JP3099489B2 - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JP3099489B2
JP3099489B2 JP04015625A JP1562592A JP3099489B2 JP 3099489 B2 JP3099489 B2 JP 3099489B2 JP 04015625 A JP04015625 A JP 04015625A JP 1562592 A JP1562592 A JP 1562592A JP 3099489 B2 JP3099489 B2 JP 3099489B2
Authority
JP
Japan
Prior art keywords
layer
magneto
recording medium
optical recording
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04015625A
Other languages
Japanese (ja)
Other versions
JPH05210878A (en
Inventor
健彦 沼田
基伸 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP04015625A priority Critical patent/JP3099489B2/en
Publication of JPH05210878A publication Critical patent/JPH05210878A/en
Application granted granted Critical
Publication of JP3099489B2 publication Critical patent/JP3099489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光磁気記録媒体に係り、
特に短波長のレーザ光を入射して記録、再生を行っても
カー回転角の低下が少ない光磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium,
In particular, the present invention relates to a magneto-optical recording medium in which a Kerr rotation angle is hardly reduced even when recording and reproduction are performed by inputting a short-wavelength laser beam.

【0002】[0002]

【従来の技術】従来よりテルビウム- 鉄- コバルトのよ
うな希土類元素と遷移金属元素の非晶質合金薄膜を記録
層として用いた光磁気記録媒体は、読み出し特性が充分
でなく、そのため、図5に示すように透明ガラスのよう
な基板1の上部に、テルビウム- 二酸化シリコン(Tb-Si
O2) の第1の保護層2-1 を干渉層として形成し、磁気光
学効果を大にして読み出し特性の向上を図っている。ま
たこの希土類元素と遷移金属元素の非晶質合金薄膜の記
録層3は酸化され易いので、その上を前記したTb- SiO2
膜で第2の保護層2-2 として形成して前記記録層3を大
気中の酸素や水分の浸透から保護している。
2. Description of the Related Art Conventionally, a magneto-optical recording medium using an amorphous alloy thin film of a rare earth element such as terbium-iron-cobalt and a transition metal element as a recording layer has insufficient readout characteristics. As shown in FIG. 1, a terbium-silicon dioxide (Tb-Si
A first protective layer 2-1 of O 2) was formed as an interference layer, thereby improving the reading characteristics by the magneto-optical effect on a large. Since the recording layer 3 of the amorphous alloy thin film of the rare earth element and the transition metal element is easily oxidized, the above-described Tb-SiO 2
The recording layer 3 is formed as a second protective layer 2-2 by a film to protect the recording layer 3 from permeation of oxygen and moisture in the atmosphere.

【0003】またこのような光磁気記録媒体の基板1と
しては、透明ガラスや、透明プラスチック基板のような
透明な材料が用いられており、基板1の下部側より前記
した記録、再生用のレーザ光を記録層3に入射して情報
の記録や再生を行っている。
The substrate 1 of such a magneto-optical recording medium is made of a transparent material such as a transparent glass or a transparent plastic substrate. Light is incident on the recording layer 3 to record and reproduce information.

【0004】また基板材料として、割れやすい透明ガラ
ス基板や透明プラスチック基板に代わって、耐久性の大
きいアルミニウム基板が用いられており、この場合は基
板1の上部側より光を入射して情報の記録、再生を行っ
ている。
As a substrate material, a durable aluminum substrate is used in place of a transparent glass substrate or a transparent plastic substrate which is easily broken. In this case, light is incident from the upper side of the substrate 1 to record information. , Is playing.

【0005】[0005]

【発明が解決しようとする課題】従来より記録層に用い
られているテルビウム−鉄−コバルト(Tb-Fe-Co)、ジ
スプロシウム−鉄−コバルト(Dy-Fe-Co) 、ガドリニウ
ム- 鉄- コバルト(Gd-Fe-Co)等の希土類元素と遷移金属
元素の非晶質合金薄膜は、波長が800nm 近傍ではカー回
転角が大であるため、光磁気記録用媒体の記録層として
充分実用的な材料である。
SUMMARY OF THE INVENTION Terbium-iron-cobalt (Tb-Fe-Co), dysprosium-iron-cobalt (Dy-Fe-Co), gadolinium-iron-cobalt (Tb-Fe-Co) conventionally used for the recording layer. An amorphous alloy thin film of a rare earth element such as Gd-Fe-Co) and a transition metal element has a large Kerr rotation angle near a wavelength of 800 nm, and is therefore a sufficiently practical material as a recording layer of a magneto-optical recording medium. It is.

【0006】然し、情報を益々高密度に記録、再生する
要望が高まっており、そのためには、記録再生に用いる
レーザ光として、短波長の光を用いて記録しようとして
いる。然し、このように短波長で記録すると、上記した
希土類−遷移金属非晶質合金は、短波長側ではカー回転
角が小さくなる傾向があり、そのため、記録信号のC/N
の値が小さくなり、高精度な記録、再生が行い得ないと
言った欠点が生じる。
[0006] However, there is an increasing demand for recording and reproducing information at higher densities, and for this purpose, it has been attempted to record by using short-wavelength light as laser light used for recording and reproduction. However, when recording at such a short wavelength, the rare earth-transition metal amorphous alloy described above tends to have a small Kerr rotation angle on the short wavelength side, so that the C / N of the recording signal is low.
Has a small value, and high-precision recording and reproduction cannot be performed.

【0007】本発明は上記した問題点を除去し、短波長
側でもカー回転角の低下が少ない高品位の光磁気記録媒
体の提供を目的とする。
An object of the present invention is to provide a high-quality magneto-optical recording medium which eliminates the above-mentioned problems and has a small decrease in the Kerr rotation angle even on the short wavelength side.

【0008】[0008]

【課題を解決するための手段】本発明の光磁気記録媒体
は請求項1に示すように、基板上に第1の保護層、記録
層および第2の保護層を設けた光磁気記録媒体に於い
て、前記記録層をコバルトとクロムの合金層の上下に希
土類元素と遷移金属元素の合金層を設けて形成したこと
を特徴とする。
According to a first aspect of the present invention, there is provided a magneto-optical recording medium having a first protective layer, a recording layer, and a second protective layer provided on a substrate. Preferably, the recording layer is formed by providing an alloy layer of a rare earth element and a transition metal element above and below an alloy layer of cobalt and chromium.

【0009】また、請求項2に示すように、請求項1記
載の希土類元素と遷移金属元素の合金層として、ランタ
ン、セリウム、ネオジウム、プラセオジウムおよびサマ
リウムのうち少なくとも1種類の元素を含む重希土類元
素と遷移金属元素の合金層を用いたことを特徴とするも
のである。
Further, as set forth in claim 2, claim 1
Use rare earth elements of the mounting and as an alloy layer of a transition metal element, lanthanum, cerium, neodymium, praseodymium and at least one of summary <br/> Riu arm and the heavy rare earth elements including one element of the alloy layer of the transition metal element It is characterized by having been.

【0010】更に請求項3に示すように、前記コバルト
とクロムの合金層として、コバルト量を85〜95原子%の
含有量としたことを特徴とするものである。
According to a third aspect of the present invention, the alloy layer of cobalt and chromium has a cobalt content of 85 to 95 atomic%.

【0011】[0011]

【作用】コバルトとクロムの合金層を記録層とした場合
は図3の曲線aに示すように、曲線bに示すTb-Fe-Coの
希土類−遷移金属合金層、或いは曲線cに示すネオジウ
ム- ジスプロシウム- 鉄- コバルト(NdDyFeCo)のような
軽希土類元素を含有した希土類- 遷移金属合金層に比較
して波長が500nm の短波長側でも、カー回転角が低下し
ない特性がある。
When the alloy layer of cobalt and chromium is used as the recording layer, the rare earth-transition metal alloy layer of Tb-Fe-Co shown by the curve b, or the neodymium-transition metal shown by the curve c, as shown by the curve a in FIG. Compared to a rare earth-transition metal alloy layer containing a light rare earth element such as dysprosium-iron-cobalt (NdDyFeCo), the Kerr rotation angle does not decrease even on the short wavelength side of 500 nm.

【0012】然し、Co-Cr の合金層は、希土類- 遷移金
属合金に比較して保磁力が小さく、光磁気記録媒体の記
録層の材料としては不適当である。そこで保磁力の小さ
いCo-Cr の合金層を保磁力の大きい希土類−遷移金属合
金層で挟んだ3層構造の光磁気記録媒体とする。
However, the Co-Cr alloy layer has a small coercive force as compared with the rare earth-transition metal alloy, and is unsuitable as a material for a recording layer of a magneto-optical recording medium. Therefore, a magneto-optical recording medium having a three-layer structure in which a Co-Cr alloy layer having a small coercive force is sandwiched between rare earth-transition metal alloy layers having a large coercive force.

【0013】このように3層構造の記録層とすること
で、情報の記録は希土類−遷移金属合金層で行われるた
めに、希土類−遷移金属合金層の保磁力を大きく保てば
良いことになる。
Since the recording of information is performed by the rare earth-transition metal alloy layer by using the recording layer having the three-layer structure, the coercive force of the rare earth-transition metal alloy layer only needs to be kept large. Become.

【0014】またカー回転角は、光線入射側の希土類−
遷移金属合金層の膜厚を薄く保ち、光線がこの層を透過
するようにすると、カー回転角の大きいCo-Cr 層の影響
を受けて大きく保たれる。
[0014] The Kerr rotation angle is the rare earth on the light incident side.
When the thickness of the transition metal alloy layer is kept small and light is transmitted through this layer, the transition metal alloy layer is kept large under the influence of the Co-Cr layer having a large Kerr rotation angle.

【0015】具体的には、この希土類−遷移金属合金層
の膜厚を5 〜20nmの厚さに保つと良い。また記録層とし
て用いるCo-Cr の合金層は、Coの含有量を85〜95原子%
とする。このようにする理由は、Coの含有量が例えば80
原子%であると、85%の場合に比較してカー回転角は略
1/2 の値に減少し、またCoの含有量が95原子%以上であ
ると、記録層が垂直磁気異方性を示さなくなので、両方
の条件を最も満足するために、Coの含有量を85〜95原子
%とする。
More specifically, it is preferable that the thickness of the rare earth-transition metal alloy layer be kept at 5 to 20 nm. The Co-Cr alloy layer used as the recording layer has a Co content of 85 to 95 atomic%.
And The reason for this is that the content of Co is, for example, 80
Atomic%, the Kerr rotation angle is about the same as 85%
When the content decreases to 1/2 and the Co content is 95 atomic% or more, the recording layer does not exhibit perpendicular magnetic anisotropy. Is set to 85 to 95 atomic%.

【0016】このようにすることで、カー回転角が大と
なり、この記録層が垂直磁化膜となって記録、再生効果
が大となる。また前記Co-Cr 層の両方を、ランタン、セ
リウム、ネオジウム、プラセオジウムおよびサマリウム
の軽希土類元素のうちの少なくとも1種類の元素を含む
重希土類元素と遷移金属元素の合金層を用いた層で挟ん
だ場合でも、希土類−遷移金属合金層で挟んだ場合と同
様に短波長側でもカー回転角の低下の少ない高品質の光
磁気記録媒体が得られる。
By doing so, the Kerr rotation angle becomes large, and this recording layer becomes a perpendicular magnetization film, thereby increasing the recording and reproducing effects. Both of the Co-Cr layers are sandwiched between layers using an alloy layer of a heavy rare earth element and a transition metal element containing at least one of the light rare earth elements of lanthanum, cerium, neodymium, praseodymium and samarium. Even in this case, a high-quality magneto-optical recording medium with a small decrease in the Kerr rotation angle even on the short wavelength side can be obtained as in the case of sandwiching between the rare earth-transition metal alloy layers.

【0017】[0017]

【実施例】以下、図面を用いて本発明の実施例に付き図
面を用いて詳細に説明する。 第1実施例 図1(a)に示すように本実施例の光磁気記録媒体はガ
ラス基板1上に、干渉層で、かつ第1の保護層2-1 とし
てのY-SiO2膜を、スパッタ法により90nmの厚さに成膜
し、その上にTb21Fe71Co8 層よりなる第1の希土類- 遷
移金属層4A-1を10nmの厚さにスパッタ法で形成し、その
上にCoが90原子%のCo-Cr 層11を10nmの厚さに成膜し、
更にその上にTb21Fe71Co8 層よりなる第2の希土類- 遷
移金属層4A-2を80nmの厚さにスパッタ法で成膜し記録層
3とした。更にその上に第2の保護層2-2 としてY-SiO2
膜をスパッタ法を用いて90nmの厚さに成膜して光磁気記
録媒体を形成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. First Embodiment As shown in FIG. 1A, the magneto-optical recording medium of the present embodiment has a glass substrate 1 on which a Y-SiO 2 film as an interference layer and a first protective layer 2-1 is formed. The first rare earth-transition metal layer 4A-1 composed of a Tb 21 Fe 71 Co 8 layer is formed by sputtering to a thickness of 90 nm, and a first rare earth-transition metal layer 4A-1 composed of a Tb 21 Fe 71 Co 8 layer is formed by sputtering to a thickness of 10 nm. Co-Cr layer 11 of 90 atomic% of Co is formed to a thickness of 10 nm,
Further thereon, a second rare earth-transition metal layer 4A-2 composed of a Tb 21 Fe 71 Co 8 layer was formed to a thickness of 80 nm by sputtering to form a recording layer 3. Furthermore, Y-SiO 2 is formed thereon as a second protective layer 2-2.
The film was formed to a thickness of 90 nm using a sputtering method to form a magneto-optical recording medium.

【0018】またこのような本実施例の光磁気記録媒体
を、514.5nm の波長のレーザ光を用い、線速10m/sec 、
ビット長0.5 μm で信号を記録したところC/N が45dBの
値が得られた。
Further, such a magneto-optical recording medium according to the present embodiment is manufactured by using a laser beam having a wavelength of 514.5 nm and a linear velocity of 10 m / sec.
When the signal was recorded with a bit length of 0.5 μm, a value of 45 dB in C / N was obtained.

【0019】第1実施例の変形例1 図1(b)に示すように、本実施例の光磁気記録媒体は
ガラス基板1上に、干渉層で、かつ第1の保護層2-1 と
してのY-SiO2膜を、スパッタ法により90nmの厚さに成膜
し、その上にDy26Fe56Co18層よりなる第1の希土類- 遷
移金属層4B-1を10nmの厚さにスパッタ法で形成し、その
上にCoが90原子%のCo-Cr 層11を10nmの厚さに成膜し、
更にその上にDy26Fe56Co18層よりなる第2の希土類- 遷
移金属層4B-2を80nmの厚さにスパッタ法で成膜して記録
層3とした。更にその上に、第2の保護層2-2 としてY-
SiO2膜をスパッタ法を用いて90nmの厚さに成膜して光磁
気記録媒体を形成した。
Modification Example 1 of First Embodiment As shown in FIG. 1B, the magneto-optical recording medium of this embodiment is formed on a glass substrate 1 as an interference layer and as a first protective layer 2-1. A 90-nm thick Y-SiO2 film is formed by sputtering, and a first rare earth-transition metal layer 4B-1 composed of a Dy 26 Fe 56 Co 18 layer is formed thereon by sputtering to a thickness of 10 nm. And a Co-Cr layer 11 of 90 atomic% Co with a thickness of 10 nm is formed thereon,
Further, a second rare earth-transition metal layer 4B-2 composed of a Dy 26 Fe 56 Co 18 layer was formed thereon to a thickness of 80 nm by a sputtering method to form a recording layer 3. On top of that, a second protective layer 2-2 is formed as Y-
An SiO 2 film was formed to a thickness of 90 nm by a sputtering method to form a magneto-optical recording medium.

【0020】またこのような本実施例の光磁気記録媒体
を、514.5nm の波長のレーザ光を用い、線速10m/sec 、
ビット長0.5 μm で信号を記録したところC/N が43dBの
値が得られた。
Further, such a magneto-optical recording medium of this embodiment is manufactured by using a laser beam having a wavelength of 514.5 nm, and has a linear velocity of 10 m / sec.
When a signal was recorded with a bit length of 0.5 μm, a C / N of 43 dB was obtained.

【0021】第1実施例の変形例2 図1(c)に示すように、本実施例の光磁気記録媒体は
ガラス基板1上に、干渉層で、かつ第1の保護層2-1 と
してのY-SiO2膜を、スパッタ法により90nmの厚さに成膜
し、その上にGd26Tb56Co18層よりなる第1の希土類- 遷
移金属層4C-1を10nmの厚さにスパッタ法で形成し、その
上にCoが90原子%のCo-Cr 層11を10nmの厚さに成膜し、
更にその上にGd26Tb56Co18層よりなる第2の希土類- 遷
移金属層4C-2を80nmの厚さにスパッタ法で成膜して記録
層3とした。更にその上に第2の保護層2-2 としてY-Si
O2膜をスパッタ法を用いて90nmの厚さに成膜して光磁気
記録媒体を形成した。
Modification 2 of First Embodiment As shown in FIG. 1C, the magneto-optical recording medium of this embodiment is formed on a glass substrate 1 as an interference layer and as a first protective layer 2-1. A 90-nm thick Y-SiO 2 film is formed by sputtering, and a first rare earth-transition metal layer 4C-1 composed of a Gd 26 Tb 56 Co 18 layer is sputtered thereon to a thickness of 10 nm. And a Co-Cr layer 11 of 90 atomic% of Co is formed thereon to a thickness of 10 nm.
Further, a second rare earth-transition metal layer 4C-2 composed of a Gd 26 Tb 56 Co 18 layer was formed thereon to a thickness of 80 nm by a sputtering method to form a recording layer 3. Further, a second protective layer 2-2 is formed thereon as Y-Si
An O 2 film was formed to a thickness of 90 nm by a sputtering method to form a magneto-optical recording medium.

【0022】またこのような本実施例の光磁気記録媒体
を、514.5nm の波長のレーザ光を用い、線速10m/sec 、
ビット長0.5 μm で信号を記録したところC/N が44dBの
値が得られた。
Further, the magneto-optical recording medium of the present embodiment is manufactured by using a laser beam having a wavelength of 514.5 nm and a linear velocity of 10 m / sec.
When a signal was recorded with a bit length of 0.5 μm, a C / N of 44 dB was obtained.

【0023】比較例1 上記した実施例と比較するために、記録層を希土類- 遷
移金属合金層のみを用いて成膜した。
Comparative Example 1 For comparison with the above-described example, a recording layer was formed using only the rare earth-transition metal alloy layer.

【0024】図4(a)に示すように、ガラス基板1上に、
干渉層としての第1の保護層2-1 としてのY-SiO2膜を、
スパッタ法により90nmの厚さに成膜し、その上にTb21Fe
71Co 8 より成る記録層3を100nm の厚さに成膜し、その
上に第2の保護層2-2 としてY-SiO2膜をスパッタ法を用
いて90nmの厚さに成膜して光磁気記録媒体を形成した。
As shown in FIG. 4A, on a glass substrate 1,
Y-SiO as first protective layer 2-1 as interference layerTwoMembrane
Sputtered to a thickness of 90 nm, and Tbtwenty oneFe
71Co 8The recording layer 3 is formed to a thickness of 100 nm.
Y-SiO as a second protective layer 2-2TwoUse sputtering method for film
Then, a film was formed to a thickness of 90 nm to form a magneto-optical recording medium.

【0025】またこのような本実施例の光磁気記録媒体
を、830 nmのレーザ光を用い、線速10m/sec 、ビット長
0.8 μm で信号を記録したところ、C/N は50dBの値が得
られた。然し514.5nm の短波長のレーザ光を用いた場
合、線速10m/sec 、ビット長0.5 μm で信号を記録した
ところC/N が38dBの値しか得られなかった。
Further, such a magneto-optical recording medium of this embodiment is manufactured by using a laser beam of 830 nm, a linear velocity of 10 m / sec, and a bit length of
When the signal was recorded at 0.8 μm, the C / N was 50 dB. However, when a short-wavelength laser beam of 514.5 nm was used, when the signal was recorded at a linear velocity of 10 m / sec and a bit length of 0.5 μm, only a value of 38 dB was obtained for the C / N.

【0026】第2実施例 第1実施例で用いた第1、および第2の希土類元素−遷
移金属元素の合金層の代わりに軽希土類元素のランタン
(La)、セリウム(Ce)、ネオジウム(Nd)、プラセオジウム
(Pr)、サマリウム(Sm)のうちの一種類の元素を含む重希
土類元素と遷移金属元素の合金層を用いて成膜した。
Second Embodiment Instead of the first and second rare earth element-transition metal element alloy layers used in the first embodiment, light rare earth element lanthanum is used.
(La), cerium (Ce), neodymium (Nd), praseodymium
A film was formed using an alloy layer of a transition metal element and a heavy rare earth element containing one element of (Pr) and samarium (Sm).

【0027】図2(a)に示すように本実施例の光磁気
記録媒体はガラス基板1上に、干渉層で、かつ第1の保
護層2-1 としてのY-SiO2膜を、スパッタ法により90nmの
厚さに成膜し、その上にNd3Dy23Fe63Co11 層よりなる第
1の重軽希土類- 遷移金属層5A-1を10nmの厚さにスパッ
タ法で形成し、その上にCoが90原子%のCo-Cr 層11を10
nmの厚さに成膜し、更にその上にNd3Dy23Fe63Co11 層よ
りなる第2の重軽希土類- 遷移金属層5A-2を80nmの厚さ
にスパッタ法で成膜して記録層3とした。更にその上に
第2の保護層2-2 としてY-SiO2膜をスパッタ法を用いて
90nmの厚さに成膜して光磁気記録媒体を形成した。
As shown in FIG. 2A, in the magneto-optical recording medium of this embodiment, a Y-SiO 2 film as an interference layer and a first protective layer 2-1 is formed on a glass substrate 1 by sputtering. A first heavy and light rare earth-transition metal layer 5A-1 composed of a Nd 3 Dy 23 Fe 63 Co 11 layer is formed thereon by a sputtering method to a thickness of 10 nm, On top of this, a 90 atomic% Co-Cr layer
a second heavy and light rare earth-transition metal layer 5A-2 composed of an Nd 3 Dy 23 Fe 63 Co 11 layer is formed thereon by sputtering to a thickness of 80 nm. The recording layer 3 was obtained. Further, a Y-SiO 2 film is formed thereon as a second protective layer 2-2 by a sputtering method.
A film was formed to a thickness of 90 nm to form a magneto-optical recording medium.

【0028】このような構造の光磁気記録媒体に於いて
干渉層としての第1の保護層を設けないエンハンスの無
い状態で、つまり第1の保護層との間で反射の無い状態
で、波長500nm のレーザ光を該光磁気記録媒体に照射し
てカー回転角を測定したところ、0.34度の値が得られ
た。
In the magneto-optical recording medium having such a structure, in the state where no enhancement is provided without providing the first protective layer as an interference layer, that is, in the state where there is no reflection from the first protective layer, the wavelength is increased. When the Kerr rotation angle was measured by irradiating the magneto-optical recording medium with a laser beam of 500 nm, a value of 0.34 degrees was obtained.

【0029】またこのような本実施例の光磁気記録媒体
を、514.5nm の波長のレーザ光を用い、線速10m/sec 、
ビット長0.5 μm で信号を記録したところC/N が46dBの
値が得られた。
Further, such a magneto-optical recording medium of this embodiment is manufactured by using a laser beam having a wavelength of 514.5 nm and a linear velocity of 10 m / sec.
When the signal was recorded with a bit length of 0.5 μm, a C / N of 46 dB was obtained.

【0030】第2実施例の変形例1 図2(b)に示すように本実施例の光磁気記録媒体はガ
ラス基板1上に、干渉層で、かつ第1の保護層2-1 とし
てのY-SiO2膜を、スパッタ法により90nmの厚さに成膜
し、その上にPr3Dy23Fe63Co11 層よりなる第1の重軽希
土類- 遷移金属層5B-1を10nmの厚さにスパッタ法で形成
し、その上にCoが90原子%のCo-Cr 層11を10nmの厚さに
成膜し、更にその上にPr3Dy23Fe63Co11 層よりなる第2
の重軽希土類- 遷移金属層5B-2を80nmの厚さにスパッタ
法で成膜して記録層3とした。更に、その上に第2の保
護層2-2 としてY-SiO2膜をスパッタ法を用いて90nmの厚
さに成膜して光磁気記録媒体を形成した。
Modification Example 1 of Second Embodiment As shown in FIG. 2B, the magneto-optical recording medium of this embodiment is formed on a glass substrate 1 as an interference layer and as a first protective layer 2-1. A Y-SiO 2 film is formed to a thickness of 90 nm by a sputtering method, and a first heavy-light rare earth-transition metal layer 5B-1 composed of a Pr 3 Dy 23 Fe 63 Co 11 layer is formed thereon to a thickness of 10 nm. Then, a Co-Cr layer 11 of 90 atomic% of Co is formed thereon to a thickness of 10 nm, and a second layer of a Pr 3 Dy 23 Fe 63 Co 11 layer is further formed thereon.
The heavy and light rare earth-transition metal layer 5B-2 was formed to a thickness of 80 nm by a sputtering method to form a recording layer 3. Further, a Y-SiO 2 film was formed thereon as a second protective layer 2-2 to a thickness of 90 nm by sputtering to form a magneto-optical recording medium.

【0031】このような構造の光磁気記録媒体に於いて
干渉層としての第1の保護層を設けない状態で、エンハ
ンスの無い状態で波長500nm のレーザ光を該光磁気記録
媒体に照射してカー回転角を測定したところ、0.35度の
値が得られた。
In the magneto-optical recording medium having such a structure, a laser beam having a wavelength of 500 nm is irradiated to the magneto-optical recording medium without enhancement without providing the first protective layer as an interference layer. When the Kerr rotation angle was measured, a value of 0.35 degrees was obtained.

【0032】またこのような本実施例の光磁気記録媒体
を、514.5nm の波長のレーザ光を用い、線速10m/sec 、
ビット長0.5 μm で信号を記録したところC/N が45dBの
値が得られた。
Further, the magneto-optical recording medium of this embodiment is manufactured by using a laser beam having a wavelength of 514.5 nm and a linear velocity of 10 m / sec.
When the signal was recorded with a bit length of 0.5 μm, a value of 45 dB in C / N was obtained.

【0033】第2実施例の変形例2 図2(c)に示すように本実施例の光磁気記録媒体はガ
ラス基板1上に、干渉層で、かつ第1の保護層2-1 とし
てのY-SiO2膜を、スパッタ法により90nmの厚さに成膜
し、その上にNd5Tb22Fe56Co17 層よりなる第1の重軽希
土類- 遷移金属層5C-1を10nmの厚さにスパッタ法で形成
し、その上にCoが90原子%のCo-Cr 層11を10nmの厚さに
成膜し、更にその上にNd5Tb22Fe56Co17 層よりなる第2
の重軽希土類- 遷移金属層5C-2を80nmの厚さにスパッタ
法で成膜して記録層3とした。更にその上に第2の保護
層2-2 としてY-SiO2膜をスパッタ法を用いて90nmの厚さ
に成膜して光磁気記録媒体を形成した。
Modified Example 2 of Second Embodiment As shown in FIG. 2C, the magneto-optical recording medium of this embodiment is formed on a glass substrate 1 as an interference layer and as a first protective layer 2-1. A Y-SiO 2 film is formed to a thickness of 90 nm by a sputtering method, and a first heavy-light rare earth-transition metal layer 5C-1 composed of a Nd 5 Tb 22 Fe 56 Co 17 layer is formed thereon to a thickness of 10 nm. Then, a Co-Cr layer 11 of 90 atomic% of Co is formed thereon to a thickness of 10 nm, and a second Nd 5 Tb 22 Fe 56 Co 17 layer is further formed thereon.
The recording layer 3 was formed by depositing a heavy-light rare earth-transition metal layer 5C-2 having a thickness of 80 nm by a sputtering method. Further, a Y-SiO 2 film was formed thereon as a second protective layer 2-2 to a thickness of 90 nm by sputtering to form a magneto-optical recording medium.

【0034】このような構造の光磁気記録媒体に於いて
干渉層としての第1の保護層を設けない状態で、エンハ
ンスの無い状態で波長500nm のレーザ光を該光磁気記録
媒体に照射してカー回転角を測定したところ、0.36度の
値が得られた。
In the magneto-optical recording medium having such a structure, a laser beam having a wavelength of 500 nm is irradiated on the magneto-optical recording medium without enhancement without providing the first protective layer as an interference layer. When the Kerr rotation angle was measured, a value of 0.36 degrees was obtained.

【0035】またこのような本実施例の光磁気記録媒体
を、514.5nm の波長のレーザ光を用い、線速10m/sec 、
ビット長0.5 μm で信号を記録したところC/N が46dBの
値が得られた。
Further, the magneto-optical recording medium of the present embodiment is manufactured by using a laser beam having a wavelength of 514.5 nm and a linear velocity of 10 m / sec.
When the signal was recorded with a bit length of 0.5 μm, a C / N of 46 dB was obtained.

【0036】第2実施例の変形例3 図2(d)に示すように本実施例の光磁気記録媒体はガ
ラス基板1上に、干渉層で、かつ第1の保護層2-1 とし
てのY-SiO2膜を、スパッタ法により90nmの厚さに成膜
し、その上にSm3Tb23Fe57Co17 層よりなる第1の重軽希
土類- 遷移金属層5D-1を10nmの厚さにスパッタ法で形成
し、その上にCoが90原子%のCo-Cr 層11を10nmの厚さに
成膜し、更にその上にSm3Tb23Fe57Co17 層よりなる第2
の重軽希土類- 遷移金属層5D-2を80nmの厚さにスパッタ
法で成膜して記録層3とした。更にその上に第2の保護
層2-2 としてY-SiO2膜をスパッタ法を用いて90nmの厚さ
に成膜して光磁気記録媒体を形成した。
Modification 3 of the Second Embodiment As shown in FIG. 2D, the magneto-optical recording medium of this embodiment is formed on a glass substrate 1 as an interference layer and as a first protective layer 2-1. A Y-SiO 2 film is formed to a thickness of 90 nm by a sputtering method, and a first heavy-light rare earth-transition metal layer 5D-1 composed of a Sm 3 Tb 23 Fe 57 Co 17 layer is formed thereon to a thickness of 10 nm. Then, a Co-Cr layer 11 of 90 atomic% of Co is formed thereon to a thickness of 10 nm, and a second Sm 3 Tb 23 Fe 57 Co 17 layer is further formed thereon.
The recording layer 3 was formed by depositing the heavy and light rare earth-transition metal layer 5D-2 to a thickness of 80 nm by sputtering. Further, a Y-SiO 2 film was formed thereon as a second protective layer 2-2 to a thickness of 90 nm by sputtering to form a magneto-optical recording medium.

【0037】またこのような本実施例の光磁気記録媒体
を、514.5nm の波長のレーザ光を用い、線速10m/sec 、
ビット長0.5 μm で信号を記録したところC/N が46dBの
値が得られた。
Further, the magneto-optical recording medium of this embodiment is manufactured by using a laser beam having a wavelength of 514.5 nm at a linear velocity of 10 m / sec.
When the signal was recorded with a bit length of 0.5 μm, a C / N of 46 dB was obtained.

【0038】このような構造の光磁気記録媒体に於いて
干渉層としての第1の保護層を設けない状態で、エンハ
ンスの無い状態で波長500nm のレーザ光を該光磁気記録
媒体に照射してカー回転角を測定したところ、0.34度の
値が得られた。
In the magneto-optical recording medium having such a structure, a laser beam having a wavelength of 500 nm is irradiated on the magneto-optical recording medium without enhancement without providing the first protective layer as an interference layer. When the car rotation angle was measured, a value of 0.34 degrees was obtained.

【0039】比較例2 上記した第2実施例と比較するために、記録層を希土類
- 遷移金属合金層のみか、或いは重軽希土類−遷移金属
合金層のみを用いて成膜した。
COMPARATIVE EXAMPLE 2 In order to compare with the second embodiment, the recording layer was made of a rare earth element.
-A film was formed using only the transition metal alloy layer or only the heavy and light rare earth-transition metal alloy layer.

【0040】比較例2-1 図4(a)に示すようにガラス基板1上に、干渉層で、かつ
第1の保護層2-1 としてのY-SiO2膜を、スパッタ法によ
り90nmの厚さに成膜し、その上にTb21Fe71Co8より成る
記録層3を100nm の厚さに成膜し、その上に第2の保護
層2-2 としてY-SiO2膜をスパッタ法を用いて90nmの厚さ
に成膜して光磁気記録媒体を形成した。
Comparative Example 2-1 As shown in FIG. 4A, a Y-SiO 2 film as an interference layer and as a first protective layer 2-1 was formed on a glass substrate 1 to a thickness of 90 nm by sputtering. A recording layer 3 made of Tb 21 Fe 71 Co 8 is formed thereon to a thickness of 100 nm, and a Y-SiO 2 film is sputtered thereon as a second protective layer 2-2. A magneto-optical recording medium was formed by forming a film to a thickness of 90 nm by using the method.

【0041】このような構造の光磁気記録媒体に於いて
干渉層としての第1の保護層を設けない状態で、エンハ
ンスの無い状態で波長500nm のレーザ光を該光磁気記録
媒体に照射してカー回転角を測定したところ、0.25度の
値しか得られなかった。
In the magneto-optical recording medium having such a structure, a laser beam having a wavelength of 500 nm is irradiated on the magneto-optical recording medium without enhancement without providing the first protective layer as an interference layer. When the car rotation angle was measured, only a value of 0.25 degrees was obtained.

【0042】またこのような本実施例の光磁気記録媒体
を、830 nmのレーザ光を用い、線速10m/sec 、ビット長
0.8 μm で信号を記録したところ、C/N は50dBの値が得
られた。然し514.5nm の短波長のレーザ光を用いた場
合、線速10m/sec 、ビット長0.5 μm で信号を記録した
ところC/N が38dBの値しか得られなかった。
Further, such a magneto-optical recording medium of this embodiment is irradiated with a laser beam of 830 nm, and has a linear velocity of 10 m / sec and a bit length of 10 m / sec.
When the signal was recorded at 0.8 μm, the C / N was 50 dB. However, when a short-wavelength laser beam of 514.5 nm was used, when the signal was recorded at a linear velocity of 10 m / sec and a bit length of 0.5 μm, only a value of 38 dB was obtained for the C / N.

【0043】比較例2-2 図4(b)に示すようにガラス基板1上に、干渉層で、かつ
第1の保護層2-1 としてのY-SiO2膜を、スパッタ法によ
り90nmの厚さに成膜し、その上にNd3Dy23Fe63Co11 より
成る記録層3を100nm の厚さに成膜し、その上に第2の
保護層2-2 としてY-SiO2膜をスパッタ法を用いて90nmの
厚さに成膜して光磁気記録媒体を形成した。
Comparative Example 2-2 As shown in FIG. 4 (b), a Y-SiO 2 film as an interference layer and as a first protective layer 2-1 was formed on a glass substrate 1 to a thickness of 90 nm by sputtering. A recording layer 3 made of Nd 3 Dy 23 Fe 63 Co 11 is formed thereon to a thickness of 100 nm, and a Y-SiO 2 film is formed thereon as a second protective layer 2-2. Was formed to a thickness of 90 nm by sputtering to form a magneto-optical recording medium.

【0044】このような構造の光磁気記録媒体に於いて
干渉層としての第1の保護層を設けない状態で、エンハ
ンスの無い状態で波長500nm のレーザ光を該光磁気記録
媒体に照射してカー回転角を測定したところ、0.27度の
値しか得られなかった。
In the magneto-optical recording medium having such a structure, a laser beam having a wavelength of 500 nm is irradiated to the magneto-optical recording medium without enhancement without providing the first protective layer as an interference layer. When the car rotation angle was measured, only a value of 0.27 degrees was obtained.

【0045】またこのような本実施例の光磁気記録媒体
を、830 nmのレーザ光を用い、線速10m/sec 、ビット長
0.8 μm で信号を記録したところ、C/N は50dBの値が得
られた。然し514.5nm の短波長のレーザ光を用いた場
合、線速10m/sec 、ビット長0.5 μm で信号を記録した
ところC/N が40dBの値しか得られなかった。
Further, such a magneto-optical recording medium of this embodiment is irradiated with a laser beam of 830 nm, and has a linear velocity of 10 m / sec and a bit length of 10 m / sec.
When the signal was recorded at 0.8 μm, the C / N was 50 dB. However, when a laser beam with a short wavelength of 514.5 nm was used, when the signal was recorded at a linear velocity of 10 m / sec and a bit length of 0.5 μm, the C / N was only 40 dB.

【0046】上記した本発明の第1実施例を表1に、第
2実施例を表2にまとめて示す。
Table 1 shows the first embodiment of the present invention, and Table 2 shows the second embodiment.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【発明の効果】以上述べたように、本発明の光磁気記録
媒体によれば、短波長のレーザ光を照射した場合でもカ
ー回転角の低下が少なく、また記録信号のC/N の値の低
下も少ない、高密度記録に適した高品質の光磁気記録媒
体が得られる効果がある。
As described above, according to the magneto-optical recording medium of the present invention, even when a short-wavelength laser beam is irradiated, a decrease in the Kerr rotation angle is small, and the C / N value of the recording signal is reduced. There is an effect that a high-quality magneto-optical recording medium suitable for high-density recording with little reduction can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】 本発明の第2実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】 光磁気記録媒体の種類とカー回転角と入射光
の波長との関係図である。
FIG. 3 is a diagram showing the relationship among the type of magneto-optical recording medium, the Kerr rotation angle, and the wavelength of incident light.

【図4】 第1実施例と第2実施例の光磁気記録媒体の
比較例を示す断面図である。
FIG. 4 is a sectional view showing a comparative example of the magneto-optical recording medium of the first embodiment and the second embodiment.

【図5】 従来の光磁気記録媒体の断面図である。FIG. 5 is a sectional view of a conventional magneto-optical recording medium.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2-1 第1の保護層 2-2 第2の保護層 3 記録層 4A-1,4B-1,4C-1 第1の希土類−遷移金属層 4A-2,4B-2,4C-2 第2の希土類−遷移金属層 5A-1,5B-1,5C-1,5D-1 第1の重軽希土類−遷移金属層 5A-2,5B-2,5C-2,5D-2 第2の重軽希土類−遷移金属層 11 Co-Cr 層 1 Glass substrate 2-1 First protective layer 2-2 Second protective layer 3 Recording layer 4A-1,4B-1,4C-1 First rare earth-transition metal layer 4A-2,4B-2,4C -2 Second rare earth-transition metal layer 5A-1,5B-1,5C-1,5D-1 First heavy and light rare earth-transition metal layer 5A-2,5B-2,5C-2,5D-2 Second heavy-light rare earth-transition metal layer 11 Co-Cr layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G11B 11/105 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G11B 11/105

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に第1の保護層、記録層および第
2の保護層を設けた光磁気記録媒体に於いて、 前記記録層をコバルトとクロムの合金層の上下に希土類
元素と遷移金属元素の合金層を設けて形成したことを特
徴とする光磁気記録媒体。
In a magneto-optical recording medium having a first protective layer, a recording layer, and a second protective layer provided on a substrate, the recording layer is formed by transition between a rare-earth element and a cobalt-chromium alloy layer above and below. A magneto-optical recording medium formed by providing an alloy layer of a metal element.
【請求項2】 請求項1記載の希土類元素と遷移金属元
素の合金層として、ランタン、セリウム、ネオジウム、
プラセオジウムおよびサマリウムのうち少なくとも1種
類の元素を含む重希土類元素と遷移金属元素の合金層を
用いたことを特徴とする光磁気記録媒体。
2. An alloy layer of a rare earth element and a transition metal element according to claim 1 , wherein lanthanum, cerium, neodymium,
Praseodymium and magneto-optical recording medium, characterized in that an alloy layer of at least the heavy rare-earth element and a transition metal element include one element among samarium.
【請求項3】 請求項1記載のコバルトとクロムの合金
層として、コバルト量を85〜95原子%の含有量としたこ
とを特徴とする光磁気記録媒体。
3. A magneto-optical recording medium according to claim 1, wherein said cobalt and chromium alloy layer has a cobalt content of 85 to 95 atomic%.
JP04015625A 1992-01-31 1992-01-31 Magneto-optical recording medium Expired - Fee Related JP3099489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04015625A JP3099489B2 (en) 1992-01-31 1992-01-31 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04015625A JP3099489B2 (en) 1992-01-31 1992-01-31 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH05210878A JPH05210878A (en) 1993-08-20
JP3099489B2 true JP3099489B2 (en) 2000-10-16

Family

ID=11893896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04015625A Expired - Fee Related JP3099489B2 (en) 1992-01-31 1992-01-31 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP3099489B2 (en)

Also Published As

Publication number Publication date
JPH05210878A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
JPH0514407B2 (en)
JPH0438055B2 (en)
JPH0444333B2 (en)
JP3099489B2 (en) Magneto-optical recording medium
JPH05198029A (en) Photomagnetic recording medium
JPH05303775A (en) Magnetic optical recording medium
JPS6314342A (en) Magneto-optical recording medium
JPS63269348A (en) Magneto-optical recording medium
JPS6122455A (en) Magnetooptic recording medium
JPS6111928A (en) Vertical magnetic recording medium
JPH0350343B2 (en)
JP2604475B2 (en) Magneto-optical recording medium
JPH08180497A (en) Reproducing method for magneto-optical recording medium and magneto-optical recording medium
JP3381960B2 (en) Magneto-optical recording medium
JPS59132434A (en) Magneto-optic storage element
JPH0834013B2 (en) Magneto-optical recording medium
JP3109926B2 (en) Method for manufacturing magneto-optical recording medium
JP2921794B2 (en) Magneto-optical disk
JP2960767B2 (en) Magneto-optical recording medium
JP3099494B2 (en) Magneto-optical recording medium
JP2749537B2 (en) Magneto-optical recording medium for short wavelength
JPH0458662B2 (en)
JPS62200551A (en) Photomagnetic recording medium
JP2918599B2 (en) Magneto-optical recording medium
JPS60209947A (en) Optomagnetic recording medium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees