JP3621118B2 - Manganese-zinc ferrite - Google Patents

Manganese-zinc ferrite Download PDF

Info

Publication number
JP3621118B2
JP3621118B2 JP21694092A JP21694092A JP3621118B2 JP 3621118 B2 JP3621118 B2 JP 3621118B2 JP 21694092 A JP21694092 A JP 21694092A JP 21694092 A JP21694092 A JP 21694092A JP 3621118 B2 JP3621118 B2 JP 3621118B2
Authority
JP
Japan
Prior art keywords
power loss
sno
sio
mol
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21694092A
Other languages
Japanese (ja)
Other versions
JPH0669020A (en
Inventor
貴史 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP21694092A priority Critical patent/JP3621118B2/en
Publication of JPH0669020A publication Critical patent/JPH0669020A/en
Application granted granted Critical
Publication of JP3621118B2 publication Critical patent/JP3621118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、スイッチング電源用トランス等の磁心として好適な、電力損失の少ないマンガン−亜鉛(Mn−Zn)系フェライトに関するものである。
【0002】
【従来の技術】
Mn−Zn系フェライトは、各種通信機電源等のコイル、トランス材料として広く使用されている。
ところで最近は、電源の一層の小型化のために駆動周波数が高周波化(500kHz〜1MHz)する傾向にあり、その目的に叶うMn−Zn系フェライトの開発も進められているが、これまでは性能的に十分な材料開発はなされていなかった。例えば市販の電源用低損失フェライトは500kHz、50mTでせいぜい250mW/cm 程度であり、高周波用電源材料としては電力損失が高過ぎる。
【0003】
このため、例えば特開平1−224265号公報では、SiO 、CaO、TiO に加え、Ta を添加することで磁気特性の改善を図っている。しかし、この発明によっても磁気特性の改善は不十分である他、Ta は他の添加物に比較して重量あたりの単価が15〜50倍を要し製造コストの面で問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、上記事情を考慮し、現在スイッチング電源周波数として標準的な100kHzよりもさらに高周波、例えば500kHz程度、あるいはそれ以上の高周波における電力損失と製造コストが同時に改善されたMn−Zn系フェライトを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成する本発明のMn−Zn系フェライトは、Fe 51.5〜54.5mol%、MnO 33〜40mol%及びZnO 10超〜13mol%を基本成分とし、この基本成分中に副成分としてSi、Ca、Ta、Ti及びSnの酸化物を、それぞれSiO 、CaO、Ta 、TiO 及びSnO 換算で、それぞれ0.005〜0.035wt%、0.01〜0.25wt%、0.001〜0.055wt%、0.05〜0.65wt%及び0.005〜0.50wt%複合含有することを特徴とする。
【0006】
【作用】
100kHzを超える高周波領域での電力損失の低減策として、比抵抗を高めるためにSnO を添加する試みは従来から実施されているが、例えば特開昭61−252609号公報では、SiO 、CaOに加え多量のSnO (0.5〜0.9wt%)を含有させることで低損失化が図られている。
【0007】
しかし、SiO とCaOの共存下でTa 、TiO 、SnO を含有させ、しかもSnO の添加量が比較的少ない場合にも電力損失の低減が図られた例はなく、本発明者はこの範囲においてMn−Zn系フェライトの磁気特性に関して鋭意研究を重ねた結果、優れた磁気特性が得られることを見出した。
すなわち、本発明では、SiO 、CaO、Ta 、TiO 及びSnO を同時に含有させ、各成分を粒界あるいは粒内に分散させることにより比抵抗を高め、上記高周波領域における電力損失の低減化が可能となった。また、SnO の含有量が極微量であって、比抵抗の上昇効果がほとんど認められない場合にも磁気特性が改善されることが明らかになった。この結果、Ta に比較して安価なSnO を微量添加することで、総合的な製造コストの低減が可能となった。これは工業的には大きなメリットとなっている。
【0008】
ここで、本発明において基本成分の配合割合を前記の範囲に限定した理由について説明する。
スイッチング電源用トランスは、通常の動作温度が60〜70℃なので、この温度範囲で電力損失が低く、かつ室温から動作温度を超える80〜120℃程度の温度域まで電力損失が負の温度依存性をもつことが望ましい。ここでトランス・コアに使用されるMn−Zn系フェライトの電力損失の温度依存性は、主成分であるFe 、MnO及びZnOの配合比によってほぼ決まる、一定温度(T )で極小値を示す下に凸の曲線で表わされる。
【0009】
上記の理由からT を80〜120℃に設定することが好ましいが、Fe が51.5mol%未満でかつMnOが40mol%を超える場合はT が高くなり過ぎ、トランスの動作温度での電力損失が増大する。一方、Fe が54.5mol%を超え且つMnOが33mol%未満の場合はT が80℃を下回り、室温から動作温度までの範囲で電力損失の負の温度依存性が得られなくなる。この観点からFe 、MnO、ZnOの配合割合を検討した結果、上記の範囲、即ち、
Fe :51.5〜54.5mol%
MnO:33〜40mol%
ZnO:10超〜13mol%
が得られた。
【0010】
また本発明は、上記基本成分中に、SiO 、CaO、Ta 、TiO 及びSnO を含有させたところに特徴がある。以下、これらの副成分の配合割合の限定理由を説明する。
(1) SiO を0.005〜0.035wt%に限定した理由
SiO はCaOとの共存によって粒界の比抵抗を高め渦電流損失の低減に有効に寄与するが、含有量が0.005wt%未満では比抵抗が低下してその効果に乏しく、一方、0.035wt%を超えると異常粒組織となって電力損失が上昇し不適当なので、0.005〜0.035wt%の範囲に限定した。なおSiO が原料中に不純物として数10ppm含まれる場合には、全体で0.005〜0.035wt%の範囲に入るように添加量を調整する。
【0011】
(2) CaOを0.01〜0.25wt%に限定した理由
CaOはSiO との共存下で効果的に粒界抵抗を高め低損失をもたらす有用成分であるが、含有量が0.01wt%未満の場合は粒界抵抗の上昇効果に乏しく渦電流損失が増大する。一方、0.25wt%を超えると電力損失が非常に大きくなるので0.01〜0.20wt%の範囲とした。
【0012】
(3) Ta を0.001〜0.055wt%に限定した理由
Ta は粒界抵抗を高め電力損失の低減に有効である。また、この効果はSiO やCaO、さらにはTiO 及びSnO の共存下で一層顕著なものとなる。しかし、0.001wt%未満ではこの効果が乏しく、一方、0.055wt%を超えると異常粒成長を起こし電力損失が大幅に上昇するほか、Ta は他の添加物に比較して15〜50倍ものコストを要し大量添加は不経済である。したがって、0.001〜0.055wt%の範囲に限定した。
【0013】
(4) TiO を0.05〜0.65wt%に限定した理由
TiO はフェライトコア焼成時の冷却過程での粒界の再酸化を促進し、更に粒内にも固溶してフェライトコアの比抵抗を高める効果がある。また焼結密度を高める効果があり、その結果、残留磁束密度、保磁力が小さくなる。しかし、0.05wt%未満ではその効果が低く、一方、0.65wt%を超えると逆に電力損失の上昇を招く。そこで0.05〜0.65wt%に限定した。
【0014】
(5) SnO を0.005〜0.50wt%に限定した理由
SnO はTiO と同様にフェライトコアの比抵抗を高め渦電流損失を低下させる効果があるが、SnO 含有量が0.1wt%未満ではその効果に乏しく、一方、0.50wt%を越えると逆に電力損失が大きくなる。しかし、上記効果に乏しい0.1wt%未満であっても、0.005wt%以上添加すると電力損失が著しく低下することが判明した。この場合の損失低減機構を明確に示すことはできないが、多成分系の異質な相が結晶粒界に存在することによる磁気的な悪影響をSnO が緩和するためと考えられる。また、Ta の添加量が極少量であっても、Ta に比較して安価(約15分の1)なSnO を微量添加することにより電力損失が改善させることから、製造コストの面でも有利である。以上の理由によってこの範囲に限定した。
【0015】
なお、本発明のマンガン−亜鉛系フェライトを製造するには、各粉末原料を所定の組成になるように混合、仮焼、粉砕した後、常法に従い圧縮成形し、次いで焼結を施せばよい。その際、前記の副成分の添加は、混合時及び/又は粉砕時に行なわれる。
また、これらの副成分の原料は酸化物に限定されず、例えば炭酸塩やしゅう酸塩のように上記フェライトの製造過程において最終的に酸化物へ変化する化合物であればよい。
【0016】
【実施例】
以下、本発明の実施例について説明する。
Fe :52.5mol%、MnO:35.7mol%、ZnO:11.8mol%から成る基本組成の原料を混合後、仮焼し、粉砕したフェライト粉体に表1及び表2に示す割合で、SiO 、CaO(CaCO を使用)、Ta 、TiO 、SnO を複合添加配合した。その後、リング形に成形し、本焼成した。こうして得られた試料の、500kHz,50mT,80℃における電力損失を表1、表2に併記した。表1は本発明の実施例を示す表であり、表2は本発明の副成分が限定範囲外の比較例を示す表である。
【0017】
本発明によれば、500kHzという高い周波数において低い電力損失が得られる。
【0018】
【表1】

Figure 0003621118
【0019】
【表2】
Figure 0003621118
【0020】
図1は、表1の試料番号2の本発明材と従来の電源用フェライト(従来材と記す)の周波数500kHz、磁束密度50mTの条件下で測定した電力損失の温度特性を示したグラフである。この図より、本発明材は20℃から120℃までの全ての温度範囲において、電力損失が従来材よりも著しく改善されていることがわかる。
【0021】
【発明の効果】
本発明により、高周波領域での電力損失が著しく低いMn−Zn系フェライトが安価に得られた。これにより、高周波電源の磁心等に使用でき電源の効率化、小型化に有効となる。
【図面の簡単な説明】
【図1】本発明材と従来材の電力損失の温度特性を示したグラフである。[0001]
[Industrial application fields]
The present invention relates to a manganese-zinc (Mn—Zn) -based ferrite with low power loss, which is suitable as a magnetic core for a transformer for a switching power supply or the like.
[0002]
[Prior art]
Mn—Zn-based ferrites are widely used as coils and transformer materials for various communication equipment power supplies.
Recently, there has been a tendency to increase the driving frequency (500 kHz to 1 MHz) for further miniaturization of the power source, and the development of Mn—Zn ferrite that fulfills the purpose has been promoted. However, sufficient material development was not made. For example, a commercially available low-loss ferrite for power supply is at most about 250 mW / cm 3 at 500 kHz and 50 mT, and the power loss is too high as a high-frequency power supply material.
[0003]
For this reason, for example, in JP-A-1-224265, magnetic properties are improved by adding Ta 2 O 5 in addition to SiO 2 , CaO, and TiO 2 . However, the magnetic characteristics are not improved sufficiently by this invention, and Ta 2 O 5 requires 15 to 50 times the unit price per weight as compared with other additives, which causes a problem in terms of production cost. It was.
[0004]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention provides a Mn—Zn ferrite having improved power loss and manufacturing cost at a higher frequency than the standard switching power supply frequency of 100 kHz, for example, about 500 kHz or higher. The purpose is to provide.
[0005]
[Means for Solving the Problems]
The Mn—Zn-based ferrite of the present invention that achieves the above object comprises Fe 2 O 3 51.5 to 54.5 mol%, MnO 33 to 40 mol%, and ZnO 10 more than 13 to 13 mol% as basic components. Si as an auxiliary component, Ca, Ta, oxides of Ti and Sn, respectively SiO 2, CaO, Ta 2 O 5, TiO 2 and SnO 2 basis, respectively 0.005~0.035wt%, 0.01~ It is characterized by containing 0.25 wt%, 0.001 to 0.055 wt%, 0.05 to 0.65 wt%, and 0.005 to 0.50 wt%.
[0006]
[Action]
As a measure for reducing the power loss in the high frequency region exceeding 100 kHz, attempts to add SnO 2 to increase the specific resistance have been performed conventionally. For example, in Japanese Patent Application Laid-Open No. 61-252609, SiO 2 , CaO In addition to the above, a large amount of SnO 2 (0.5 to 0.9 wt%) is included to reduce the loss.
[0007]
However, there is no example in which the power loss is reduced even when Ta 2 O 5 , TiO 2 , SnO 2 is contained in the coexistence of SiO 2 and CaO and the addition amount of SnO 2 is relatively small. The inventor has found that excellent magnetic properties can be obtained as a result of intensive studies on the magnetic properties of Mn—Zn ferrite in this range.
That is, in the present invention, SiO 2 , CaO, Ta 2 O 5 , TiO 2, and SnO 2 are contained at the same time, and the specific resistance is increased by dispersing each component in the grain boundary or grain, and the power loss in the high frequency region Can be reduced. It has also been clarified that the magnetic properties are improved even when the SnO 2 content is extremely small and the effect of increasing the specific resistance is hardly observed. As a result, the total production cost can be reduced by adding a small amount of SnO 2 which is cheaper than Ta 2 O 5 . This is a great merit for the industry.
[0008]
Here, the reason why the mixing ratio of the basic component is limited to the above range in the present invention will be described.
Since the switching power transformer has a normal operating temperature of 60 to 70 ° C, power loss is low in this temperature range, and power loss is negative temperature dependence from room temperature to a temperature range of about 80 to 120 ° C exceeding the operating temperature. It is desirable to have Here, the temperature dependence of the power loss of the Mn—Zn ferrite used for the transformer core is almost determined by the mixing ratio of the main components Fe 2 O 3 , MnO and ZnO, and is minimal at a constant temperature (T s ). The value is represented by a downwardly convex curve.
[0009]
For the above reason, it is preferable to set T s to 80 to 120 ° C. However, when Fe 2 O 3 is less than 51.5 mol% and MnO exceeds 40 mol%, T s becomes too high, and the operating temperature of the transformer The power loss at is increased. On the other hand, when Fe 2 O 3 exceeds 54.5 mol% and MnO is less than 33 mol%, T s is less than 80 ° C., and negative temperature dependence of power loss cannot be obtained in the range from room temperature to operating temperature. . As a result of examining the blending ratio of Fe 2 O 3 , MnO, ZnO from this viewpoint, the above range, that is,
Fe 2 O 3: 51.5~54.5mol%
MnO: 33 to 40 mol%
ZnO: more than 10 to 13 mol%
was gotten.
[0010]
Further, the present invention is characterized in that SiO 2 , CaO, Ta 2 O 5 , TiO 2 and SnO 2 are contained in the basic component. Hereinafter, the reason for limiting the blending ratio of these subcomponents will be described.
(1) Reason for limiting SiO 2 to 0.005 to 0.035 wt% SiO 2 increases the specific resistance of the grain boundary by coexistence with CaO and contributes effectively to the reduction of eddy current loss. If it is less than 005 wt%, the specific resistance is lowered and its effect is poor. On the other hand, if it exceeds 0.035 wt%, an abnormal grain structure is formed and power loss increases and is inappropriate, so it is in the range of 0.005 to 0.035 wt%. Limited. Note that if the SiO 2 is contained several 10ppm as impurities in the raw materials, adjusting the addition amount as a whole fall within the scope of 0.005~0.035wt%.
[0011]
(2) Reason for limiting CaO to 0.01 to 0.25 wt% CaO is a useful component that effectively increases the grain boundary resistance and causes low loss in the presence of SiO 2 , but the content is 0.01 wt. If it is less than%, the effect of increasing the grain boundary resistance is poor and eddy current loss increases. On the other hand, if it exceeds 0.25 wt%, the power loss becomes very large, so the range was set to 0.01 to 0.20 wt%.
[0012]
(3) Reason for limiting Ta 2 O 5 to 0.001 to 0.055 wt% Ta 2 O 5 is effective in increasing the grain boundary resistance and reducing power loss. Moreover, this effect becomes more remarkable in the presence of SiO 2 , CaO, TiO 2 and SnO 2 . However, when the amount is less than 0.001 wt%, this effect is poor. On the other hand, when the amount exceeds 0.055 wt%, abnormal grain growth occurs and the power loss increases significantly, and Ta 2 O 5 is 15% more than other additives. Costing up to 50 times is large and adding large amounts is uneconomical. Therefore, it was limited to the range of 0.001 to 0.055 wt%.
[0013]
(4) Reason TiO 2 for limiting the TiO 2 to 0.05~0.65Wt% promotes intergranular reoxidation of the cooling process at the time of the ferrite core sintering, the ferrite core is further dissolved in the particle There is an effect of increasing the specific resistance. Moreover, there exists an effect which raises a sintered density and, as a result, a residual magnetic flux density and a coercive force become small. However, if it is less than 0.05 wt%, the effect is low, while if it exceeds 0.65 wt%, power loss increases conversely. Therefore, it is limited to 0.05 to 0.65 wt%.
[0014]
(5) The reasons SnO 2 for limiting the SnO 2 in 0.005~0.50Wt% has the effect of reducing the eddy current loss increases the resistivity of the ferrite core as well as TiO 2, SnO 2 content of 0 If the amount is less than 0.1 wt%, the effect is poor. On the other hand, if the amount exceeds 0.50 wt%, the power loss increases. However, it was found that even when the amount is less than 0.1 wt%, which is poor in the above effect, the power loss is remarkably reduced when 0.005 wt% or more is added. Although the loss reduction mechanism in this case cannot be clearly shown, it is considered that SnO 2 relaxes the magnetic adverse effect caused by the presence of multi-component heterogeneous phases at the grain boundaries. In addition, even if the amount of Ta 2 O 5 added is extremely small, power loss is improved by adding a small amount of SnO 2 that is cheaper (about 1/15) compared to Ta 2 O 5 . This is also advantageous in terms of manufacturing cost. For the above reason, it was limited to this range.
[0015]
In order to produce the manganese-zinc based ferrite of the present invention, each powder raw material is mixed, calcined and pulverized so as to have a predetermined composition, then compression-molded according to a conventional method, and then sintered. . At that time, the addition of the subcomponents is performed during mixing and / or pulverization.
In addition, the raw materials for these subcomponents are not limited to oxides, and may be any compound that finally changes to oxides during the ferrite production process, such as carbonates and oxalates.
[0016]
【Example】
Examples of the present invention will be described below.
Tables 1 and 2 show the ferrite powders obtained by mixing, calcining and pulverizing the raw materials having the basic composition of Fe 2 O 3 : 52.5 mol%, MnO: 35.7 mol%, and ZnO: 11.8 mol%. In proportion, SiO 2 , CaO (using CaCO 3 ), Ta 2 O 5 , TiO 2 , and SnO 2 were compounded and added. Thereafter, it was molded into a ring shape and subjected to main firing. The power loss at 500 kHz, 50 mT, and 80 ° C. of the sample thus obtained is shown in Tables 1 and 2. Table 1 is a table showing examples of the present invention, and Table 2 is a table showing comparative examples in which the subcomponents of the present invention are outside the limited range.
[0017]
According to the present invention, low power loss is obtained at a high frequency of 500 kHz.
[0018]
[Table 1]
Figure 0003621118
[0019]
[Table 2]
Figure 0003621118
[0020]
FIG. 1 is a graph showing the temperature characteristics of power loss measured under the conditions of a frequency of 500 kHz and a magnetic flux density of 50 mT for the present invention material of sample number 2 in Table 1 and a conventional power supply ferrite (referred to as a conventional material). . From this figure, it can be seen that the power loss of the material of the present invention is remarkably improved as compared with the conventional material in the entire temperature range from 20 ° C to 120 ° C.
[0021]
【The invention's effect】
According to the present invention, a Mn—Zn based ferrite with extremely low power loss in a high frequency region was obtained at low cost. As a result, it can be used for a magnetic core of a high-frequency power source, and is effective in improving the efficiency and miniaturization of the power source.
[Brief description of the drawings]
FIG. 1 is a graph showing temperature characteristics of power loss between a material of the present invention and a conventional material.

Claims (1)

Fe 51.5〜54.5mol%
MnO 33〜40mol%
ZnO 10超〜13mol%
を基本成分とし、この基本成分中に副成分としてSi、Ca、Ta、Ti及びSnの酸化物を、それぞれSiO 、CaO、Ta 、TiO 及びSnO 換算で、
SiO 0.005〜0.035wt%
CaO 0.01〜0.25wt%
Ta 0.001〜0.055wt%
TiO 0.05〜0.65wt%
SnO 0.005〜0.50wt%
複合含有することを特徴とするマンガン−亜鉛系フェライト。
Fe 2 O 3 51.5~54.5mol%
MnO 33-40 mol%
ZnO more than 10 to 13 mol%
Is a basic component, and Si, Ca, Ta, Ti and Sn oxides as subcomponents in the basic component are converted into SiO 2 , CaO, Ta 2 O 5 , TiO 2 and SnO 2 , respectively.
SiO 2 0.005~0.035wt%
CaO 0.01-0.25wt%
Ta 2 O 5 0.001~0.055wt%
TiO 2 0.05~0.65wt%
SnO 2 0.005~0.50wt%
Manganese-zinc ferrite characterized by containing a composite.
JP21694092A 1992-08-14 1992-08-14 Manganese-zinc ferrite Expired - Fee Related JP3621118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21694092A JP3621118B2 (en) 1992-08-14 1992-08-14 Manganese-zinc ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21694092A JP3621118B2 (en) 1992-08-14 1992-08-14 Manganese-zinc ferrite

Publications (2)

Publication Number Publication Date
JPH0669020A JPH0669020A (en) 1994-03-11
JP3621118B2 true JP3621118B2 (en) 2005-02-16

Family

ID=16696319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21694092A Expired - Fee Related JP3621118B2 (en) 1992-08-14 1992-08-14 Manganese-zinc ferrite

Country Status (1)

Country Link
JP (1) JP3621118B2 (en)

Also Published As

Publication number Publication date
JPH0669020A (en) 1994-03-11

Similar Documents

Publication Publication Date Title
JP3108803B2 (en) Mn-Zn ferrite
JP2008143744A (en) MnCoZn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP3108804B2 (en) Mn-Zn ferrite
JP4711897B2 (en) MnCoZn ferrite and transformer core
JP3490504B2 (en) Low-loss oxide magnetic material
JPH081844B2 (en) High frequency low loss ferrite for power supply
JPH05198416A (en) Mn-zn based ferrite
JP3621118B2 (en) Manganese-zinc ferrite
JP5089923B2 (en) MnCoZn ferrite and transformer core
JP3597665B2 (en) Mn-Ni ferrite material
JP3238735B2 (en) Manganese-zinc ferrite
JPH07142222A (en) Low-loss mn-zn soft ferrite
JP3597666B2 (en) Mn-Ni ferrite material
JP2892095B2 (en) Low loss Mn-Zn ferrite
JP3245206B2 (en) Manganese-zinc ferrite
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JP3597628B2 (en) Low-loss oxide magnetic material and method of manufacturing the same
JP3366708B2 (en) Low loss Mn-Zn ferrite
JP3622857B2 (en) Mn-Zn ferrite
JP2006213531A (en) Manganese-cobalt-zinc-based ferrite
EP1136460A1 (en) Mn-Zn Ferrite and production process thereof
JP3499283B2 (en) High permeability oxide magnetic material
JP3366707B2 (en) Mn-Zn ferrite
JP2721410B2 (en) Low loss Mn-Zn ferrite
JP3611871B2 (en) Mn-Zn ferrite

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees