JP3099245B2 - Method for producing low-loss oxide magnetic material - Google Patents

Method for producing low-loss oxide magnetic material

Info

Publication number
JP3099245B2
JP3099245B2 JP03116516A JP11651691A JP3099245B2 JP 3099245 B2 JP3099245 B2 JP 3099245B2 JP 03116516 A JP03116516 A JP 03116516A JP 11651691 A JP11651691 A JP 11651691A JP 3099245 B2 JP3099245 B2 JP 3099245B2
Authority
JP
Japan
Prior art keywords
powder
sio
hfo
magnetic material
oxide magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03116516A
Other languages
Japanese (ja)
Other versions
JPH04322411A (en
Inventor
龍矢 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP03116516A priority Critical patent/JP3099245B2/en
Publication of JPH04322411A publication Critical patent/JPH04322411A/en
Application granted granted Critical
Publication of JP3099245B2 publication Critical patent/JP3099245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,低損失酸化物磁性材料
の製造方法に関する。
The present invention relates to a method for producing a low-loss oxide magnetic material.

【0002】[0002]

【従来の技術】従来のスイッチング電源用の変圧器にお
いては,スイッチング周波数として専ら200kHz 程度
のものが使用されており,Mn−Zn系スピネル型フェ
ライトが使用されている。近年スイッチング電源を小型
・軽量化するために,スイッチング周波数が200kHz
以上の高周波で使用するのが一般的となりつつある。
2. Description of the Related Art In a conventional transformer for a switching power supply, a switching frequency of about 200 kHz is exclusively used, and Mn-Zn spinel type ferrite is used. In recent years, to reduce the size and weight of switching power supplies, the switching frequency was 200 kHz.
Use at the above high frequencies is becoming common.

【0003】[0003]

【発明が解決しようとする課題】ところが従来のMn−
Zn系スピネル型の酸化物磁性材料をスイッチング周波
数が200kHz 以上のスイッチング電源用の変圧器の磁
芯材料として使用すると鉄損が大きく,発熱するため電
源の性能が著しく劣化するという欠点があった。その原
因は以下のように推測されている。従来のフェライト焼
結体は,鉄,マンガン,亜鉛の各酸化物粉末をボールミ
ル等で混合した後,予焼し,さらに微粉砕工程,造粒工
程を経て,プレスを行い圧粉体を製造し,この圧粉体を
焼成することにより得られている。ところで,この焼結
体は,混合,または,微粉砕工程時にSiO2 ,Ca
O,またはその他微量元素を添加するのが一般的であ
り,冷却後にこのSiO2 ,CaO,その他微量添加物
元素はMn−Znフェライト結晶粒界に粒界相として存
在する。この粒界相はフェライトの電気抵抗を著しく向
上させフェライトに生じるうず電流損失を低下せしめる
働きを持っている。しかしながら,前述したフェライト
焼結体におけるSiO2 ,CaO,その他微量添加物の
添加量はせいぜい数千ppm と極めてその量が少ない。ま
た,さらにその添加方法は各成分を単独で添加している
ため,粒界相の形成が不均一であったり,また,さらに
は粒界相が存在しない箇所が多数存在したりするため電
気抵抗の低下をもたらし,渦電流損失を増大させてしま
うためだけでなく,さらには焼結性に劣り,充分な原子
の拡散,及び,緻密化が図れず,パワーロス全体を大き
くしてしまうことが原因である。
However, the conventional Mn-
When a Zn-based spinel-type oxide magnetic material is used as a magnetic core material of a transformer for a switching power supply having a switching frequency of 200 kHz or more, there is a disadvantage that iron loss is large and heat is generated, thereby significantly deteriorating the performance of the power supply. The cause is speculated as follows. Conventional ferrite sintered bodies are prepared by mixing iron, manganese, and zinc oxide powders in a ball mill, etc., pre-firing, passing through a fine pulverizing process and a granulating process, and pressing to produce a green compact. Are obtained by firing this green compact. By the way, this sintered body is made of SiO 2 and Ca during the mixing or pulverizing step.
Generally, O or other trace elements are added, and after cooling, the SiO 2 , CaO, and other trace additive elements are present as grain boundary phases in the Mn—Zn ferrite crystal grain boundaries. The grain boundary phase has a function of significantly improving the electric resistance of the ferrite and reducing the eddy current loss generated in the ferrite. However, the amount of addition of SiO 2 , CaO and other trace additives in the ferrite sintered body described above is extremely small, at most several thousand ppm. In addition, since each component is added alone, the formation of the grain boundary phase is non-uniform, and furthermore, there are many places where the grain boundary phase does not exist. Not only increases the eddy current loss, but also deteriorates the sinterability, does not allow sufficient atom diffusion and densification, and increases the overall power loss. It is.

【0004】そこで,本発明の技術的課題は,結晶粒径
が微細で且つ均一な組織を作ることにより,周波数が2
00kHz 以上の高い周波数で使用しても鉄損を小さくで
きる低損失酸化物磁性材料の製造方法を提供することに
ある。
[0004] Therefore, the technical problem of the present invention is to form a microstructure having a fine and uniform crystal grain size so that a frequency of 2 is obtained.
An object of the present invention is to provide a method for manufacturing a low-loss oxide magnetic material that can reduce iron loss even when used at a high frequency of 00 kHz or more.

【0005】[0005]

【課題を解決するための手段】本発明者等は,前記欠点
を克服するために,種々の検討を行った結果,Si
2 ,CaO,HfO2 を主成分とするガラス相,また
は結晶相もしくはこれらの混相の粉末,または,この粉
末にFe2 3 ,MnO,ZnOの一種以上が含まれる
粉末を添加することにより著しくパワーロスが低減で
き,数百kHz 以上の高周波においても使用できる低損失
酸化物磁性材料を得ることができることを見いだしたも
のである。本発明によれば,スピネル型結晶構造を有す
るMn−Zn系フェライトを粉末冶金法によって製造す
る方法において,Mn−Zn系フェライト原料粉末にS
iO2 ,CaO,HfO2 を含むガラス相,結晶相及び
これらの混相の粉末のうちの少なくとも一種を添加する
ことを特徴とする低損失酸化物磁性材料の製造方法が得
られる。本発明によれば,前記添加粉末は,Fe
2 3 ,MnO,ZnOの少なくとも一種を含む添加粉
末を添加することを特徴とする低損失酸化物磁性材料の
製造方法が得られる。また,本発明によれば,前記添加
粉末のSiO2 の含有量は,5〜60モル%以下である
ことを特徴とする低損失酸化物磁性材料の製造方法が得
られる。本発明によれば,前記添加粉末のHfO2 の含
有量は,90%以下であることを特徴とする低損失酸化
物磁性材料の製造方法が得られる。本発明において,S
iO2 ,CaO,HfO2 を主成分とし,Fe2 3
MnO,ZnOを含有したガラス相,または結晶相,も
しくは,これらの混相の粉末は結晶体中の粒界相の組成
とほぼ同程度となっているため,粒界相の均一性の向上
が図れた結果だけでなく,これら粉末が焼結時の液相の
核となりこの核が圧粉体中に均一に分散したことにより
焼結体の結晶粒界に均一な粒界形成が可能となり,さら
に組織の均質化図れたために,焼結性が著しく向上し,
原子の拡散,および,緻密化が促進されたため,渦電流
損失,ヒステリシス損失が低減されたものと推定され
る。本発明において,SiO2 ,CaO,HfO2 より
成るガラス相,結晶相,これらの混相粉末から選択され
た少くとも一種を含む添加粉末において,SiO2 の組
成を5〜60mol %としたのは5mol %以下ではSiO
2 量が少なすぎ良好なコアロス特性を示す粒界相が得ら
れないだけでなく,焼結性をも低下させるため5mol %
以上とする必要があり,また,60mol %を越えた領域
ではSiO2 量が多すぎ異常粒成長を生じコアロス特性
を著しく劣化させるためである。また,本発明におい
て,SiO2 ,CaO,HfO2 より成るガラス相,結
晶相,及びこれらの混相粉末のうちの少くとも一種にお
いてHfO2 の組成を90mol %を越えた領域ではHf
2 量が多すぎ異常粒成長を生じコアロス特性を著しく
劣化させるためである。
Means for Solving the Problems The present inventors have conducted various studies to overcome the above-mentioned drawbacks.
By adding a glass phase containing O 2 , CaO, HfO 2 as a main component, or a powder of a crystal phase or a mixed phase thereof, or a powder containing at least one of Fe 2 O 3 , MnO, and ZnO to the powder. It has been found that a power loss can be remarkably reduced, and a low-loss oxide magnetic material that can be used even at a high frequency of several hundred kHz or more can be obtained. According to the present invention, in a method for producing a Mn-Zn-based ferrite having a spinel-type crystal structure by powder metallurgy, the Mn-Zn-based ferrite raw material powder has
A method for producing a low-loss oxide magnetic material characterized by adding at least one of a glass phase containing iO 2 , CaO, and HfO 2 , and a powder of a mixed phase thereof. According to the invention, said additive powder is Fe
A method for producing a low-loss oxide magnetic material characterized by adding an additive powder containing at least one of 2 O 3 , MnO, and ZnO. Further, according to the present invention, there is provided a method for producing a low-loss oxide magnetic material, wherein the content of SiO 2 in the additive powder is 5 to 60 mol% or less. According to the present invention, there is provided a method for producing a low-loss oxide magnetic material, wherein the content of HfO 2 in the additive powder is 90% or less. In the present invention, S
iO 2 , CaO, HfO 2 as a main component, Fe 2 O 3 ,
The glass phase containing MnO, ZnO, or the crystal phase, or the powder of the mixed phase thereof is almost the same as the composition of the grain boundary phase in the crystal, so that the uniformity of the grain boundary phase can be improved. In addition to these results, these powders become nuclei of the liquid phase during sintering, and these nuclei are uniformly dispersed in the green compact, so that uniform grain boundaries can be formed at the crystal grain boundaries of the sintered body. Because the structure was homogenized, the sinterability was significantly improved.
It is presumed that eddy current loss and hysteresis loss were reduced due to the promotion of atom diffusion and densification. In the present invention, SiO 2, CaO, glass phase consisting of HfO 2, crystal phase, in addition powder comprising one at least selected from these mixed phase powder, had a composition of SiO 2 and 5 to 60 mol% is 5mol % Or less
2 The amount is too small, so that not only a grain boundary phase exhibiting good core loss characteristics cannot be obtained, but also the sinterability is reduced, so that 5 mol% is used.
In addition, in the region exceeding 60 mol%, the amount of SiO 2 is too large, abnormal grain growth occurs, and the core loss characteristics are remarkably deteriorated. In the present invention, at least one of a glass phase, a crystal phase composed of SiO 2 , CaO, and HfO 2 , and a mixed phase powder thereof, has a HfO 2 composition exceeding 90 mol% in a region exceeding 90 mol%.
This is because an excessive amount of O 2 causes abnormal grain growth and remarkably deteriorates core loss characteristics.

【0006】[0006]

【実施例】以下に,本発明の実施例について図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0007】(実施例1)Fe2 3 ,MnO,ZnO
の粉末と53.5mol %,38mol %,8.5mol %と
なるよう秤量後,ボールミルで混合した後,約1000
℃で仮焼した(I材とする)。またSiO2 ,CaO,
HfO2 ,Fe2 3 ,MnO,ZnO,HfO2 を表
1に示すように秤量した後,ボールミルで混合した後
に,この粉末を2ton/cm2 で成形し,500〜1000
℃で焼成した。更に,これら粉末をボールミルにて粉砕
し得られた粉末をII材とした。(I−1〜II−5材,計
5種類)つぎにI材に対し,II材を0.05〜0.2wt
%添加し,さらにボールミルにて混合粉砕を行った。次
に得られた粉末を2ton/cm2 で成形後1000〜130
0℃で本焼成した。また,比較材として,I材の粉末に
SiO2 ,CaOをおのおの0.02wt%,0.05wt
%,添加した後,上記同様ボールミルにて混合粉砕し成
形し焼成を行った。表2に各II材を添加し,焼成条件を
変化させたときに得られる焼結体のなかで最も優れたパ
ワーロス特性を比較材と比較して示す。本発明の実施例
1によるSiO2 ,CaO,Fe2 3 ,MnO,Zn
O,HfO2 の焼成粉末を添加した方が比較例に比較し
て小さいパワーロスを示すことがわかる。
(Example 1) Fe 2 O 3 , MnO, ZnO
Weighed to 53.5 mol%, 38 mol%, and 8.5 mol%, and mixed with a ball mill.
It was calcined at ° C. (referred to as I material). In addition, SiO 2 , CaO,
After weighing HfO 2 , Fe 2 O 3 , MnO, ZnO and HfO 2 as shown in Table 1 and mixing them in a ball mill, the powder was molded at 2 ton / cm 2 and 500 to 1000
Fired at ℃. Further, these powders were pulverized with a ball mill, and the obtained powder was used as II material. (I-1 to II-5, a total of 5 types)
%, And mixed and pulverized with a ball mill. Next, after the obtained powder is molded at 2 ton / cm 2 ,
The main firing was performed at 0 ° C. Further, as a comparison material, SiO 2 and CaO were added to the powder of the I material at 0.02 wt% and 0.05 wt%, respectively.
%, And then mixed and pulverized in a ball mill as in the above, molded and fired. Table 2 shows the most excellent power loss characteristics among the sintered bodies obtained when the respective II materials were added and the firing conditions were changed, in comparison with comparative materials. SiO 2 , CaO, Fe 2 O 3 , MnO, Zn according to Embodiment 1 of the present invention
It can be seen that the addition of the calcined powders of O and HfO 2 shows a smaller power loss than the comparative example.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】(実施例2)実施例1でのII−1材,及
び,II−2材,及び,実施例1と同様な製法で得られた
SiO2 5mol %−CaO75mol %−HfO2 20mo
l %,SiO2 30mol %−CaO50mol %−HfO
2 20mol %,SiO2 40mol %−CaO40mol %
−HfO2 20mol %,SiO2 60mol %−CaO
20mol %−HfO2 20mol %,SiO2 65mol %
−CaO 15mol%−HfO2 20mol %の粉末を各
々0.05〜0.2wt%実施例1で得たI材に添加し実
施例1と同様に焼結体を得た。そのパワーロス測定結果
を図1に示す。図1において,曲線1は本発明の実施例
2に係る焼結体のパワーロス,曲線2は従来品のパワー
ロス測定結果を示す。SiO2 −CaOの焼成粉末にお
けるSiO2 量が5〜60mol%の範囲で従来品よりも
優れたパワーロスを示すことがわかる。
[0010] (Example 2) II-1 material in Example 1, and, II-2 material, and, in Example 1 SiO 2 5mol% -CaO75mol% obtained in the same process as -HfO 2 20Mo
l%, SiO 2 30 mol% -CaO 50 mol% -HfO
2 20 mol%, SiO 2 40 mol% -CaO 40 mol%
-HfO 2 20mol%, SiO 2 60mol % -CaO
20 mol% -HfO 2 20 mol%, SiO 2 65 mol%
-CaO 15 mol% -HfO obtain a sintered body in the same manner as with Example 1 added to the I material was obtained 2 20 mol% of the powder each in 0.05~0.2Wt% Example 1. FIG. 1 shows the power loss measurement results. In FIG. 1, curve 1 shows the power loss of the sintered body according to Example 2 of the present invention, and curve 2 shows the power loss measurement result of the conventional product. It can be seen that the power loss of SiO 2 amount is superior to conventional products in the range of 5 to 60 mol% in the baking powder SiO 2 -CaO.

【0011】(実施例3)実施例1でのII−1材,及
び,II−2材,及び,実施例1と同様な製法で得られた
SiO2 8mol %−CaO72mol %−HfO2 20mo
l %,SiO2 8mol %−CaO 52mol %−HfO
2 40mol %,SiO2 8mol %−CaO32mol %−
HfO2 60mol %,SiO2 8mol %−CaO12mo
l %−HfO2 80mol %,SiO2 8mol %−CaO
2mol %−HfO2 90mol %の粉末を各々0.05〜
0.2wt%実施例1で得たI材に添加し実施例1と同様
に焼成体を得た。図2にHfO2粉末の混合量比を変化
させたときのパワーロス(1MHz −500G at 60
℃)を示す。比較の為に従来品のパワーロスをも併記し
た。図2において,曲線3は実施例1に係る特性,曲線
4は比較例に係る特性を示す。HfO2 粉末混合比が9
0mol %以下で比較材である従来のフェライトよりも優
れたパワーロスを示すことが分かる。
[0011] (Example 3) II-1 material in Example 1, and, II-2 material, and, SiO 2 8mol% -CaO72mol% -HfO 2 20mo obtained in the same manner as in Example 1 preparation
l%, SiO 2 8mol% -CaO 52mol% -HfO
2 40 mol%, SiO 2 8 mol% -CaO 32 mol%
HfO 2 60 mol%, SiO 2 8 mol% -CaO12mo
l% -HfO 2 80 mol%, SiO 2 8 mol% -CaO
Each 0.05 to 2mol% -HfO 2 90mol% of powder
0.2 wt% was added to the I material obtained in Example 1 to obtain a fired body in the same manner as in Example 1. FIG. 2 shows the power loss (1 MHz-500 G at 60) when the mixing ratio of the HfO 2 powder was changed.
° C). For comparison, the power loss of the conventional product is also shown. In FIG. 2, curve 3 shows the characteristic according to the first embodiment, and curve 4 shows the characteristic according to the comparative example. HfO 2 powder mixing ratio is 9
It can be seen that at 0 mol% or less, a power loss superior to the conventional ferrite as a comparative material is exhibited.

【0012】(実施例4)実施例3で示したHfO2
末が30mol %含有した粉末を用いて得られた焼結体試
料及び比較材のパワーロス周波数依存性を測定した結果
を図3に示す。図3より本発明の実施例4に係るMn−
Znフェライト(曲線5)は,比較材である従来品(曲
線6)に比べ全周波数領域で優れたパワーロスを示すこ
とが分かる。
Example 4 FIG. 3 shows the results of measuring the power loss frequency dependence of a sintered sample and a comparative material obtained by using the powder containing 30 mol% of HfO 2 powder shown in Example 3. . FIG. 3 shows that the Mn− according to Example 4 of the present invention
It can be seen that Zn ferrite (curve 5) shows superior power loss in all frequency ranges as compared with the conventional material (curve 6) as a comparative material.

【0013】(実施例5)実施例3で示したHfO2
末が30mol %含有した粉末を用いて得られた焼結体試
料及び比較材のパワーロス温度依存性を測定した結果を
図4に示す。図4より本発明の実施例5に係るMn−Z
nフェライト(曲線7)は,比較材である従来品(曲線
8)に比べ全温度領域で優れたパワーロスを示すことが
分かる。
Example 5 FIG. 4 shows the results of measuring the power loss temperature dependence of a sintered sample and a comparative material obtained using the powder containing 30 mol% of the HfO 2 powder shown in Example 3. . FIG. 4 shows that Mn—Z according to the fifth embodiment of the present invention.
It can be seen that n-ferrite (curve 7) shows superior power loss over the entire temperature range as compared with the conventional product (curve 8) as a comparative material.

【0014】(実施例6)実施例1で示したII材(II−
1〜5)をI材に0.05wt%添加し,ボールミルにて
混合粉砕し,成形し焼成を行った。表3にSiO2 ,C
aO,HfO2 及びSiO2 ,CaO,HfO2 ,Fe
2 3 ,MnO,ZnOの混合比を変化させたときの比
抵抗を示す。本発明の実施例によるSiO2 ,CaO,
Fe2 3 ,MnO,ZnO,HfO2 の焼成粉末を添
加した方が大きい比抵抗を示すことがわかる。
Example 6 The II material shown in Example 1 (II-
1 to 5) were added to the I material at 0.05% by weight, mixed and pulverized by a ball mill, molded and fired. Table 3 shows SiO 2 and C
aO, HfO 2 and SiO 2 , CaO, HfO 2 , Fe
This shows the specific resistance when the mixing ratio of 2 O 3 , MnO, and ZnO is changed. According to an embodiment of the present invention, SiO 2 , CaO,
It can be seen that the addition of the calcined powder of Fe 2 O 3 , MnO, ZnO, HfO 2 shows a higher specific resistance.

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【発明の効果】以上,述べた如く,本発明によれば,M
n−Znフェライトを通常の粉末冶金法によって製造す
る方法において,SiO2 ,CaOより成るガラス相ま
たは結晶相,及びこれらの混相の粉末,さらにこれらの
粉末中にFe2 3 ,MnO,ZnO,または,HfO
2 が含有された粉末を添加することにより,著しくパワ
ーロスが改善されスイッチング電源等に組み込んだ場合
発熱量が小さくなり,優れた電源特性を示す低損失酸化
物磁性材料が得られる。これは,Mn−Znフェライト
中の粒界相の均一性の向上が高特性を生み出したものと
推察される。
As described above, according to the present invention, M
In a method of producing n-Zn ferrite by a usual powder metallurgy method, a powder of a glass phase or a crystal phase composed of SiO 2 and CaO, and a powder of a mixed phase thereof, and further containing Fe 2 O 3 , MnO, ZnO, Or HfO
By adding the powder containing 2 , the power loss is remarkably improved, and when incorporated in a switching power supply or the like, the calorific value is reduced, and a low-loss oxide magnetic material exhibiting excellent power supply characteristics is obtained. This is presumably because the improvement of the uniformity of the grain boundary phase in the Mn-Zn ferrite produced high characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2におけるSiO2 −CaO焼成粉末の
SiO2量を変化させた時のパワーロスとの関係を示し
たものである。(1MHz−500G at 60℃)
[1] shows the relationship between the power loss at the time of changing the amount of SiO 2 SiO 2 -CaO calcined powder in Example 2. (1MHz-500G at 60 ℃)

【図2】実施例3におけるSiO2 −CaO−HfO2
焼成粉末のHfO2 量を変化させた時の,パワーロスと
の関係を示したものである。(1MHz −500G at 6
0℃)
FIG. 2 shows SiO 2 —CaO—HfO 2 in Example 3.
It shows the relationship with the power loss when the amount of HfO 2 in the fired powder is changed. (1MHz -500G at 6
0 ℃)

【図3】実施例3におけるSiO2 −CaO−Fe2
3 −MnO−ZnOの焼成粉末を添加した試料のパワー
ロス周波数依存性を比較例と比べたものである。(50
0G at 60℃)
FIG. 3 shows SiO 2 —CaO—Fe 2 O in Example 3.
7 is a graph comparing the power loss frequency dependence of a sample to which a sintered powder of 3- MnO-ZnO is added with a comparative example. (50
0G at 60 ℃)

【図4】実施例3におけるSiO2 −CaO−Fe2
3 −MnO−ZnOの焼成粉末を添加した試料のパワー
ロス温度依存性を比較例と比べたものである。(1MHz
−500G)
FIG. 4 shows SiO 2 —CaO—Fe 2 O in Example 3.
7 is a graph comparing the power loss temperature dependence of a sample to which a sintered powder of 3- MnO-ZnO is added with that of a comparative example. (1MHz
-500G)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スピネル型結晶構造を有するMn−Zn
系フェライトを粉末冶金法によって製造する方法におい
て,Mn−Zn系フェライト原料粉末にSiO2 ,Ca
O,HfO2 を含むガラス相,結晶相及びこれらの混相
の粉末のうちの少なくとも一種を含む添加粉末を添加す
ることを特徴とする低損失酸化物磁性材料の製造方法。
1. Mn-Zn having a spinel type crystal structure
In a method of producing a ferrite based on powder metallurgy, SiO 2 , Ca
A method for producing a low-loss oxide magnetic material, comprising adding an additional powder containing at least one of a glass phase containing O, HfO 2 , a crystal phase, and a powder of a mixed phase thereof.
【請求項2】 請求項1の低損失酸化物磁性材料の製造
方法において,前記添加粉末は,Fe2 3 ,MnO,
ZnOの少なくとも一種を含むことを特徴とする低損失
酸化物磁性材料の製造方法。
2. The method for producing a low-loss oxide magnetic material according to claim 1, wherein said additive powder is Fe 2 O 3 , MnO,
A method for producing a low-loss oxide magnetic material comprising at least one kind of ZnO.
【請求項3】 請求項1の低損失酸化物磁性材料の製造
方法において,前記添加粉末のSiO2 の含有量は,5
〜60モル%以下であることを特徴とする低損失酸化物
磁性材料の製造方法。
3. The method for producing a low-loss oxide magnetic material according to claim 1, wherein the content of SiO 2 in said additive powder is 5%.
A method for producing a low-loss oxide magnetic material, wherein the content is at most 60 mol%.
【請求項4】 請求項1の低損失酸化物磁性材料の製造
方法において,前記添加粉末のHfO2 の含有量は,9
0%以下であることを特徴とする低損失酸化物磁性材料
の製造方法。
4. The method for producing a low-loss oxide magnetic material according to claim 1, wherein the content of HfO 2 in said additive powder is 9%.
A method for producing a low-loss oxide magnetic material, which is 0% or less.
JP03116516A 1991-04-22 1991-04-22 Method for producing low-loss oxide magnetic material Expired - Fee Related JP3099245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03116516A JP3099245B2 (en) 1991-04-22 1991-04-22 Method for producing low-loss oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03116516A JP3099245B2 (en) 1991-04-22 1991-04-22 Method for producing low-loss oxide magnetic material

Publications (2)

Publication Number Publication Date
JPH04322411A JPH04322411A (en) 1992-11-12
JP3099245B2 true JP3099245B2 (en) 2000-10-16

Family

ID=14689083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03116516A Expired - Fee Related JP3099245B2 (en) 1991-04-22 1991-04-22 Method for producing low-loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JP3099245B2 (en)

Also Published As

Publication number Publication date
JPH04322411A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
JP3108803B2 (en) Mn-Zn ferrite
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
JP3584439B2 (en) Mn-Zn ferrite and method for producing the same
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP3108804B2 (en) Mn-Zn ferrite
JPH081844B2 (en) High frequency low loss ferrite for power supply
JP3099245B2 (en) Method for producing low-loss oxide magnetic material
JP4279923B2 (en) MnMgCuZn ferrite material
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JPH11307336A (en) Manufacture of soft magnetic ferrite
JPH0661033A (en) Low-loss oxide magnetic material
JPH06333719A (en) Ni-zn soft ferrite
JP3178885B2 (en) Oxide magnetic material and radio wave absorber
JPH06251927A (en) Manufacture of low-loss oxide magnetic material
JP2939035B2 (en) Soft magnetic oxide substance
JPH0366254B2 (en)
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
JPH0529125A (en) Production of oxide magnetic material
JPS63151666A (en) Mn-zn base oxide magnetic material and manufacture
JP2001076923A (en) Low-loss oxide magnetic material
JP3621118B2 (en) Manganese-zinc ferrite
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JPH08138949A (en) Mn-zn ferrite core and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000719

LAPS Cancellation because of no payment of annual fees