JPH08110535A - Light amplifying medium, light amplifier using the medium and laser device - Google Patents

Light amplifying medium, light amplifier using the medium and laser device

Info

Publication number
JPH08110535A
JPH08110535A JP7107684A JP10768495A JPH08110535A JP H08110535 A JPH08110535 A JP H08110535A JP 7107684 A JP7107684 A JP 7107684A JP 10768495 A JP10768495 A JP 10768495A JP H08110535 A JPH08110535 A JP H08110535A
Authority
JP
Japan
Prior art keywords
optical
glass
wavelength
fiber
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7107684A
Other languages
Japanese (ja)
Other versions
JP3316660B2 (en
Inventor
Yasutake Oishi
泰丈 大石
Atsushi Mori
淳 森
Makoto Yamada
誠 山田
Teruhisa Kanamori
照寿 金森
Shoichi Sudo
昭一 須藤
Makoto Shimizu
誠 清水
Tadashi Sakamoto
匡 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10768495A priority Critical patent/JP3316660B2/en
Publication of JPH08110535A publication Critical patent/JPH08110535A/en
Application granted granted Critical
Publication of JP3316660B2 publication Critical patent/JP3316660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/177Solid materials amorphous, e.g. glass telluride glass

Abstract

PURPOSE: To operate in a wide wave band by forming an optical fiber with an oxide-tellulide glass added with erbium and forming a core with the optical fiber. CONSTITUTION: An amplifying optical fiber with the core as an oxide-tellulide glass mixed with erbium is used as a light amplifying medium, a signal light source 1 and an excitation light source 2 are connected to one end of the fiber through an optical coupler 3, an optical isolator 5 is connected to the other end, and the components are connected with an optical fiber 6 to constitute a light amplifier. For example, a TeO2 (77mol%)-Na2 O(6mol%)-ZnO(15.5mol%)-Bi2 O3 (1.5mol%) glass is used as the core material, and Er is added by 1000ppm to form an optical fiber 4 which is used as the light amplifying medium. Further, 0.98μm is selected as the excitation wavelength, and a DFB laser is used as the signal light source. Consequently, an amplification gain is obtained with the wavelength between 1.6μm and 1.7μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光増幅媒体ならびにこ
れを用いた光増幅器およびレーザ装置に関し、特に1.
6μmから1.7μmの波長域でも動作可能な広帯域光
増幅媒体ならびにこれを用いた光増幅器およびレーザ装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplification medium, an optical amplifier and a laser device using the same, and
The present invention relates to a broadband optical amplification medium that can operate even in a wavelength range of 6 μm to 1.7 μm, an optical amplifier and a laser device using the same.

【0002】[0002]

【従来の技術】光通信システムを運用するに当っては、
信号光の他にシステムを保守、監視するための光が必要
になる。例えば、1.55μm帯の光通信システムには
1.6μmから1.7μmの波長帯の光による保守、監
視が考えられており、そのため、この波長帯の光源や光
ファイバ増幅器の開発が望まれている。
2. Description of the Related Art In operating an optical communication system,
In addition to the signal light, light is required to maintain and monitor the system. For example, in the 1.55 μm band optical communication system, maintenance and monitoring by light in the wavelength band of 1.6 μm to 1.7 μm are considered, and therefore development of a light source and an optical fiber amplifier in this wavelength band is desired. ing.

【0003】近年、光通信分野への応用を目的として、
コアに希土類元素を添加した光ファイバを光増幅媒体と
した光ファイバ増幅器、Er(エルビウム)添加光ファ
イバ増幅器(EDFA)の研究開発が進められ、光通信
システムへの応用が盛んに進められている。
In recent years, for the purpose of application to the optical communication field,
Research and development of an Er (erbium) -doped optical fiber amplifier (EDFA), which uses an optical fiber having a core doped with a rare earth element as an optical amplification medium, has been promoted, and its application to an optical communication system has been actively promoted. .

【0004】特に、将来見込まれる通信サービスの多様
化に対応するため伝送容量の拡大を図る波長多重を利用
した光通信方式の研究が行われている。この波長多重伝
送方式に使用されるEDFAに要求される特性は、先
ず、信号波長による増幅利得の変動が小さいことであ
る。これは、EDFAにより多段に中継増幅されると信
号間の強度レベル差が付き、使用している全波長に渡り
均一な特性の伝送ができなくなるためである。従って、
現在、利得が波長に対してフラットなEDFAの研究が
進められている。
In particular, research has been conducted on an optical communication system using wavelength division multiplexing for expanding the transmission capacity in order to cope with the diversification of communication services expected in the future. The characteristic required for the EDFA used in this wavelength division multiplexing transmission system is that the fluctuation of the amplification gain due to the signal wavelength is small. This is because if the signals are relayed and amplified in multiple stages by the EDFA, there will be a difference in intensity level between the signals and it will not be possible to transmit with uniform characteristics over all wavelengths in use. Therefore,
Currently, research is being conducted on EDFAs whose gain is flat with respect to wavelength.

【0005】Er添加石英系光ファイバの場合、利得の
波長依存性が急峻であり(利得の凹凸が激しく)、これ
を補正するために、EDFA内にフィルタ等を挿入して
利得をフラットにしている。しかし、利得がフラットに
なる波長幅は10nm程度という狭いものである。
In the case of an Er-doped silica optical fiber, the wavelength dependence of the gain is sharp (the unevenness of the gain is severe), and in order to correct this, a filter or the like is inserted in the EDFA to flatten the gain. There is. However, the wavelength width where the gain is flat is as narrow as about 10 nm.

【0006】比較的利得がフラットな波長領域が広い特
性を持つものとしてEr添加フッ化物ファイバが知られ
ている。しかし、これとても利得がフラットな波長幅は
30nm程度に限られている。
An Er-doped fluoride fiber is known as one having a wide wavelength region with a relatively flat gain. However, the wavelength width with a very flat gain is limited to about 30 nm.

【0007】より広い波長域で利得フラットな特性をも
つEDFAが実現されれば使用できる信号波長が広げら
れ伝送容量の格段の向上が期待できるため、そのような
EDFAの実現が望まれている。
If an EDFA having a flat gain characteristic in a wider wavelength range can be realized, the usable signal wavelength can be widened and the transmission capacity can be remarkably improved. Therefore, the realization of such an EDFA is desired.

【0008】また、広い波長域でチューナブルなレーザ
光源が開始されれば、それを波長多重伝送の光源として
利用でき、やはり通信容量の増大に応用することができ
るため、そのようなEDFAの実現が望まれている。
If a tunable laser light source in a wide wavelength range is started, it can be used as a light source for wavelength division multiplexing transmission, and can be applied to increase communication capacity. Therefore, such an EDFA can be realized. Is desired.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、これま
でのところ1.6μmから1.7μmの波長帯域で動作
する光ファイバ増幅器はない。
However, there is no optical fiber amplifier that operates in the wavelength band of 1.6 μm to 1.7 μm so far.

【0010】本発明はこのような事情に鑑み、増幅波長
帯域が広く1.6μmから1.7μmの波長帯域まで動
作する光増幅媒体ならびにこれを用いた光増幅器および
レーザ装置を提供することを目的とする。
In view of such circumstances, the present invention has an object to provide an optical amplification medium which has a wide amplification wavelength band and operates from a wavelength band of 1.6 μm to 1.7 μm, and an optical amplifier and a laser device using the same. And

【0011】本発明の目的は、従来の増幅利得が狭い波
長域でしかフラットにならないEDFAの特性を改良
し、高い量子効率、低雑音で幅広い波長域で増幅利得が
フラットになるEDFAを提供することである。
An object of the present invention is to improve the characteristics of a conventional EDFA in which the amplification gain becomes flat only in a narrow wavelength range, and to provide an EDFA having a high amplification efficiency in a wide wavelength range with high quantum efficiency and low noise. That is.

【0012】本発明の目的は、従来の増幅利得が狭い波
長でしかフラットにならないEDFAの特性を改良し、
幅広い波長域で増幅利得がフラットになるEDFAおよ
び高帯域チューナブルレーザを提供することである。
An object of the present invention is to improve the characteristics of a conventional EDFA in which the amplification gain is flat only at a narrow wavelength,
It is to provide an EDFA and a high-bandwidth tunable laser whose amplification gain is flat in a wide wavelength range.

【0013】[0013]

【課題を解決するための手段】前記目的を達成する本発
明の第1の態様は、少なくともコアが希土類元素を添加
したガラスで形成された光ファイバからなる光増幅媒体
において、前記ガラスが、エルビウムを添加した酸化テ
ルライド系ガラスであることを特徴とする光増幅媒体に
ある。
According to a first aspect of the present invention for achieving the above object, in an optical amplifying medium having at least a core made of a glass to which a rare earth element is added, the glass is erbium. An optical amplifying medium characterized by being an oxide telluride glass to which is added.

【0014】本発明の第2の態様は、少なくともコアが
希土類元素を添加したガラスで形成された光ファイバか
らなる光増幅媒体において、前記ガラスが、エルビウム
およびイッテルビウムを添加した酸化テルライド系ガラ
スであることを特徴とする光増幅媒体にある。
A second aspect of the present invention is an optical amplification medium in which at least a core is formed of a glass to which a rare earth element is added, and the glass is an telluride oxide glass to which erbium and ytterbium are added. The optical amplification medium is characterized in that

【0015】本発明の第3の態様は、本発明の第1また
は第2の態様において、前記酸化テルライド系ガラスが
ホウ素,リンまたは水酸基のうち少なくとも1種を含む
ことを特徴とする光増幅媒体にある。
A third aspect of the present invention is the optical amplifying medium according to the first or second aspect of the present invention, wherein the oxidized telluride type glass contains at least one of boron, phosphorus or a hydroxyl group. It is in.

【0016】本発明の第4の態様は、本発明の第1ない
し第3の態様のいずれかにおける光増幅媒体と、この光
増幅媒体を励起する励起光および信号光を当該光増幅媒
体に入力する入力手段とを具備することを特徴とする光
増幅器にある。
According to a fourth aspect of the present invention, the optical amplification medium according to any one of the first to third aspects of the present invention, and pumping light and signal light for exciting the optical amplification medium are input to the optical amplification medium. The optical amplifier is characterized by comprising:

【0017】本発明の第5の態様は、本発明の第1ない
し第3の態様のいずれかにおける光増幅媒体を少なくと
も一部に有する光共振器と、前記光増幅媒体を励起する
励起光源とを具備することを特徴とするレーザ装置にあ
る。
A fifth aspect of the present invention is an optical resonator having at least a portion of the optical amplification medium according to any one of the first to third aspects of the present invention, and an excitation light source for exciting the optical amplification medium. A laser device characterized by comprising:

【0018】本発明の第6の態様は、少なくともコアに
エルビウムを添加した光ファイバよりなる光増幅媒体を
複数直列に配置した光増幅器において、前記光増幅媒体
の少なくとも1つに本発明の第1ないし第3の態様のい
ずれかにおける光増幅媒体を用いたことを特徴とする光
増幅器にある。
A sixth aspect of the present invention is an optical amplifier in which a plurality of optical amplifying media made of an optical fiber having at least a core doped with erbium are arranged in series, and at least one of the optical amplifying media has the first aspect of the present invention. An optical amplifier using the optical amplifying medium according to any one of the third to third aspects.

【0019】本発明の第7の態様は、少なくともコアに
エルビウムを添加した光ファイバよりなる光増幅媒体を
複数直列に配置したレーザ装置において、前記光増幅媒
体の少なくとも1つに本発明の第1ないし第3の態様の
いずれかにおけるの光増幅媒体に用いたことを特徴とす
るレーザ装置にある。
According to a seventh aspect of the present invention, in a laser device in which a plurality of optical amplifying media made of optical fibers having at least a core doped with erbium are arranged in series, at least one of the optical amplifying media has the first aspect of the present invention. A laser device using the optical amplifying medium according to any one of the third to third aspects.

【0020】[0020]

【作用】本発明は、Er(エルビウム)を添加した酸化
テルライド系ガラスを用いた光ファイバを光増幅媒体と
して用い、Erの 413/2準位から 415/2準位への誘
導放出遷移を利用することを最も主要な特徴とする。図
6はEr3+イオンのエネルギ準位図であり、上準位 4
13/2から規定状態と同じ下準位 415/2への遷移により
発光することを示している。
DETAILED DESCRIPTION OF THE INVENTION The present invention, used as an optical amplification medium fiber using an oxidizing Telluride based glass doped with Er (erbium), derived from 4 I 13/2 level of Er to 4 I 15/2 level The most main feature is to use the emission transition. FIG. 6 is an energy level diagram of Er 3+ ions, which shows the upper level 4 I
Shows that emits light by transition to the same lower level 4 I 15/2 and defined state from 13/2.

【0021】図7は、酸化テルライド系ガラス中のEr
3+413/2415/2の発光およびフッ化物ガラス中
のEr3+413/2415/2の発光を比較したもので
ある。
FIG. 7 shows Er in telluride oxide glass.
Is 4 compares the emission of I 13/24 4 I of Er 3+ emitting and fluoride glass of the I 15/2 13/24 I 15/2 3+.

【0022】Er3+413/2415/2発光は、フッ
化物ガラス中では他のガラス、例えば、石英ガラス中な
どよりも幅広い 413/2415/2発光帯を有すること
が知られている。しかし、図7からわかるように、1.
6μmより長波長には発光は持たずErはフッ化物ガラ
ス中に在っても1.6μm以上の長波長での光増幅やレ
ーザ発振は困難である。
The emission of 4 I 13/24 I 15/2 of Er 3+ is wider in fluoride glass than in other glasses such as quartz glass 4 I 13/24 I 15/2 It is known to have an emission band. However, as can be seen from FIG.
Even if the Er is present in the fluoride glass, it is difficult to perform optical amplification or laser oscillation at a long wavelength of 1.6 μm or more, since it does not emit light at a wavelength longer than 6 μm.

【0023】しかし、Erは酸化テルライド系ガラス中
に添加されると他のガラス中よりも強い電場を受け、そ
の結果、 413/2415/2準位等の受けるスターク効
果による準位拡がりが大きくなり、より長波長域でも誘
導放出断面積を持ち、図7で見られるように1.65μ
m以上の長波長でも蛍光が存在する。
However, when Er is added to an oxide telluride type glass, it is subjected to a stronger electric field than other glasses, and as a result, due to the Stark effect of the 4 I 13/2 and 4 I 15/2 levels, etc. The level spread becomes large and it has a stimulated emission cross section even in the longer wavelength region, which is 1.65μ as seen in Fig. 7.
Fluorescence is present even at long wavelengths of m or longer.

【0024】従って、Erを少なくともコアに添加した
酸化テルライド系ガラスファイバを光増幅媒体とすれ
ば、Er添加石英ファイバやEr添加フッ化物ファイバ
では実現できなかった1.6μmから1.7μmにかけ
ての光増幅やレーザ発振が可能になる。酸化テルライド
系ガラスがホウ素、リンまたは水酸基のうち少なくとも
1種を含むと、0.98μm励起した場合も利得係数向
上および雑音指数が改善される。すなわち、B−O,P
−O,O−Hの振動エネルギは、それぞれ約1400c
-1、1200cm-1、3700cm-1であり、これら
を含まない酸化テルライドガラスのフォノンエネルギー
は600〜700cm-1であるので、倍以上大きくな
る。このため、波長0.98μm付近の光でErの 4
11/2準位を直接励起して 413/2415/2遷移による
1.5μmの光増幅を起こすと多音子放出による緩和を
受け易く量子効率の低下が少ないため、 413/2準位の
励起効率が低下しにくいからである(図7)。また、 4
11/2準位から 413/2準位への緩和が起き易いと 4
13/2準位を1.48μm付近の光で直接励起するよりも
411/2準位を励起したのち 413/2準位を励起した方
413/2準位および 415/2準位間の反転分布が得易
く、従って雑音特性も優れるからである。
Therefore, if an oxide telluride glass fiber in which Er is added to at least the core is used as the optical amplification medium, the light from 1.6 μm to 1.7 μm, which cannot be realized by the Er-doped quartz fiber or the Er-doped fluoride fiber, is obtained. Amplification and laser oscillation are possible. When the oxidized telluride-based glass contains at least one of boron, phosphorus and a hydroxyl group, the gain coefficient and the noise figure are improved even when excited by 0.98 μm. That is, B-O, P
Vibrational energies of -O and OH are about 1400c, respectively.
m -1, 1200cm -1, a 3700 cm -1, since the phonon energy of oxidation telluride glass containing no these are 600~700cm -1, increased more than double. Therefore, when the wavelength is near 0.98 μm, Er 4 I
11/2 for level directly excited to 4 I 13/24 I 15/2 lowering of easily quantum efficiency undergo relaxation by Taotoko release the cause optical amplification of 1.5μm by transition is small, 4 This is because the excitation efficiency of the I 13/2 level is unlikely to decrease (FIG. 7). Also, 4
Likely to occur relief from the I 11/2 level to the 4 I 13/2 level and 4 I
Rather than directly exciting the 13/2 level with light near 1.48 μm
4 I 11/2 inversion is easy to obtain among those who excites the 4 I 13/2 level After exciting level is 4 I 13/2 level position and 4 I 15/2 level, thus also the noise characteristics Because it is excellent.

【0025】[0025]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0026】〔実施例1〕TeO2 (77モル%)−N
2 O(6モル%)−ZnO(15.5モル%)−Bi
23 (1.5モル%)ガラスをコア材としてErを1
000ppm添加し、TeO2 (75モル%)−Na2
O(5モル%)−ZnO(20モル%)ガラスをクラッ
ド材とし、カットオフ波長0.95μm、コア・クラッ
ド屈折率差2%の光ファイバを形成し、これを光増幅媒
体とした。この光増幅媒体を用い、1.6μmから1.
7μmの波長帯の光増幅器を作成し、増幅実験を行っ
た。励起波長として0.98μmを選び、1.6μmか
ら1.7μm帯の信号光源としてDFBレーザを用い
た。
Example 1 TeO 2 (77 mol%)-N
a 2 O (6 mole%) - ZnO (15.5 mol%) - Bi
2 O 3 (1.5 mol%) glass as core material and Er of 1
000 ppm was added, and TeO 2 (75 mol%)-Na 2 was added.
O (5 mol%)-ZnO (20 mol%) glass was used as a clad material to form an optical fiber having a cutoff wavelength of 0.95 μm and a core-clad refractive index difference of 2%, which was used as an optical amplification medium. Using this optical amplification medium, 1.6 μm to 1.
An optical amplifier having a wavelength band of 7 μm was prepared and an amplification experiment was conducted. 0.98 μm was selected as the excitation wavelength, and a DFB laser was used as the signal light source in the 1.6 μm to 1.7 μm band.

【0027】図1は、本実施例の構成図であり、信号光
源1および励起光源2は光カップラ3を介して増幅用光
ファイバ4の一端に接続され、増幅用光ファイバ4の他
端には光アイソレータ5が接続されている。なお、各部
品の接続は光ファイバ6で行われている。
FIG. 1 is a block diagram of this embodiment. The signal light source 1 and the pumping light source 2 are connected to one end of an amplification optical fiber 4 via an optical coupler 3 and the other end of the amplification optical fiber 4 is connected. Is connected to the optical isolator 5. The optical fibers 6 are used to connect the respective parts.

【0028】この構成の光増幅器を用いた増幅実験によ
り、1.6μmから1.7μmの間の波長で増幅利得を
得ることができた。
By an amplification experiment using the optical amplifier of this configuration, an amplification gain could be obtained at a wavelength between 1.6 μm and 1.7 μm.

【0029】また、同じ光増幅媒体を用いて、図2で示
すチューナブルな狭帯域バンドパスフィルタを挿入した
リングレーザを構成した。かかるリングレーザは、図1
の信号光源1の代りに、光アイソレータ5の出力側を光
カップラ3に接続してリング状の光共振器を形成し、こ
のリング状光共振器の途中に狭帯域バンドパスフィルタ
7を挿入したものである。そして、狭帯域バンドパスフ
ィルタ7の透過域を1.6μmから1.7μmの間で変
動させ、励起光源2から光を入射してレーザ発振実験を
行った。その結果、出力端8から上記波長帯でのレーザ
発振を確認することができた。
Further, the same optical amplification medium was used to construct a ring laser having a tunable narrow band pass filter shown in FIG. Such a ring laser is shown in FIG.
Instead of the signal light source 1, the output side of the optical isolator 5 is connected to the optical coupler 3 to form a ring-shaped optical resonator, and the narrow bandpass filter 7 is inserted in the middle of the ring-shaped optical resonator. It is a thing. Then, the transmission band of the narrow bandpass filter 7 was varied between 1.6 μm and 1.7 μm, and light was emitted from the excitation light source 2 to perform a laser oscillation experiment. As a result, laser oscillation in the above wavelength band could be confirmed from the output end 8.

【0030】以上の実施例では励起波長として0.98
μmを使い、 411/2準位を励起したが、1.48μm
帯の波長を用い 413/2準位を直接励起しても良いこと
は言うまでもない。また、0.98μmより短波長の光
411/2準位よりエネルギの高い準位を励起しても良
い。
In the above embodiment, the excitation wavelength is 0.98.
4 I 11/2 level was excited using 1 μm, but 1.48 μm
It goes without saying that the 4 I 13/2 level may be directly excited by using the band wavelength. Further, light having a wavelength shorter than 0.98 μm may excite the energy level higher than the 4 I 11/2 level.

【0031】〔実施例2〕図1の構成の光増幅器を用
い、1.5μm帯の光増幅実験を行った。励起波長は
0.98μmであった。その結果、短波長域では、通常
のEr添加ファイバ増幅幅では利得の得られない1.4
7μmでも利得が確認できた。これにより、波長幅にし
て160nm以上の広い領域で利得が得られることが確
認できた。
Example 2 Using the optical amplifier having the configuration shown in FIG. 1, an optical amplification experiment in the 1.5 μm band was conducted. The excitation wavelength was 0.98 μm. As a result, in the short wavelength region, the gain cannot be obtained with the usual Er-doped fiber amplification width.
The gain could be confirmed even at 7 μm. As a result, it was confirmed that the gain can be obtained in a wide range of wavelength width of 160 nm or more.

【0032】〔実施例3〕Erの代りにErおよびYb
を共添加したガラスをコアとした以外は実施例1と同様
な光ファイバを作製し、光増幅媒体とした。
[Embodiment 3] Er and Yb instead of Er
An optical fiber similar to that of Example 1 was manufactured except that the glass co-doped with was used as the core, and the optical fiber was used.

【0033】この光増幅媒体を用い、実施例1および実
施例2の構成で、光増幅実験およびレーザ発振実験を行
った。励起波長として1.029μm(Yb添加YAG
レーザ)、1.047μm(Nd添加YLFレーザ)、
1.053μm(Nd添加YAGレーザ)、1.064
(Nd添加YAGレーザ)等を使った。このようにYb
をErと共添加した場合、YbからErへのエネルギ移
動を利得することにより、上述したような波長で励起し
ても1.6μmから1.7μmの間でのレーザ発振およ
び1.5μm帯の広帯域光増幅を確認することができ
た。
Using this optical amplification medium, an optical amplification experiment and a laser oscillation experiment were conducted with the configurations of Example 1 and Example 2. 1.029 μm as excitation wavelength (Yb-added YAG
Laser), 1.047 μm (Nd-doped YLF laser),
1.053 μm (Nd-doped YAG laser), 1.064
(Nd-added YAG laser) or the like was used. Thus Yb
When Er is co-doped with Er, gain of energy transfer from Yb to Er allows laser oscillation between 1.6 μm and 1.7 μm and excitation of 1.5 μm band even when excited at the wavelength as described above. Wideband optical amplification could be confirmed.

【0034】以上の実施例では光ファイバの組成として
一例を示したが、本発明はこれに限定されるものではな
い。たとえば、Cs2 O,Rb2 O,K2 O,Na2
O,Li2 O,BaO,SrO,CaO,MgO,Be
O,La23 ,Y23 ,Sc23 ,Al23
ThO2 ,HfO2 ,ZrO2 ,TiO2 ,Ta2
5,Nb25 ,WO3 ,Tl2 O,CdO,Zn
O,PbO,In23 ,Ga23 ,Bi23 のい
ずれかひとつ以上をTeO2 とともに含むガラスであっ
てもよい(参照:ガラスハンドブック(第8編)、作花
済夫他編集、朝倉書店、昭和50年発行)。また、Er
またはErおよびYbは、コアのみでなく、クラッドに
も添加してもよい。
In the above embodiments, an example of the composition of the optical fiber is shown, but the present invention is not limited to this. For example, Cs 2 O, Rb 2 O, K 2 O, Na 2
O, Li 2 O, BaO, SrO, CaO, MgO, Be
O, La 2 O 3 , Y 2 O 3 , Sc 2 O 3 , Al 2 O 3 ,
ThO 2 , HfO 2 , ZrO 2 , TiO 2 , Ta 2
O 5 , Nb 2 O 5 , WO 3 , Tl 2 O, CdO, Zn
It may be a glass containing at least one of O, PbO, In 2 O 3 , Ga 2 O 3 , and Bi 2 O 3 together with TeO 2 (see: Glass Handbook (Eighth Edition), Sakubana Sachio et al. Edited by Asakura Shoten, published in 1975). Also, Er
Alternatively, Er and Yb may be added not only to the core but also to the clad.

【0035】さらに、光増幅器は、本発明の光増幅媒体
と、この光増幅媒体を励起する励起光源と、信号光の入
力および出力手段を有するものであれば上述した構成に
限定されるものではない。
Further, the optical amplifier is not limited to the above-mentioned structure as long as it has the optical amplification medium of the present invention, a pumping light source for exciting the optical amplification medium, and input / output means for signal light. Absent.

【0036】また、レーザ装置は、光ファイバで構成さ
れた光共振器の途中に本発明の光増幅媒体を挿入し、さ
らに、この光増幅媒体を励起する励起光源を有するもの
であれば、特に限定されるものではない。
Further, if the laser device has a pumping light source for inserting the optical amplifying medium of the present invention in the middle of an optical resonator formed of an optical fiber and further exciting the optical amplifying medium, It is not limited.

【0037】〔実施例4〕増幅用ファイバとしてEr1
000ppmをコアに添加したファイバ4mを用いて
1.5μm帯の増幅特性を測定した。コアガラス組成を
TeO2 (75モル%)−ZnO(13モル%)−Na
2 O(3モル%)−Bi23 (4モル%)−P25
(5モル%)としてリンを添加し、クラッドガラス組成
をTeO2 (75モル%)−Na2 O(5モル%)−Z
nO(20モル%)とした。コア・クラッド屈折率差は
2%であり、カットオフ波長を0.96μmとした。
0.98μmの光(光源は半導体レーザ)を励起光とし
て1.5μm帯の小信号利得を測定したところ、リンを
添加しないものに比較し利得効率は5倍増加して2dB
/mWに達した。また、入力信号レベルを0dBmとし
て飽和領域での利得スペクトルを測定したところ、15
30nmから1600nmまでの70mm幅で利得がフ
ラットになった(励起強度は100mWであった)。こ
のようにコアガラスとしてリンを添加することにより、
利得係数および雑音指数が大幅に改善した。
[Embodiment 4] Er1 as an amplifying fiber
The amplification characteristic in the 1.5 μm band was measured using 4 m of the fiber in which 000 ppm was added to the core. The core glass composition is TeO 2 (75 mol%)-ZnO (13 mol%)-Na
2 O (3 mol%)-Bi 2 O 3 (4 mol%)-P 2 O 5
Phosphorus is added as (5 mol%), and the cladding glass composition is TeO 2 (75 mol%)-Na 2 O (5 mol%)-Z.
nO (20 mol%). The core / clad refractive index difference was 2%, and the cutoff wavelength was 0.96 μm.
When a small signal gain in the 1.5 μm band was measured by using 0.98 μm light (semiconductor laser as a light source) as pumping light, the gain efficiency was increased by 5 times as compared with the one without phosphorus, and the gain was 2 dB.
/ MW has been reached. Also, when the gain spectrum in the saturation region was measured with the input signal level set to 0 dBm,
The gain became flat in the width of 70 mm from 30 nm to 1600 nm (excitation intensity was 100 mW). By adding phosphorus as the core glass in this way,
The gain coefficient and noise figure are greatly improved.

【0038】また、雑音指数はリンを添加しない場合は
7dBであったが、リンを添加することにより4dBに
低下した。
The noise figure was 7 dB when phosphorus was not added, but was lowered to 4 dB by adding phosphorus.

【0039】また、P25 の代わりB23 を添加し
ても利得係数および雑音指数の改善が確認できた。
It was also confirmed that the gain coefficient and the noise figure were improved by adding B 2 O 3 instead of P 2 O 5 .

【0040】〔実施例5〕TeO2 (77モル%)−Z
nO(13モル%)−Na2 O(6モル%)−Bi2
3 (4モル%)をコアガラスとしてこれにOH基を50
00ppm、Erを1000ppm添加したところ、利
得係数はOH基を添加しないときと比較して3倍増加す
ることが確認できた。
Example 5 TeO 2 (77 mol%)-Z
nO (13 mole%) - Na 2 O (6 mole%) - Bi 2 O
3 (4 mol%) was used as the core glass and 50 OH groups were added to it.
It was confirmed that when 00 ppm and Er of 1000 ppm were added, the gain coefficient increased three times as compared with the case where no OH group was added.

【0041】リンを添加した場合より利得係数の増加の
程度が低いのはOH基の振動エネルギーが3700cm
-1という大きな値を持つため、増幅の始準位である 4
13/2準位もわずかに多音子放出により緩和されるためで
ある。
The degree of increase in the gain coefficient is lower than that when phosphorus is added because the vibration energy of the OH group is 3700 cm.
Since it has a large value of -1 , 4 I, which is the initial level of amplification
This is because the 13/2 level is also slightly relaxed by multiphonon emission.

【0042】〔実施例6〕実施例1および2ではコアガ
ラスとしてTeO2 −ZnO−Na2 O−Bi23
ガラスを用いてホウ素、リン、OH基の添加効果を示し
た。しかし、それら元素の添加効果が現れるのは上記の
酸化テルライドガラスだけではない。例えば、TeO2
−BaO−Na2 O系、TeO2 −BaO−K2 O系、
TeO2 −BaO−CaO系、TeO2 −BaO−Sr
O系、TeO2 −SrO−CaO系、TeO2 −Li2
O−Na2 O系、TeO2 −Li2 O−K2 O系、Te
2−Li2 O−BaO−CaO−SrO系、TeO2
−La23 −Li2 O−K2 O−N2 O系、TeO2
−La23 −BaO−SrO系、TeO2 −MgO−
2 O−Li2 O−N 2O系、TeO2 −MgO−Ba
O−SiO−CaO系、TeO2 −MgO−La23
−Al23 系、TeO2 −ThO2 −K2 O−Li2
O−Na2 O系、TeO2 −ThO2 −BaO−SrO
系、TeO2 −ThO2 −MgO−BeO系、TeO2
−ThO2 −La23 −Al23 系、TeO2 −B
eO−K2 O−Li2 O−N2 O系、TeO2 −BeO
−MgO−CaO−BaO−SrO系、TeO2 −Be
O−La23 −Al23 系、TeO2 −TiO2
Li2 O−Na2 O−K2 O系、TeO2 −TiO2
BaO−SiO系、TeO2 −TiO2 −La23
Al23 系、TeO2 −TiO2 −ThO2 系、Te
2 −Ta25 −Li2 O−Na2 O−K2 O系、T
eO2 −Ta25 −BaO−SrO系、TeO2 −N
25 −Li2 O−Na2 O−K2 O系、TeO2
Nb25 −BaO−CaO−SrO系、TeO2 −N
25 −MgO−BeO系、TeO2 −Nb25
La23 −Al23 系、TeO2 −Nb25 −T
hO2 −TiO2 系、TeO2 −WO3 −K2 O−Li
2 O−Na2 O系、TeO2 −WO3 −BaO−CaO
−SrO系、TeO2 −WO3 −MgO−BeO系、T
eO2 −WO3 −La23 −Al23 系、TeO2
−WO3 −ThO2 −TiO2 系、TeO2 −WO3
Ta25 −Nb25 系ガラスまたは上記ガラスの2
種類以上の混合ガラスに添加しても0.98μm励起し
た場合の利得係数向上および雑音指数の改善が確認でき
た。
Example 6 In Examples 1 and 2, the effect of adding boron, phosphorus and OH groups was shown using TeO 2 —ZnO—Na 2 O—Bi 2 O 3 based glass as the core glass. However, the effect of adding these elements is not limited to the above-mentioned oxide telluride glass. For example, TeO 2
-BaO-Na 2 O-based, TeO 2 -BaO-K 2 O system,
TeO 2 -BaO-CaO system, TeO 2 -BaO-Sr
O system, TeO 2 -SrO-CaO system, TeO 2 -Li 2
O-Na 2 O-based, TeO 2 -Li 2 O-K 2 O -based, Te
O 2 -Li 2 O-BaO- CaO-SrO system, TeO 2
-La 2 O 3 -Li 2 O- K 2 O-N 2 O system, TeO 2
-La 2 O 3 -BaO-SrO system, TeO 2 -MgO-
K 2 O-Li 2 O- N 2 O system, TeO 2 -MgO-Ba
O-SiO-CaO system, TeO 2 -MgO-La 2 O 3
-Al 2 O 3 system, TeO 2 -ThO 2 -K 2 O -Li 2
O-Na 2 O-based, TeO 2 -ThO 2 -BaO-SrO
System, TeO 2 —ThO 2 —MgO—BeO system, TeO 2
-ThO 2 -La 2 O 3 -Al 2 O 3 system, TeO 2 -B
eO-K 2 O-Li 2 O-N 2 O system, TeO 2 -BeO
-MgO-CaO-BaO-SrO system, TeO 2 -Be
O-La 2 O 3 -Al 2 O 3 system, TeO 2 -TiO 2 -
Li 2 O-Na 2 O- K 2 O system, TeO 2 -TiO 2 -
BaO-SiO system, TeO 2 -TiO 2 -La 2 O 3 -
Al 2 O 3 system, TeO 2 —TiO 2 —ThO 2 system, Te
O 2 -Ta 2 O 5 -Li 2 O-Na 2 O-K 2 O system, T
eO 2 —Ta 2 O 5 —BaO—SrO system, TeO 2 —N
b 2 O 5 -Li 2 O- Na 2 O-K 2 O system, TeO 2 -
Nb 2 O 5 -BaO-CaO- SrO -based, TeO 2 -N
b 2 O 5 -MgO-BeO system, TeO 2 -Nb 2 O 5 -
La 2 O 3 -Al 2 O 3 system, TeO 2 -Nb 2 O 5 -T
hO 2 —TiO 2 system, TeO 2 —WO 3 —K 2 O—Li
2 O-Na 2 O-based, TeO 2 -WO 3 -BaO-CaO
-SrO system, TeO 2 -WO 3 -MgO-BeO system, T
eO 2 -WO 3 -La 2 O 3 -Al 2 O 3 system, TeO 2
-WO 3 -ThO 2 -TiO 2 system, TeO 2 -WO 3 -
Ta 2 O 5 —Nb 2 O 5 based glass or 2 of the above glasses
It was confirmed that the gain coefficient and the noise figure were improved when excited by 0.98 μm even when added to mixed glasses of more than one type.

【0043】〔実施例7〕図3は本発明の実施例であ
り、11,11′は励起用半導体レーザ(波長:148
0nm)、12,12′は信号光と励起光とを結合させ
る光カップラー、13,15は増幅用光ファイバ、14
は光アイソレータであり、信号光はAのポートより入射
したのちBのポートより出射する構成となっている。
[Embodiment 7] FIG. 3 shows an embodiment of the present invention. Reference numerals 11 and 11 'denote pumping semiconductor lasers (wavelength: 148).
0 nm), 12, 12 'are optical couplers for coupling signal light and pumping light, 13 and 15 are optical fibers for amplification, 14
Is an optical isolator, and is configured so that the signal light enters from the port A and then exits from the port B.

【0044】13の増幅用ファイバとしてErを100
0ppm添加したZrF4 系のフッ化物ファイバ(Ka
namori et al. Proceeding
of9th International Synpo
sium on Non−Oxide Glasse
s,P.74,1994)を用い、15の増幅用ファイ
バとしてErを1000ppm添加したTeO2 −Na
2 O−ZrO−Bi23 系の酸化テルライドファイバ
を用いた。
Er is 100 as the amplification fiber of 13.
ZrF 4 type fluoride fiber (Ka
namori et al. Proceeding
of9th International Synpo
sium on Non-Oxide Glasse
s, P. 74, 1994), and TeO 2 —Na doped with 1000 ppm of Er as 15 amplification fibers.
A 2 O-ZrO-Bi 2 O 3 -based oxidized telluride fiber was used.

【0045】それぞれのファイバともコア・クラッド屈
折率差は2.5%であり、カットオフ波長は1.35μ
m、ファイバ長はそれぞれ10m、および7mであっ
た。11,11′の励起用半導体レーザの出力光強度を
150mWとして1.5μm帯の利得スペクトルを測定
した。
The difference in the refractive index between the core and the cladding of each fiber is 2.5%, and the cutoff wavelength is 1.35 μ.
m and the fiber length were 10 m and 7 m, respectively. The output light intensity of the pumping semiconductor lasers 11 and 11 'was set to 150 mW, and the gain spectrum in the 1.5 μm band was measured.

【0046】図4は得られた利得スペクトルを示す図で
ある。1530nmから1600nmまでの70nm幅
で利得が30dB近くの値を持ちフラットになっている
ことがわかる。従ってこの波長帯でゲインチルトも小さ
く抑えられることになる。Er添加フッ化物ファイバを
用いた場合の利得がフラットになる波長幅は1530n
mから1560nmの30nmであるので、利得がフラ
ットになる波長幅は2倍以上に広がった。またEr添加
石英ファイバの場合は、フラットな波長幅はたかだか1
0nmであるので、7倍にも広がったことになる。
FIG. 4 is a diagram showing the obtained gain spectrum. It can be seen that the gain has a value close to 30 dB and is flat in the 70 nm width from 1530 nm to 1600 nm. Therefore, the gain tilt can be suppressed to be small in this wavelength band. The wavelength width at which the gain becomes flat when an Er-doped fluoride fiber is used is 1530 n
Since it is 30 nm from m to 1560 nm, the wavelength width where the gain is flattened more than twice. In the case of Er-doped silica fiber, the flat wavelength width is at most 1
Since it is 0 nm, it means that it has expanded 7 times.

【0047】本実施例では、Er添加ZrF4 系フッ化
物ファイバを前段に用い、Er添加酸化テルライドファ
イバを後段に使用したが、この逆でも良いし、InF3
系のフッ化物ファイバでも良い。また、Er添加酸化物
多成分ガラスファイバを増幅用ファイバに加えても良
い。要するに、増幅用光ファイバのひとつとしてEr添
加酸化テルライドファイバを用いることが重要である。
In the present embodiment, the Er-doped ZrF 4 type fluoride fiber was used in the former stage and the Er-doped oxide telluride fiber was used in the latter stage, but the reverse is also possible and InF 3
A system fluoride fiber may be used. Further, an Er-doped oxide multi-component glass fiber may be added to the amplification fiber. In short, it is important to use an Er-doped telluride oxide fiber as one of the amplification optical fibers.

【0048】また、酸化テルライドファイバの組成とし
ては本実施例で使用されたものに限定されるものではな
い。
The composition of the oxidized telluride fiber is not limited to that used in this embodiment.

【0049】また、増幅用光ファイバの励起法として
は、前方励起、後方励起、双方向励起のいずれかを取っ
ても良いことは言うまでもない。
It goes without saying that any one of forward pumping, backward pumping and bidirectional pumping may be used as the pumping method for the amplification optical fiber.

【0050】〔実施例8〕図5は本実施例の構成図であ
り、実施例1で用いた増幅用ファイバ13,15を直列
に波長可変バンドパスフィルタ17(バンド幅3nm)
を介して接続し、16の1480nmで透過率が99
%、1530nmから1630nmで反射率が100%
のミラーを設け、また、他端に1530nmから163
0nmで透過率20%のミラー18を設けてレーザ発振
を行った。その結果、1530nmから1630nmの
広い範囲でレーザ発振を確認することができ、1.5μ
mで使用できる高帯域チューナブルレーザとして使用で
きることがわかった。
[Embodiment 8] FIG. 5 is a block diagram of this embodiment, in which the amplifying fibers 13 and 15 used in Embodiment 1 are connected in series to a wavelength tunable bandpass filter 17 (bandwidth 3 nm).
, And the transmittance is 99 at 16 1480 nm.
%, 100% reflectance from 1530 nm to 1630 nm
, And a mirror of 1530 nm to 163 at the other end
Laser oscillation was performed by providing a mirror 18 having a transmittance of 20% at 0 nm. As a result, it was possible to confirm laser oscillation in a wide range of 1530 nm to 1630 nm, which was 1.5 μm.
It has been found that it can be used as a high-bandwidth tunable laser that can be used in m.

【0051】[0051]

【発明の効果】以上説明したように、本発明の光増幅媒
体を用いれば、これまで光ファイバ増幅器では不可能で
あった1.6μmから1.7μmにかけての光増幅器や
レーザ装置の構成が可能になり、1.55μm帯の光通
信システムに用いられる保守・監視システムの高性能化
が達成でき、光通信システムの安定な運用が可能にな
る。
As described above, by using the optical amplification medium of the present invention, it is possible to construct an optical amplifier or a laser device of 1.6 μm to 1.7 μm which has been impossible with the optical fiber amplifier. As a result, high performance of the maintenance / monitoring system used in the 1.55 μm band optical communication system can be achieved, and stable operation of the optical communication system becomes possible.

【0052】また、増幅波長域が広い特性を利用すれ
ば、フェムト秒のような短光パルスも効率良く増幅する
こともできるし、波長多重光伝送システム中に用いる光
増幅器としても有効である。
Further, by utilizing the characteristic that the amplification wavelength range is wide, a short optical pulse such as femtosecond can be efficiently amplified, and it is also effective as an optical amplifier used in a wavelength division multiplexing optical transmission system.

【0053】さらにまた、Er添加酸化テルライド光フ
ァイバ増幅器において0.98μm励起による利得係数
が大幅に改善でき、従来のEr添加酸化テルライド光フ
ァイバ増幅器で実現できなかった高効率、低雑音の特性
を達成することができる。
Furthermore, in the Er-doped telluride oxide optical fiber amplifier, the gain coefficient by 0.98 μm pumping can be greatly improved, and high efficiency and low noise characteristics which cannot be realized by the conventional Er-doped oxide telluride optical fiber amplifier are achieved. can do.

【0054】今回実現できた特性と本来Er添加酸化テ
ルライド光ファイバ増幅器のもつ高帯域性を合わせると
波長多重光伝送システムや光CATVシステムの高性能
化を進めることができ、その結果、それらシステムを用
いたサービスの高度化、経済かに大きく寄与できるとい
う利点がある。
By combining the characteristics realized this time with the high bandwidth inherent in the Er-doped telluride oxide optical fiber amplifier, it is possible to improve the performance of the WDM optical transmission system and the optical CATV system. It has the advantage that it can contribute significantly to the sophistication of the services used and the economy.

【0055】また、広帯域の増幅器として波長多重光伝
送システムで利用すれば伝送容量の格段の増大が期待で
き、情報通信の低コスト化に寄与できる。また、光CA
TVシステムにおいて、そのゲインチルトが小さい特性
を利用して使用すれば、従来は困難であった波長多重に
よる高品質な映像の分配や中継が可能となり、やはり光
CATVの低コスト化が達成できるという大きなメリッ
トがある。さらに、レーザ光源として応用すれば各種波
長多重光伝送システムの低コスト化や光計測の高性能化
に寄与できる。
Further, if it is used as a wide band amplifier in a wavelength division multiplexing optical transmission system, the transmission capacity can be expected to be remarkably increased, which can contribute to the cost reduction of information communication. Also, optical CA
In a TV system, if it is used by utilizing the characteristic that the gain tilt is small, it is possible to distribute and relay a high-quality image by wavelength multiplexing, which has been difficult in the past, and it is also possible to reduce the cost of the optical CATV. There are merits. Further, if applied as a laser light source, it can contribute to cost reduction of various wavelength division multiplexing optical transmission systems and high performance of optical measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】光増幅器の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of an optical amplifier.

【図2】レーザ装置の一例を示す構成図である。FIG. 2 is a configuration diagram showing an example of a laser device.

【図3】実施例7のレーザ装置の構成図である。FIG. 3 is a configuration diagram of a laser device according to a seventh embodiment.

【図4】実施例7で得られた利得スペクトルを表わす図
である。
FIG. 4 is a diagram showing a gain spectrum obtained in Example 7.

【図5】実施例8のレーザ装置の構成図である。FIG. 5 is a configuration diagram of a laser device according to an eighth embodiment.

【図6】Er3+のエネルギ準位図である。FIG. 6 is an energy level diagram of Er 3+ .

【図7】酸化テルライド系ガラス中のErの 413/2
415/2発光スペクトルを表す図である。
FIG. 7 4 I 13/2 → Er of Er in oxidized telluride glass
4 I 15/2 is a graph showing the emission spectrum.

【符号の説明】[Explanation of symbols]

1 信号光源 2 励起光源 3 光カップラ 4 増幅用光ファイバ 5 光アイソレータ 6 光ファイバ 7 狭帯域バンドパスフィルタ 11,11′ 励起用半導体レーザ 12,12′ 光カップラ 13,15 増幅用光ファイバ 14 光アイソレータ 16,18 ミラー 17 波長可変バンドパスフィルタ 1 signal light source 2 pumping light source 3 optical coupler 4 amplification optical fiber 5 optical isolator 6 optical fiber 7 narrow bandpass filter 11, 11 'pumping semiconductor laser 12, 12' optical coupler 13, 15 amplification optical fiber 14 optical isolator 16,18 Mirror 17 Wavelength variable bandpass filter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/10 Z 3/17 (72)発明者 金森 照寿 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 須藤 昭一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 清水 誠 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 阪本 匡 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01S 3/10 Z 3/17 (72) Inventor Teruhisa Kanamori 1-1-1 Uchisaiwaicho, Chiyoda-ku, Tokyo No. 6 Nihon Telegraph and Telephone Corp. (72) Inventor Shoichi Sudo 1-1-1, Uchisaiwaicho, Chiyoda-ku, Tokyo No. 6 Nihon Telegraph and Telephone Corp. (72) Inventor Makoto Shimizu 1-1-1-1 Uchiyukicho, Chiyoda-ku, Tokyo No. 6 Nihon Telegraph and Telephone Corp. (72) Inventor Tadashi Sakamoto 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corp.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくともコアが希土類元素を添加した
ガラスで形成された光ファイバからなる光増幅媒体にお
いて、 前記ガラスが、エルビウムを添加した酸化テルライド系
ガラスであることを特徴とする光増幅媒体。
1. An optical amplification medium comprising an optical fiber at least having a core formed of glass doped with a rare earth element, wherein the glass is an oxide telluride-based glass doped with erbium.
【請求項2】 少なくともコアが希土類元素を添加した
ガラスで形成された光ファイバからなる光増幅媒体にお
いて、 前記ガラスが、エルビウムおよびイッテルビウムを添加
した酸化テルライド系ガラスであることを特徴とする光
増幅媒体。
2. An optical amplification medium comprising an optical fiber having at least a core made of a glass doped with a rare earth element, wherein the glass is an telluride oxide glass doped with erbium and ytterbium. Medium.
【請求項3】 前記酸化テルライド系ガラスがホウ素,
リンまたは水酸基のうち少なくとも1種を含むことを特
徴とする請求項1または2に記載の光増幅媒体。
3. The telluride oxide glass is boron,
The optical amplification medium according to claim 1, which contains at least one of phosphorus and a hydroxyl group.
【請求項4】 請求項1ないし3のいずれかに記載の光
増幅媒体と、この光増幅媒体を励起する励起光および信
号光を当該光増幅媒体に入力する入力手段とを具備する
ことを特徴とする光増幅器。
4. The optical amplification medium according to claim 1, and an input means for inputting pumping light and signal light for exciting the optical amplification medium to the optical amplification medium. Optical amplifier.
【請求項5】 請求項1ないし3のいずれかに記載の光
増幅媒体を少なくとも一部に有する光共振器と、前記光
増幅媒体を励起する励起光源とを具備することを特徴と
するレーザ装置。
5. A laser device comprising: an optical resonator having at least a part of the optical amplification medium according to claim 1; and a pumping light source for exciting the optical amplification medium. .
【請求項6】 少なくともコアにエルビウムを添加した
光ファイバよりなる光増幅媒体を複数直列に配置した光
増幅器において、 前記光増幅媒体の少なくとも1つに請求項1ないし3の
いずれかに記載の光増幅媒体を用いたことを特徴とする
光増幅器。
6. An optical amplifier in which a plurality of optical amplifying media made of an optical fiber having at least a core doped with erbium are arranged in series, wherein at least one of the optical amplifying media has the light according to any one of claims 1 to 3. An optical amplifier characterized by using an amplification medium.
【請求項7】 少なくともコアにエルビウムを添加した
光ファイバよりなる光増幅媒体を複数直列に配置したレ
ーザ装置において、 前記光増幅媒体の少なくとも1つに請求項1ないし3の
いずれかに記載の光増幅媒体に用いたことを特徴とする
レーザ装置。
7. A laser device in which a plurality of optical amplification media made of an optical fiber having at least a core doped with erbium are arranged in series, wherein at least one of the optical amplification media has the light according to any one of claims 1 to 3. A laser device characterized by being used as an amplification medium.
JP10768495A 1994-08-17 1995-05-01 Optical amplifier and laser device Expired - Lifetime JP3316660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10768495A JP3316660B2 (en) 1994-08-17 1995-05-01 Optical amplifier and laser device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19308594 1994-08-17
JP6-193085 1994-08-17
JP10768495A JP3316660B2 (en) 1994-08-17 1995-05-01 Optical amplifier and laser device

Publications (2)

Publication Number Publication Date
JPH08110535A true JPH08110535A (en) 1996-04-30
JP3316660B2 JP3316660B2 (en) 2002-08-19

Family

ID=26447706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10768495A Expired - Lifetime JP3316660B2 (en) 1994-08-17 1995-05-01 Optical amplifier and laser device

Country Status (1)

Country Link
JP (1) JP3316660B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248455A (en) * 1995-03-09 1996-09-27 Fujitsu Ltd Optical amplifier for wavelength multiplexing
EP0858976A2 (en) * 1997-02-14 1998-08-19 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier, and light source
KR19990038328A (en) * 1997-11-04 1999-06-05 윤종용 Heavy Metal Oxide Glass Composition for Optical Amplification Used in Optical Communication
WO2000023392A1 (en) * 1998-10-20 2000-04-27 Asahi Glass Company Ltd. Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
FR2793241A1 (en) * 1999-05-06 2000-11-10 Corning Inc BORATE GLASS COMPOSITION DOPED WITH ERBIUM
WO2001055041A1 (en) * 2000-01-26 2001-08-02 Asahi Glass Company, Limited Light-amplifying glass and process for producing the same
JP2001213640A (en) * 1999-11-26 2001-08-07 Asahi Glass Co Ltd Glass fiber
US6344425B1 (en) 1999-11-19 2002-02-05 Corning Incorporated Fluorotellurite, amplifier glasses
US6352950B1 (en) * 1999-06-18 2002-03-05 Corning Incorporated Tellurite glasses and optical components
KR100334809B1 (en) * 1999-07-21 2002-05-02 윤종용 Broad band light source by use of seed beam
JP2002145636A (en) * 2000-11-06 2002-05-22 Asahi Glass Co Ltd Light amplification glass
US6413891B1 (en) * 1999-10-11 2002-07-02 Electronics And Telecommunications Research Institute Glass material suitable for a waveguide of an optical amplifier
WO2002054545A1 (en) * 2000-12-27 2002-07-11 Sumitomo Electric Industries, Ltd. Amplifying optical fiber, optical fiber amplifier and optical transmission system
WO2002053507A1 (en) * 2000-12-28 2002-07-11 Bo Peng Glass for optical fibers or waveguides, the optical fibers or waveguides made therefrom and the optical amplifier utilizing these elements
EP1280247A1 (en) * 2001-07-23 2003-01-29 Alcatel Optical fiber amplifier device and communications system using the optical fiber amplifier device
KR100381009B1 (en) * 2000-07-11 2003-04-23 한국전자통신연구원 Tellurite glass composition for enhancing 980 nm excitation efficiency of erbium ion and fiberization characteristics
US6560392B2 (en) 1999-09-28 2003-05-06 Asahi Glass Company, Limited Optical amplifying glass fiber
US6599853B2 (en) 2000-01-26 2003-07-29 Asahi Glass Company, Limited Optical amplifier glass
US6656859B2 (en) 1999-10-12 2003-12-02 Corning Incorporated Tellurite glasses and optical components
JP2006245244A (en) * 2005-03-02 2006-09-14 Sumitomo Electric Ind Ltd Optically amplifying waveguide

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248455A (en) * 1995-03-09 1996-09-27 Fujitsu Ltd Optical amplifier for wavelength multiplexing
US6266181B1 (en) 1997-02-14 2001-07-24 Nippon Telegraph And Telephone Corporation Tellurite glass, optical amplifier, and light source
EP1433762A1 (en) * 1997-02-14 2004-06-30 Nippon Telegraph and Telephone Corporation Tellurite glass and optical amplifier
US6417963B1 (en) 1997-02-14 2002-07-09 Nippon Telegraph And Telephone Corporation Optical fiber splicing structure
EP1595855A3 (en) * 1997-02-14 2005-11-30 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier, and light source
EP1284247A1 (en) * 1997-02-14 2003-02-19 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier and light source
EP1285891A1 (en) * 1997-02-14 2003-02-26 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier and light source
EP1433761A1 (en) * 1997-02-14 2004-06-30 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier, and light source
EP0858976A3 (en) * 1997-02-14 1999-05-06 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier, and light source
EP0858976A2 (en) * 1997-02-14 1998-08-19 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier, and light source
EP1843495A1 (en) * 1997-02-14 2007-10-10 Nippon Telegraph and Telephone Corporation Light source
US6356387B1 (en) 1997-02-14 2002-03-12 Nippon Telegraph And Telephone Corporation Tellurite glass, optical amplifier, and light source
KR19990038328A (en) * 1997-11-04 1999-06-05 윤종용 Heavy Metal Oxide Glass Composition for Optical Amplification Used in Optical Communication
US6620748B1 (en) 1998-10-20 2003-09-16 Asahi Glass Co Ltd Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
WO2000023392A1 (en) * 1998-10-20 2000-04-27 Asahi Glass Company Ltd. Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
FR2793241A1 (en) * 1999-05-06 2000-11-10 Corning Inc BORATE GLASS COMPOSITION DOPED WITH ERBIUM
EP1210300A1 (en) * 1999-05-06 2002-06-05 Corning Incorporated Glass composition
EP1210300A4 (en) * 1999-05-06 2004-11-10 Corning Inc Glass composition
US6495482B1 (en) 1999-05-06 2002-12-17 Corning Incorporated Glass composition
US6352950B1 (en) * 1999-06-18 2002-03-05 Corning Incorporated Tellurite glasses and optical components
KR100334809B1 (en) * 1999-07-21 2002-05-02 윤종용 Broad band light source by use of seed beam
US6560392B2 (en) 1999-09-28 2003-05-06 Asahi Glass Company, Limited Optical amplifying glass fiber
US6413891B1 (en) * 1999-10-11 2002-07-02 Electronics And Telecommunications Research Institute Glass material suitable for a waveguide of an optical amplifier
US6656859B2 (en) 1999-10-12 2003-12-02 Corning Incorporated Tellurite glasses and optical components
US6344425B1 (en) 1999-11-19 2002-02-05 Corning Incorporated Fluorotellurite, amplifier glasses
JP4686845B2 (en) * 1999-11-26 2011-05-25 旭硝子株式会社 Glass fiber
JP2001213640A (en) * 1999-11-26 2001-08-07 Asahi Glass Co Ltd Glass fiber
US6599853B2 (en) 2000-01-26 2003-07-29 Asahi Glass Company, Limited Optical amplifier glass
US6653251B2 (en) 2000-01-26 2003-11-25 Asahi Glass Company, Limited Optical amplifying glass and method for its production
WO2001055041A1 (en) * 2000-01-26 2001-08-02 Asahi Glass Company, Limited Light-amplifying glass and process for producing the same
KR100381009B1 (en) * 2000-07-11 2003-04-23 한국전자통신연구원 Tellurite glass composition for enhancing 980 nm excitation efficiency of erbium ion and fiberization characteristics
JP4686844B2 (en) * 2000-11-06 2011-05-25 旭硝子株式会社 Light amplification glass
JP2002145636A (en) * 2000-11-06 2002-05-22 Asahi Glass Co Ltd Light amplification glass
JPWO2002054545A1 (en) * 2000-12-27 2004-05-13 住友電気工業株式会社 Optical fiber for amplification, optical fiber amplifier and optical transmission system
US6937810B2 (en) 2000-12-27 2005-08-30 Sumitomo Electric Industries, Ltd. Amplifying optical fiber, optical fiber amplifier and optical transmission system
WO2002054545A1 (en) * 2000-12-27 2002-07-11 Sumitomo Electric Industries, Ltd. Amplifying optical fiber, optical fiber amplifier and optical transmission system
WO2002053507A1 (en) * 2000-12-28 2002-07-11 Bo Peng Glass for optical fibers or waveguides, the optical fibers or waveguides made therefrom and the optical amplifier utilizing these elements
US6687046B2 (en) 2001-07-23 2004-02-03 Avanex Corporation Optical fiber amplifier device and communications system using the optical fiber amplifier device
EP1280247A1 (en) * 2001-07-23 2003-01-29 Alcatel Optical fiber amplifier device and communications system using the optical fiber amplifier device
JP2006245244A (en) * 2005-03-02 2006-09-14 Sumitomo Electric Ind Ltd Optically amplifying waveguide

Also Published As

Publication number Publication date
JP3316660B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
JP3316660B2 (en) Optical amplifier and laser device
US6816514B2 (en) Rare-earth doped phosphate-glass single-mode fiber lasers
EP1246321B1 (en) Cladding-pumped 3-level fiber laser/amplifier
US6370180B2 (en) Semiconductor-solid state laser optical waveguide pump
Sakamoto et al. 1.4-μm-band gain characteristics of a Tm-Ho-doped ZBLYAN fiber amplifier pumped in the 0.8-μm band
EP1039593B1 (en) Laser amplifier and laser oscillator
Cole et al. S-band amplification in a thulium doped silicate fiber
US7113328B2 (en) Dual-wavelength pumped thulium-doped optical fiber amplifier
US6556342B1 (en) Thulium doped fiber pump for pumping Raman amplifiers
JP5309096B2 (en) Erbium-doped optical glass
EP1241744A1 (en) Double-clad optical fiber and fiber amplifier
JPH11236245A (en) Optical waveguide and 1.5-1.6 micron band light amplifier using the same
US6501596B1 (en) 1.4-1.52 μm-band optical amplifier
JP3288965B2 (en) Optical fiber amplifier and optical amplification method
JP3450745B2 (en) Optical fiber amplifier and broadband optical amplifier using the same
JPH04333029A (en) Optical fiber for amplification and optical fiber amplifier for 1.3mum band using the same
Ohara et al. Bi2O3-based glass for S-band amplification
Gomes et al. Novel dual wavelength (1050nm+ 800nm) pumping scheme for thulium doped fiber amplifiers
WO2001001529A1 (en) A wide band optical amplifier
JP2001109026A (en) Fiber raman amplifier and fiber raman laser
JP2000244046A (en) Laser amplifier and laser oscillator
JP3635065B2 (en) Optical fiber amplifier
JPH0818137A (en) High output optical amplifier
JPH08313945A (en) Optical amplifier
JP4621456B2 (en) Optical functional waveguide material and optical amplification medium, optical amplifier, laser device, light source

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140614

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term