〜30%、
CeO2 0〜2%、
TiO2 0〜30%、
SnO2 0〜30%、
から本質的になることが好ましい。
【0022】
Bi23、Yb23、B23、SiO2、Ga23、WO3およびTeO2については先に説明したのでこれら7成分以外の成分について以下に説明する。
【0023】
Al23は必須ではないが、ガラス作製時の結晶析出を抑制してガラス形成を容易にするために10%まで含有してもよい。10%超では光増幅率が低下するおそれがある。より好ましくは9%以下、さらに好ましくは8%以下、特に好ましくは7%以下、最も好ましくは5%以下である。Al23を含有する場合、その含有量は0.1%以上であることが好ましい。より好ましくは1%以上、特に好ましくは2%以上である。
【0024】
ガラス作製時の結晶析出を抑制してガラス形成を容易にするために、Al23およびGa23の少なくともいずれか一方を含有し、これらの含有量の合計が30%以下であることが好ましい。30%超ではガラス化が困難になるおそれがある、またはガラス転移点が低くなりすぎるおそれがある。より好ましくは25%以下である。また、前記含有量の合計は、好ましくは1%以上、より好ましくは3%以上、特に好ましくは10%以上である。
【0025】
GeO2は必須ではないが、ガラス形成を容易にする効果、または屈折率を高くする効果を有し、30%まで含有してもよい。30%超ではガラスが結晶化しやすくなる。好ましくは10%以下、より好ましくは5%以下である。GeO2を含有する場合、その含有量は0.1%以上であることが好ましい。より好ましくは1%以上である。
【0026】
CeO2は必須ではないが、Bi23がガラス融液中で金属ビスマスとなって析出しガラスの透明性を低下させるのを防止するために、2%まで含有してもよい。2%超ではガラスの黄色またはオレンジ色の着色が顕著になり透過率が低下する。好ましくは1%以下、より好ましくは0.5%以下である。CeO2を含有する場合、その含有量は0.1%以上であることが好ましい。透過率を高めたい場合はCeO2を実質的に含有しないことが好ましい。
【0027】
TiO2およびSnO2はいずれも必須ではないが、ファイバ加工時の失透を抑制するために、それぞれ30%までの範囲で含有してもよい。それぞれの含有量は10%以下であることがより好ましい。
【0028】
本発明における好ましいマトリクスガラスは本質的に上記成分からなるが、他の成分を本発明の目的を損なわない範囲で含有してもよい。該「他の成分」の含有量の合計は10%以下であることが好ましい。たとえば、ファイバ加工時の失透を抑制するため、またはガラス化を容易にするために、MgO、CaO、SrO、BaO、ZrO2、La23、ZnO、CdO、In23、PbO等を含有してもよい。
【0029】
本発明のガラスの製造方法については特に制限はなく、たとえば、原料を調合して混合し、白金ルツボ、アルミナルツボ、石英ルツボやイリジウムルツボ中に入れ、800〜1300℃で空気中で溶解し、得られた融液を所定のモールドにキャストする溶融法によって製造できる。また、ゾルゲル法や気相蒸着法などの溶融法以外の方法で製造してもよい。
このようにして作製したガラスからプリフォームを作成してファイバ化したり、二重ルツボ法によってファイバ化することによって光増幅ガラスファイバを作製できる。
【0030】
【実施例】
表のBi23からCeO2までの欄にモル%表示で示す組成のマトリクスガラスにErを添加したガラスを、1200℃で溶解する溶融法により作製した。Er添加量は、マトリクスガラスを100%とする質量百分率表示で示す。例1〜4は実施例、例5は比較例である。
【0031】
例1〜5のガラスに、波長980nmのレーザ光を照射して発光スペクトルを測定した。発光強度の単位を任意単位として、発光スペクトルを図1に、発光強度のピーク値を表に、それぞれ示す。
また、波長1.55μmにおける屈折率nをエリプソメータにより、ガラス転移点Tg(単位:℃)を示差熱分析(DTA)により、それぞれ測定した。結果を表に示す。
【0032】
例1〜5のガラスのEr添加量は質量百分率表示で2.5%であって、前記Er添加石英系ファイバにおいて濃度消光が起るEr添加量0.11%よりも大きいにもかかわらず、例1〜5においては顕著な濃度消光は認められず光増幅が可能であることを示す。これは例1〜5におけるマトリクスガラスがBi23系ガラスであることによると考えられる。なかでも例1〜4のガラスの発光強度は、Er添加量が例1〜4と同じであって、かつYb23を含有しない例5のガラスの発光強度に比べて大きく、より濃度消光が起りにくいものであることがわかる。
【0033】
【表1】

Figure 0004686844
【0034】
【発明の効果】
本発明によれば、励起光として強度の大きいレーザー光を使用しても熱的な損傷が起りにくく、かつ、濃度消光の起こりにくい光増幅ガラスが得られ、光増幅媒体のコンパクト化、さらには光増幅器のコンパクト化が図れる。
【図面の簡単な説明】
【図1】例1〜例5の光増幅ガラスの発光スペクトルを示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical amplification glass. In particular, the present invention relates to an optical amplification glass capable of amplifying in a wide band with respect to light having a wavelength of 1.53 to 1.63 μm.
[0002]
[Prior art]
For the purpose of application to the optical communication field, research and development of an optical fiber amplifier (EDFA) having an optical amplification glass in which Er (erbium) is added to a matrix glass as a core is in progress. As typical EDFAs proposed heretofore, there are Er-doped silica fibers in which the matrix glass is quartz glass, and Er-doped fluoride fibers in which the matrix glass is fluoride glass.
On the other hand, in order to cope with the diversification of communication services expected in the future, a wavelength division multiplexing optical communication system (WDM) capable of expanding the transmission capacity has been proposed. WDM is intended to increase the transmission capacity by increasing the number of wavelength-multiplexed channels, and application of the EDFA to WDM is also being studied.
[0003]
[Problems to be solved by the invention]
In a conventionally known Er-doped silica-based fiber, when the Er addition amount is increased in order to increase the optical amplification factor per unit length of the fiber, the light emission efficiency is lowered by concentration quenching, and instead the fiber unit length. There was a problem that the optical amplification factor per unit was lowered. For example, page 113 of a book called Erbium doped fiber amplifiers (Er doped fiber amplifiers) published by Academic Press in 1999 shows that even if the Er 3+ concentration is 0.04 mol% in an Er-doped silica fiber, the concentration is quenched. There is a description that happens. When the concentration is expressed in terms of mass percentage when the matrix glass, which is quartz glass, is 100%, it is 0.11%.
[0004]
In an Er-doped silica-based fiber, concentration quenching makes it difficult to increase the optical gain per unit length of fiber by increasing the amount of Er added, and to obtain a desired optical gain with a short fiber. Typically 10-30 m or more.
[0005]
Further, the Er-doped fluoride fiber may be thermally damaged when the intensity of excitation light for optical amplification increases. This low glass transition temperature T g of the fluoride glass, typically by not more than 320 ° C..
[0006]
In recent years, with the progress of development of WDM systems, compact optical amplifiers are demanded, and it is desired to make optical amplification media used in such optical amplifiers compact. In order to obtain a desired optical amplification with a compact optical amplifying medium, that is, with a short optical amplifying medium, it is required that the light emission efficiency is not lowered due to concentration quenching and that there is no fear of thermal damage due to excitation light. It is done.
[0007]
An object of the present invention is to solve the above-described problems, and to provide a light amplification glass in which light emission efficiency is not easily lowered due to concentration quenching and Tg is high.
[0008]
[Means for Solving the Problems]
The present invention is a light amplification glass in which 0.01 to 10% of Er is added to a matrix glass in terms of mass percentage, the matrix glass is in mol% display, Bi 2 O 3 is 20 to 80%, Yb 2 O 3 and containing 0.01% to 10%, and, B 2 O 3 and containing at least one of SiO 2, the total content of B 2 O 3 and SiO 2 is in the 5 to 75% There, contains Ga 2 O 3, WO 3 and one or more of the group consisting of TeO 2, the optical amplifying glass sum of Ga 2 O 3, WO 3 and the content of TeO 2 is from 0.1 to 35 percent I will provide a.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The optical amplification glass of the present invention (hereinafter referred to as glass of the present invention) is an optical amplification medium, and is usually used as a glass fiber having a core / cladding structure or a core glass of a planar waveguide having the same structure.
[0010]
The T g of the glass of the present invention is preferably 360 ° C. or higher. The reason for this is that when a high intensity laser beam is used as excitation light for light amplification, the glass temperature locally increases, and if the T g is less than 360 ° C., the glass is thermally damaged, resulting in light loss. This is because there is a possibility that the optical amplification will be insufficient. More preferably, it is 400 degreeC or more, Most preferably, it is 420 degreeC or more.
[0011]
Er is added to the matrix glass in the present invention in order to impart an optical amplification function. When the addition amount (Er addition amount) of the Er mass percentage display when the matrix glass is 100% is less than 0.01%, desired optical amplification cannot be obtained. Preferably it is 0.1% or more, More preferably, it is 0.3% or more. If it exceeds 10%, vitrification becomes difficult, or the optical amplification factor is lowered due to concentration quenching. Preferably it is 8% or less, More preferably, it is 5% or less, Most preferably, it is 4% or less. When it is desired to reduce the length of the optical amplification medium, it is preferable to increase the Er addition amount, for example, 1% or more.
[0012]
Next, regarding the components of the matrix glass in the present invention, mol% is simply expressed as% and will be described below.
Bi 2 O 3 is an essential component. When the content is less than 20%, the wavelength width Δλ with which gain is obtained is small. Preferably it is 30% or more, more preferably 35% or more, and particularly preferably 40% or more. If it exceeds 80%, vitrification becomes difficult, devitrification occurs during fiber processing, or T g becomes too low. Preferably it is 70% or less, More preferably, it is 60% or less, Most preferably, it is 50% or less. The devitrification here means remarkable crystal precipitation, which causes fiber breakage during fiber processing or fiber breakage when used as an optical amplification glass fiber.
[0013]
Yb 2 O 3 has an effect of making concentration quenching less likely to occur or an effect of increasing the optical amplification factor, and is essential. If it is less than 0.01%, the effect is small. Preferably it is 0.1% or more, More preferably, it is 0.5% or more. If it exceeds 10%, vitrification becomes difficult. Preferably it is 8% or less, More preferably, it is 5% or less.
[0014]
B 2 O 3 and SiO 2 are network formers, and at least one of them must be contained in order to suppress crystal precipitation during glass production and facilitate glass formation. If the total of these contents is less than 5%, vitrification becomes difficult or devitrification occurs during fiber processing. More preferably, it is 10% or more, more preferably 15% or more, particularly preferably 19% or more, and most preferably 25% or more. If it exceeds 75%, the optical amplification factor decreases. More preferably, it is 60% or less, more preferably 55% or less, particularly preferably 45% or less, and most preferably 40% or less.
[0015]
The content of B 2 O 3 must be 75% or less, preferably 60% or less, more preferably 45% or less, and particularly preferably 30% or less. When B 2 O 3 is contained, the content is preferably 1% or more.
[0016]
The content of SiO 2 must be 75% or less, preferably 60% or less, more preferably 50% or less, particularly preferably 45% or less, and most preferably 40% or less. When SiO 2 is contained, the content is preferably 1% or more. More preferably, it is 10% or more, particularly preferably 19% or more, and most preferably 25% or more.
[0017]
Ga 2 O 3 , WO 3 and TeO 2 are components that increase Δλ, and must contain one or more of these three components. If the total of these contents is less than 0.1%, Δλ becomes small. Preferably it is 3% or more, More preferably, it is 5% or more, Most preferably, it is 10% or more. If it exceeds 35%, the optical amplification factor decreases. Preferably it is 30% or less, More preferably, it is 25% or less.
[0018]
The Ga 2 O 3 content is preferably 30% or less. More preferably, it is 20% or less. When Ga 2 O 3 is contained, its content is preferably 1% or more, more preferably 5% or more, and particularly preferably 10% or more.
[0019]
The content of WO 3 is preferably 30% or less. More preferably, it is 20% or less, and particularly preferably 10% or less. When WO 3 is contained, its content is preferably 1% or more, more preferably 3% or more.
[0020]
The content of TeO 2 is preferably 30% or less. More preferably, it is 20% or less. When TeO 2 is contained, its content is preferably 1% or more, more preferably 3% or more.
[0021]
The matrix glass in the present invention is based on the following oxides:
Bi 2 O 3 20-80%,
Yb 2 O 3 0.01 to 10%,
B 2 O 3 0-60%,
SiO 2 0-60%,
Ga 2 O 3 0~30%,
WO 3 0~30%,
TeO 2 0-30%,
Al 2 O 3 0-10%,
GeO 2 0-30%,
CeO 2 0-2%,
TiO 2 0-30%,
SnO 2 0-30%,
Preferably consisting essentially of
[0022]
Since Bi 2 O 3 , Yb 2 O 3 , B 2 O 3 , SiO 2 , Ga 2 O 3 , WO 3 and TeO 2 have been described above, components other than these 7 components will be described below.
[0023]
Al 2 O 3 is not essential, but may be contained up to 10% in order to suppress crystal precipitation during glass production and facilitate glass formation. If it exceeds 10%, the optical amplification factor may decrease. More preferably, it is 9% or less, more preferably 8% or less, particularly preferably 7% or less, and most preferably 5% or less. When Al 2 O 3 is contained, the content is preferably 0.1% or more. More preferably, it is 1% or more, and particularly preferably 2% or more.
[0024]
In order to suppress crystal precipitation during glass production and facilitate glass formation, at least one of Al 2 O 3 and Ga 2 O 3 is contained, and the total of these contents is 30% or less. Is preferred. If it exceeds 30%, vitrification may be difficult, or the glass transition point may be too low. More preferably, it is 25% or less. The total content is preferably 1% or more, more preferably 3% or more, and particularly preferably 10% or more.
[0025]
GeO 2 is not essential, but has an effect of facilitating glass formation or an effect of increasing the refractive index, and may be contained up to 30%. If it exceeds 30%, the glass tends to crystallize. Preferably it is 10% or less, More preferably, it is 5% or less. When GeO 2 is contained, the content is preferably 0.1% or more. More preferably, it is 1% or more.
[0026]
CeO 2 is not essential, but Bi 2 O 3 may be contained up to 2% in order to prevent Bi 2 O 3 from depositing as metal bismuth in the glass melt and reducing the transparency of the glass. If it exceeds 2%, the yellow or orange coloration of the glass becomes remarkable, and the transmittance decreases. Preferably it is 1% or less, More preferably, it is 0.5% or less. When CeO 2 is contained, the content is preferably 0.1% or more. When it is desired to increase the transmittance, it is preferable that substantially no CeO 2 is contained.
[0027]
Neither TiO 2 nor SnO 2 is essential, but each may contain up to 30% in order to suppress devitrification during fiber processing. Each content is more preferably 10% or less.
[0028]
A preferred matrix glass in the present invention consists essentially of the above components, but may contain other components within a range not impairing the object of the present invention. The total content of the “other components” is preferably 10% or less. For example, MgO, CaO, SrO, BaO, ZrO 2 , La 2 O 3 , ZnO, CdO, In 2 O 3 , PbO or the like is used to suppress devitrification during fiber processing or to facilitate vitrification. It may contain.
[0029]
There is no particular limitation on the method for producing the glass of the present invention. For example, the raw materials are prepared and mixed, put into a platinum crucible, alumina crucible, quartz crucible or iridium crucible, and melted in the air at 800 to 1300 ° C. It can be produced by a melting method in which the obtained melt is cast into a predetermined mold. Moreover, you may manufacture by methods other than melting methods, such as a sol-gel method and a vapor deposition method.
An optically amplified glass fiber can be produced by forming a preform from the glass thus produced and making it into a fiber, or making it into a fiber by a double crucible method.
[0030]
【Example】
A glass in which Er was added to a matrix glass having a composition represented by mol% in the columns from Bi 2 O 3 to CeO 2 in the table was produced by a melting method in which the glass was melted at 1200 ° C. The Er addition amount is shown by mass percentage display with the matrix glass being 100%. Examples 1 to 4 are examples, and example 5 is a comparative example.
[0031]
The glass of Examples 1 to 5 was irradiated with laser light having a wavelength of 980 nm, and the emission spectrum was measured. With the unit of emission intensity as an arbitrary unit, the emission spectrum is shown in FIG. 1, and the peak value of emission intensity is shown in the table.
Further, the refractive index n at a wavelength of 1.55 μm was measured by an ellipsometer, and the glass transition point T g (unit: ° C.) was measured by differential thermal analysis (DTA). The results are shown in the table.
[0032]
Although the Er addition amount of the glasses of Examples 1 to 5 is 2.5% in terms of mass percentage and is larger than the Er addition amount of 0.11% at which concentration quenching occurs in the Er-doped silica-based fiber, In Examples 1 to 5, no significant concentration quenching was observed, indicating that light amplification is possible. This is considered to be because the matrix glass in Examples 1 to 5 is Bi 2 O 3 glass. In particular, the emission intensity of the glasses of Examples 1 to 4 is larger than the emission intensity of the glass of Example 5 in which the Er addition amount is the same as in Examples 1 to 4 and does not contain Yb 2 O 3. It can be seen that is difficult to occur.
[0033]
[Table 1]
Figure 0004686844
[0034]
【The invention's effect】
According to the present invention, it is possible to obtain an optical amplifying glass that is less likely to be thermally damaged even when laser light having a high intensity is used as excitation light, and that is less susceptible to concentration quenching, and that the optical amplifying medium can be made more compact. The optical amplifier can be made compact.
[Brief description of the drawings]
1 is a graph showing an emission spectrum of the light amplification glass of Examples 1 to 5. FIG.

Claims (3)

マトリクスガラスに質量百分率表示で0.1%のErが添加されている光増幅ガラスであって、該マトリクスガラスがモル%表示で、Bi233550%、Yb230.5SiO 2 を25〜40%、Ga 2 3 を10〜20%、Al 2 3 を0〜5%、CeO 2 を0〜0.5%含有る光増幅ガラス。A light amplifying glass in which 0.1 to 4 % of Er is added to a matrix glass in terms of mass percentage, the matrix glass is expressed in mol%, Bi 2 O 3 is 35 to 50 %, Yb 2 O 3 0.5-5% of SiO 2 25 to 40% of Ga 2 O 3 10 to 20% of Al 2 O 3 0 to 5% optical amplification you containing CeO 2 0 to 0.5% Glass. マトリクスガラスのGa 2 3 およびAl 2 3 の含有量の合計がモル%表示で18.8%以上である請求項1に記載の光増幅ガラス。 Ga 2 O 3 and Al 2 O 3 content of total optical amplifying glass according to claim 1 Ru der 18.8% or more by mol% of the matrix glass. ガラス転移点が420℃以上である請求項1または2に記載の光増幅ガラス。Optical amplifying glass according to claim 1 or 2 glass transition point Ru der 420 ° C. or higher.
JP2000337990A 2000-11-06 2000-11-06 Light amplification glass Expired - Fee Related JP4686844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000337990A JP4686844B2 (en) 2000-11-06 2000-11-06 Light amplification glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000337990A JP4686844B2 (en) 2000-11-06 2000-11-06 Light amplification glass

Publications (2)

Publication Number Publication Date
JP2002145636A JP2002145636A (en) 2002-05-22
JP4686844B2 true JP4686844B2 (en) 2011-05-25

Family

ID=18813285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000337990A Expired - Fee Related JP4686844B2 (en) 2000-11-06 2000-11-06 Light amplification glass

Country Status (1)

Country Link
JP (1) JP4686844B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336415B2 (en) 2002-07-10 2008-02-26 Sumitomo Electric Industries, Ltd. Optical amplification module, optical amplification apparatus, and optical communications system
JP2007149766A (en) * 2005-11-24 2007-06-14 Kyoto Univ Photonic band gap fiber
WO2010053057A1 (en) * 2008-11-06 2010-05-14 旭硝子株式会社 Light-amplifying glass
CN110510884A (en) * 2019-09-26 2019-11-29 哈尔滨工程大学 A kind of preparation method of erbium ion-doped fluorine tellurate microsphere laser device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501699A (en) * 1985-02-08 1987-07-09 アメリカン テレフオン アンド テレグラフ カムパニ− Multi-component optical fiber and its manufacturing method
JPH03295828A (en) * 1990-04-12 1991-12-26 Hoya Corp Upconversion glass
JPH08110535A (en) * 1994-08-17 1996-04-30 Nippon Telegr & Teleph Corp <Ntt> Light amplifying medium, light amplifier using the medium and laser device
JPH11236245A (en) * 1998-02-23 1999-08-31 Central Glass Co Ltd Optical waveguide and 1.5-1.6 micron band light amplifier using the same
JPH11317561A (en) * 1998-03-03 1999-11-16 Asahi Glass Co Ltd Light amplifying glass
JP2001144358A (en) * 1998-10-20 2001-05-25 Asahi Glass Co Ltd Light-amplifying glass
JP2001210898A (en) * 2000-01-21 2001-08-03 Nippon Telegr & Teleph Corp <Ntt> Amplifying optical fiber and optical fiber amplifier
JP2001213640A (en) * 1999-11-26 2001-08-07 Asahi Glass Co Ltd Glass fiber
JP2001213635A (en) * 2000-01-26 2001-08-07 Asahi Glass Co Ltd Light amplification glass
JP2002003234A (en) * 2000-06-20 2002-01-09 Asahi Glass Co Ltd Method for producing preform for glass fiber
JP2002121049A (en) * 2000-08-10 2002-04-23 Asahi Glass Co Ltd Light amplifying glass

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501699A (en) * 1985-02-08 1987-07-09 アメリカン テレフオン アンド テレグラフ カムパニ− Multi-component optical fiber and its manufacturing method
JPH03295828A (en) * 1990-04-12 1991-12-26 Hoya Corp Upconversion glass
JPH08110535A (en) * 1994-08-17 1996-04-30 Nippon Telegr & Teleph Corp <Ntt> Light amplifying medium, light amplifier using the medium and laser device
JPH11236245A (en) * 1998-02-23 1999-08-31 Central Glass Co Ltd Optical waveguide and 1.5-1.6 micron band light amplifier using the same
JPH11317561A (en) * 1998-03-03 1999-11-16 Asahi Glass Co Ltd Light amplifying glass
JP2001144358A (en) * 1998-10-20 2001-05-25 Asahi Glass Co Ltd Light-amplifying glass
JP2001213640A (en) * 1999-11-26 2001-08-07 Asahi Glass Co Ltd Glass fiber
JP2001210898A (en) * 2000-01-21 2001-08-03 Nippon Telegr & Teleph Corp <Ntt> Amplifying optical fiber and optical fiber amplifier
JP2001213635A (en) * 2000-01-26 2001-08-07 Asahi Glass Co Ltd Light amplification glass
JP2002003234A (en) * 2000-06-20 2002-01-09 Asahi Glass Co Ltd Method for producing preform for glass fiber
JP2002121049A (en) * 2000-08-10 2002-04-23 Asahi Glass Co Ltd Light amplifying glass

Also Published As

Publication number Publication date
JP2002145636A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP4240721B2 (en) Optical amplification glass and manufacturing method thereof
EP1180835B1 (en) Optical amplifying glass
JP4240720B2 (en) Light amplification glass
US6620748B1 (en) Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
JP4232414B2 (en) Optical amplification glass and optical waveguide
KR20130119048A (en) Optical glass for gain medium with high fluorescence efficiency and optical fiber using the optical glass
JPH11317561A (en) Light amplifying glass
EP1270526B1 (en) Optical device with multicomponent oxide glass
JP4862233B2 (en) Light amplification glass
JP4686844B2 (en) Light amplification glass
JP4250830B2 (en) Light amplification glass
JP2004277252A (en) Optical amplification glass and optical waveguide
JP4314468B2 (en) Optical amplification glass and optical waveguide
JP2004102210A (en) Glass, method for manufacturing optical waveguide and optical waveguide
WO2010053057A1 (en) Light-amplifying glass
JP2004168578A (en) Optical amplification glass and optical waveguide
JP4348987B2 (en) Optical amplification glass and optical waveguide
JP2002121049A (en) Light amplifying glass
JP2005145759A (en) Method for manufacturing optical amplification glass and optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees