JP3099069B2 - Electron beam equipment - Google Patents

Electron beam equipment

Info

Publication number
JP3099069B2
JP3099069B2 JP62189374A JP18937487A JP3099069B2 JP 3099069 B2 JP3099069 B2 JP 3099069B2 JP 62189374 A JP62189374 A JP 62189374A JP 18937487 A JP18937487 A JP 18937487A JP 3099069 B2 JP3099069 B2 JP 3099069B2
Authority
JP
Japan
Prior art keywords
electron beam
lens system
magnetic field
magnetic flux
deflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62189374A
Other languages
Japanese (ja)
Other versions
JPS6433834A (en
Inventor
英信 村上
泰造 石見
政司 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62189374A priority Critical patent/JP3099069B2/en
Publication of JPS6433834A publication Critical patent/JPS6433834A/en
Application granted granted Critical
Publication of JP3099069B2 publication Critical patent/JP3099069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子ビーム描画装置、或いは電子ビーム露光
装置,電子ビーム溶接機等の熱加工機等として用いられ
る電子ビーム装置に関する。 〔従来の技術〕 第6図は一般的な電子ビーム装置の概念図であり、電
子銃1から放出された電子ビーム2は、途中先ず集束レ
ンズ系3にて集束され、次いで磁界偏向レンズ系4にて
偏向せしめられて、ターゲット5上の定められた位置に
投射せしめるようにしてある。 ところで磁界偏向レンズ系4は電子ビーム2の通路の
周囲に通常4等配した電磁石ユニットのうち電子ビーム
2の通路を隔てて対向する2対の電磁石のコイルに高速
走査のために数100kHz以上の高周波電流を通流せしめる
が、これに伴い偏向磁束の外に漏洩磁束が生じて磁界偏
向レンズ系4の周辺における金属構造物に渦電流を生ぜ
しめ、これによって派生する磁界のため偏向磁束自体が
乱され、電子ビームの投射位置に誤差が生じるという欠
点があった。 このため従来よりこの誤差を補正し、また制御するた
めの種々の提案がなされている。第7図は誤差の抑制手
段を備えた従来の電子線露光装置の概念図であり、電子
ビーム2の通路の周囲に集束レンズ系13,偏向レンズ系1
4を前者を外側に、また後者を内側にして同心状に配設
する。即ち集束レンズ系13は内周に凹溝を備えた円環状
をなすヨーク13aの前記凹溝内にコイル13bを、また偏向
レンズ系14は同じく内周に凹溝を備えた円環状ヨーク14
aの前記凹溝内にコイル14bを夫々収容配設して構成する
一方、ヨーク13aの上,下における両リブの先端部13d,1
3e及びヨーク14a全体をいずれも強磁性体であるフエラ
イトにて形成し、渦電流の発生を防止し、これに伴う磁
界の影響を抑制する構成が提案されている(特開昭54−
137977号)。 〔発明が解決しようとする問題点〕 しかしこのような構成ではフエライトは加工性が悪く
て加工コストが高く、またレンズ系に新たな強磁性体た
るフエライトが存在することとなるために磁束の強度分
布が乱れて電子ビームの制御が複雑になるなどの問題が
あった。 本発明はかかる事情に鑑みなされたものであって、そ
の目的とするところは磁界偏向レンズ系に高周波電流を
通流したことにより周辺金属構造物に生じた渦電流によ
る磁束が電子ビームの軌道に与える作用を低減し、高速
でしかも高精度の電子ビーム照射位置の制御が可能な電
子ビーム装置を提供するにある。 〔問題点を解決するための手段〕 第1の発明に係る電子ビーム装置は、集束レンズ系及
び磁界偏向レンズ系が相互に磁気的に結合する位置に配
置されている電子ビーム装置において、前記集束レンズ
系又は磁界偏向レンズ系の内側領域に、前記磁界偏向レ
ンズ系により集束レンズ系を含む周囲の金属構造物に発
生せしめられる渦電流による偏向磁界を相殺するための
磁界を発生する金属筒を配置し、その厚さを前記渦電流
による偏向磁界の作用を相殺する強さの磁界を発生し得
る厚さとしたことを特徴とする。 第2の発明に係る電子ビーム装置は、金属筒を厚さ1
〜100μmの銅製としたことを特徴とする。 〔作用〕 本発明装置にあってはこれによって磁界偏向レンズの
周囲の金属構造物に発生した渦電流に起因する磁束の作
用を薄い金属筒で発生する渦電流による磁束の作用にて
相殺、換言すれば打ち消す。また金属筒を厚さ1〜100
μmの銅とすることで導電性に優れ、集束レンズ系を含
む周辺の金属構造物に生じる渦電流による偏向磁界に対
する相殺効果が促進される。 〔実施例〕 以下本発明をその実施例を示す図面に基づき具体的に
説明する。第1図は本発明に係る電子ビーム装置(以下
本発明装置という)の模式的縦断面図であり、図中1は
電子銃、2は放出された電子ビーム、3は集束レンズ
系、4は磁界偏向レンズ系、5はターゲットを示してい
る。電子銃1からターゲット5に向けて放出された電子
ビーム2は途中集束レンズ系3にて集束され、次いで磁
界偏向レンズ系4にて偏向され、ターゲット5の表面の
所定位置に投射されることとなる。 集束レンズ系3は電子ビーム2の通路の周囲に配した
内周面に沿って断面コ字形の凹溝を備えた環状ヨーク3a
内にコイル3bを収容して構成されている。 また磁界偏向レンズ系4は棒状のヨーク4aにコイル4b
を巻着して構成した4箇の電磁石を同一平面上であっ
て、電子ビーム2の通路の周りの4等配の位置に、互い
に直交する2方向においてヨーク4aの一端を相対向せし
めて配設してあり、相対向するヨーク4a,4aの一端部が
夫々一方はN極に、また他方はS極となるよう高周波を
印加せしめて電子ビーム2を偏向制御するようになって
いる。 そして本発明装置にあっては前記偏向レンズ系4の電
磁石で囲われた内側であって電子ビーム2の通路の周縁
部に臨ませて薄い金属筒6を配設してある。 金属筒6の材料には非磁性のステンレス鋼,Cu,Al等の
非磁性材料を用いて偏向磁界等に影響を与えないように
してある。 金属筒6の直径は内部に電子ビーム2の通路を妨げる
ことのない十分な空域が形成されるように設定され、ま
た軸長方向の長さは偏向レンズ系4のコイル4bへの通電
により形成される偏向磁束及び漏洩磁束により周辺金属
構造物に形成される渦電流のために生ずる磁界の作用を
低減し得るよう、換言すれば打ち消し、又は抑制し得る
ように設定される。また肉厚は磁界によって渦電流が支
障なく生じ得るように設定される。 而してこのような本発明装置にあっては磁界偏向レン
ズ系4における電子ビーム2の通路を隔てて相対向して
位置する各対をなす電磁石におけるコイル4b,4bに交互
的に高周波電流を通流し、第1図に示す如く電子ビーム
2の通路を隔てて左側にN極、右側にS極が形成される
よう高周波電流がコイル4b,4bに通流されたものとする
と電子ビームの軌道は次の如くに補正される。即ち電子
ビーム2の通路を隔てて対向する両電磁石のうち両電磁
石夫々のヨーク4a,4aのN極端側から反対側のS極端に
向けて漏洩磁束A1が形成される。また同時に左側の電磁
石から右側の電磁石に向けて電子ビーム2の通路を横切
って偏向磁束B1が形成される。 漏洩磁束A1は周束レンズ系3のヨーク3a、特にその磁
界偏向レンズ系4と接近して位置する下端部側リブ3c内
を経るためにリブ3cの相対向する部分間に前記した電子
ビーム2の通路を横切って偏向磁束B1と同方向の磁束A2
が形成され、この磁束A2は電子ビームの偏向方向を助長
する向きに作用する。つまり、集束レンズ系3と磁界偏
向レンズ系4とは、磁気的結合が生じる近接位置に配置
されている。 一方偏向磁束B1が金属筒6を横切る結果、金属筒6の
表面には渦電流が生成され、この渦電流による磁束B2
偏向磁束B1と逆向きに形成され、この磁束B2は電子ビー
ム2の偏向を妨げる向きに作用する。 磁束A2,B2のうち磁束A2は金属筒6の存在とは関係な
く生ぜしめられるものであり、一方磁束B2は金属筒6の
存在によって形成されるものである。従ってこの磁束B2
を調節することにより電子ビーム2の偏向を助長するよ
う作用する磁束A2を、電子ビーム2の偏向を抑制するよ
う作用する磁束B2によって等価的に打ち消し得ることと
なる。 第2図は磁界偏向レンズ系4の相対向する電磁石のコ
イル4bに偏向レンズ電流として第2図(イ)に示す如き
矩形波を入力したとき、集束レンズ系3におけるヨーク
3aのリブ3c間で電子ビーム2の通路に生ずる磁束A2B
1(第2図(ロ))並びに磁界偏向レンズ系4の中央に
おける電子ビーム2の通路に生ずる磁束B1B2(第2図
(ハ))並びにターゲット5上における電子ビーム2の
照射位置X(第2図(ニ))の関係を示すグラフであ
る。いずれも横軸に時間を、また縦軸には第2図
(イ),(ロ),(ハ),(ニ)について夫々磁束A
2B1,B1B2,Xをとって示してある。 このグラフから明らかなように偏向レンズ系4におけ
る相対向する電磁石に第2図(イ)に示す如き矩形波の
高周波電流を入力したとすると、集束レンズ系3のヨー
ク3aの下端側リブ3cと対応する電子ビーム2の通路内に
は一部の偏向磁束B1と渦電流による磁束A2とが重畳され
た磁束A2B1が発生し、その波形は矩形波入力に対し、立
上り、立下がりともにオーバシュートした波形となる。 また一方、偏向レンズ系4の中央部の電子ビーム通路
内には偏向磁束B1と渦電流による磁束B2とが重畳された
磁束B1B2が発生し、その波形は矩形波入力に対して立上
り、立下がりともにアンダーシュートした波形となる。 磁束A2B1の波形は集束レンズ系3の構造によって定ま
った形状となり、一方磁束B1B2の波形は金属筒6の材質
(比抵抗),形状(厚さ,長さ等)で定まる。そこで金
属筒6を前記第2図(ロ)の波形に応じて第2図(ハ)
に示す如く適正に選定することによって第2図(ニ)に
示す如くターゲット5上の電子ビームの軌道の過渡的な
曲がりを補正して照射位置を制御することが可能とな
る。 金属筒6の厚みは例えばステンレス鋼,Fe等にて構成
した偏向レンズ系ではCuの場合、1〜100μm厚さが渦
電流効果の補正に有効であることが確認された。 第3図は第1図とは90゜位置をずらした位置での模式
的縦断面図であり、電子ビームの軌跡を渦電流が発生し
ない理想的な場合(破線)、従来の場合(二点鎖線)、
本発明の場合(実線)で夫々示してある。この図から明
らかな如く電子ビームをターゲット5上の目標点Oに照
射せしめる場合、渦電流の生じない理想的な場合は磁界
偏向レンズ系4による通電制御によって目標点Oに照射
せしめ得るが、実際には渦電流の発生によって二点鎖線
で示す如くに電子ビーム2は偏向が助長されてO′点に
照射せしめられ、誤差が生じることとなる。これに対し
て本発明では金属筒6による磁束B2の形成によって磁束
A2により電子ビームの偏向を助長された分を等価的打ち
消して電子ビームを目標点Oに照射せしめ得ることとな
るのである。 第4,5図は本発明の夫々他の実施例を示す模式的断面
図であり、第4図に示す実施例では金属筒16の軸長方向
の長さを集束レンズ系3のコイル3bの上,下方向の中間
部位置から磁界偏向レンズ系4のコイル4b下端までの間
にわたって配設されている。 このような実施例にあっては第1図に示す実施例と同
様に磁束B1が金属筒16を横切ることによって金属筒16に
形成される渦電流のため磁束B1を打ち消す向きの磁束B2
が生じるのに加えて渦電流による磁束A2も金属筒16を横
切る結果、これにより金属筒16に生じた渦電流による磁
束A3が磁束A2と反対方向に生じることとなる。従って電
子ビーム2に対しその偏向を助長する向きに作用する磁
束A2に対し、電子ビーム2の偏向を抑制する向きに作用
する磁束B2,A3が生じることとなり、磁束B2,A3の電子ビ
ーム2に与える偏向抑制作用が磁束A2による電子ビーム
2の偏向抑制作用と等しくなるよう金属筒16の材質,形
状等を設定すればよいこととなる。 他の構成、並びに作用は前記第1〜3図に示す実施例
と実質的に同じてあり、対応する部分には同じ番号を付
して説明を省略する。 第5図に示す実施例は金属筒26を集束レンズ系3にお
けるヨーク3aの下端側リブ3cと対向する位置に限定して
配設してある。これによって磁束A2が金属筒26を横切る
ことにより金属筒26に生じる渦電流により磁束A3が反対
方向に生じ、電子ビーム2の偏向を助長する磁束A2の作
用を抑制するよう作用することとなる。 従って電子ビーム2に対する磁束A3の偏向抑制作用が
磁束A2の偏向助長作用と等しくなるよう金属筒26の材
質,形状等を設定すればよいこととなる。 このような実施例による場合は第2図(ロ)に示す如
き集束レンズ系3のヨーク3aのリブ3cと対応する電子ビ
ーム2の通路内で生じるオーバーシュートを抑制し得る
こととなって、電子ビーム2の偏向誤差を低減し得るこ
ととなる。 なお上記した実施例ではいずれも金属筒を1個設ける
構成につき説明したが、何らこれに限るものではなく、
磁界偏向レンズ系4に高周波電流を通流することにより
周辺の金属構造物に生じる渦電流による磁束を個々に打
ち消すよう複数の金属筒を設けてもよいことは言うまで
もない。 また上述の実施例は電子ビーム描画装置,電子ビーム
露光機等について説明したが、高精度ディスプレイ、フ
ラインズスポット管、その他種々の高精度の磁界偏向レ
ンズを用いる装置に適用し得ることは勿論である。 更に上述した各実施例は金属筒をCu,Al等の非磁性材
料を用いて形成した場合につき説明したが、例えば円筒
形の絶縁物の内周面又は外周面に上記した金属製の膜を
形成して用いても同様の効果を得られることは勿論であ
る。 〔発明の効果〕 以上の如く本発明装置にあっては金属筒の厚さを、金
属構造物に発生せしめられる渦電流による偏向磁界の作
用を相殺する強さの磁界の発生が可能な厚さとすること
で周辺の金属構造物に発生せしめられる渦電流による磁
界が相殺され、電子ビームに与える影響を除去し得るか
ら、安価に、しかも正確に電子ビーム照射位置を制御し
得るなど本発明は優れた効果を奏するものである。
The present invention relates to an electron beam drawing apparatus or an electron beam apparatus used as an electron beam exposure apparatus, a thermal processing machine such as an electron beam welding machine, or the like. [Prior Art] FIG. 6 is a conceptual diagram of a general electron beam apparatus, in which an electron beam 2 emitted from an electron gun 1 is first focused on a focusing lens system 3 and then on a magnetic field deflection lens system 4. And projected at a predetermined position on the target 5. The magnetic field deflection lens system 4 has a frequency of several hundred kHz or more for the high-speed scanning of two pairs of electromagnet coils that are opposed to each other across the path of the electron beam 2 among the electromagnet units normally arranged around the path of the electron beam 2. A high-frequency current is passed, but a leakage magnetic flux is generated in addition to the deflecting magnetic flux, causing an eddy current in the metal structure around the magnetic field deflecting lens system 4. There is a disadvantage that the electron beam is disturbed and an error occurs in the projection position of the electron beam. For this reason, various proposals have conventionally been made for correcting and controlling this error. FIG. 7 is a conceptual diagram of a conventional electron beam exposure apparatus provided with an error suppressing means. A focusing lens system 13 and a deflecting lens system 1 are arranged around a path of an electron beam 2.
4 is arranged concentrically with the former on the outside and the latter on the inside. That is, the converging lens system 13 has a coil 13b in the concave groove of an annular yoke 13a having a concave groove in the inner periphery, and the deflecting lens system 14 has an annular yoke 14 also having a concave groove in the inner periphery.
a, the coils 14b are housed and arranged in the concave grooves, respectively, while the tip portions 13d, 1d of both ribs above and below the yoke 13a are formed.
A configuration has been proposed in which the entire 3e and the yoke 14a are formed of ferrite, which is a ferromagnetic material, to prevent the generation of eddy currents and to suppress the influence of a magnetic field associated therewith.
137977). [Problems to be Solved by the Invention] However, in such a configuration, ferrite has poor workability and high processing cost, and the ferrite, which is a new ferromagnetic substance, is present in the lens system, so that the intensity of magnetic flux is increased. There is a problem that the distribution is disturbed and the control of the electron beam becomes complicated. The present invention has been made in view of the above circumstances, and an object of the present invention is to cause a magnetic flux due to an eddy current generated in a peripheral metal structure due to the passage of a high-frequency current through a magnetic field deflecting lens system into the electron beam trajectory. An object of the present invention is to provide an electron beam apparatus capable of reducing the effect to be applied and controlling the position of irradiation of the electron beam with high speed and high accuracy. [Means for Solving the Problems] An electron beam apparatus according to a first aspect of the present invention is an electron beam apparatus in which a focusing lens system and a magnetic field deflection lens system are arranged at positions where they are magnetically coupled to each other. A metal cylinder for generating a magnetic field for canceling a deflecting magnetic field due to an eddy current generated in a surrounding metal structure including a converging lens system by the magnetic field deflecting lens system is disposed in a region inside the lens system or the magnetic field deflecting lens system. The thickness is such that a magnetic field having a strength that cancels out the action of the deflecting magnetic field due to the eddy current can be generated. In the electron beam device according to the second invention, the metal cylinder has a thickness of 1 mm.
It is characterized by being made of copper having a thickness of 100 μm. [Operation] In the device of the present invention, the action of the magnetic flux caused by the eddy current generated in the metal structure around the magnetic field deflecting lens is thereby canceled out by the action of the magnetic flux caused by the eddy current generated in the thin metal cylinder. If it does, it will cancel. In addition, the metal cylinder is 1-100 thick
The use of copper of μm is excellent in conductivity and promotes a canceling effect on a deflecting magnetic field due to an eddy current generated in a peripheral metal structure including a focusing lens system. EXAMPLES Hereinafter, the present invention will be specifically described with reference to the drawings showing the examples. FIG. 1 is a schematic longitudinal sectional view of an electron beam apparatus according to the present invention (hereinafter referred to as the present apparatus). In FIG. 1, 1 is an electron gun, 2 is an emitted electron beam, 3 is a focusing lens system, and 4 is The magnetic field deflection lens system 5 indicates a target. The electron beam 2 emitted from the electron gun 1 toward the target 5 is converged by a converging lens system 3, then deflected by a magnetic field deflecting lens system 4, and projected onto a predetermined position on the surface of the target 5. Become. The focusing lens system 3 has an annular yoke 3a having a concave groove having a U-shaped cross section along an inner peripheral surface disposed around the path of the electron beam 2.
The coil 3b is accommodated therein. The magnetic field deflecting lens system 4 has a rod-shaped yoke 4a and a coil 4b.
Are arranged on the same plane at four equally-spaced positions around the path of the electron beam 2 with one ends of the yokes 4a facing each other in two directions orthogonal to each other. One end of the opposed yokes 4a, 4a is applied with a high frequency so that one of the yokes 4a and 4a has an N pole and the other has an S pole, thereby controlling the deflection of the electron beam 2. In the apparatus of the present invention, a thin metal cylinder 6 is disposed inside the deflecting lens system 4 surrounded by the electromagnet and facing the peripheral edge of the path of the electron beam 2. A non-magnetic material such as stainless steel, Cu, or Al is used as the material of the metal cylinder 6 so as not to affect the deflection magnetic field. The diameter of the metal cylinder 6 is set such that a sufficient air space is formed therein without obstructing the passage of the electron beam 2, and the length in the axial direction is formed by energizing the coil 4b of the deflecting lens system 4. It is set so that the effect of the magnetic field generated due to the eddy current generated in the surrounding metal structure by the deflection magnetic flux and the leakage magnetic flux can be reduced, in other words, can be canceled or suppressed. The thickness is set so that an eddy current can be generated by the magnetic field without any trouble. Thus, in the device of the present invention, a high-frequency current is alternately applied to the coils 4b, 4b of each pair of electromagnets located opposite each other across the path of the electron beam 2 in the magnetic field deflection lens system 4. As shown in FIG. 1, it is assumed that a high-frequency current is passed through the coils 4b and 4b so that an N pole is formed on the left side and an S pole is formed on the right side of the path of the electron beam 2 as shown in FIG. Is corrected as follows. That electron beam, of the two electromagnets which face each other across the second passage both electromagnets each of the yoke 4a, the leakage magnetic flux A 1 towards S extreme opposite from N extreme side 4a is formed. The deflection magnetic flux B 1 across the path of the electron beam 2 is formed toward the left side of the electromagnet on the right side of the electromagnet at the same time. Yoke 3a of the leakage magnetic flux A 1 is Shutaba lens system 3, in particular an electron beam the between opposing portions of the magnetic deflection lens system 4 and close to the ribs 3c to go through the lower portion-side ribs inside 3c located Magnetic flux A 2 in the same direction as the deflection magnetic flux B 1 across the path 2
There is formed, the magnetic flux A 2 acts in the direction to promote the deflection direction of the electron beam. That is, the converging lens system 3 and the magnetic field deflecting lens system 4 are arranged at close positions where magnetic coupling occurs. Meanwhile results deflecting magnetic flux B 1 is transverse to the metal tube 6, eddy current is generated on the surface of the metal tube 6, the magnetic flux B 2 by the eddy current is formed in the deflection magnetic flux B 1 and opposite, the magnetic flux B 2 is It acts in a direction that hinders the deflection of the electron beam 2. Of the magnetic fluxes A 2 and B 2 , the magnetic flux A 2 is generated independently of the presence of the metal tube 6, while the magnetic flux B 2 is formed by the presence of the metal tube 6. Therefore, this magnetic flux B 2
Is adjusted, the magnetic flux A 2 acting to promote the deflection of the electron beam 2 can be equivalently canceled by the magnetic flux B 2 acting to suppress the deflection of the electron beam 2. FIG. 2 shows a yoke in the focusing lens system 3 when a rectangular wave as shown in FIG. 2A is input as a deflecting lens current to the coil 4b of the electromagnet facing the magnetic field deflecting lens system 4.
Magnetic flux A 2 B generated in the path of electron beam 2 between ribs 3c of 3a
1 (FIG. 2 (b)), the magnetic flux B 1 B 2 (FIG. 2 (c)) generated in the path of the electron beam 2 at the center of the magnetic deflection lens system 4, and the irradiation position X of the electron beam 2 on the target 5. It is a graph which shows the relationship of (FIG. 2 (d)). In each case, the horizontal axis represents time, and the vertical axis represents the magnetic flux A for each of FIGS. 2 (a), 2 (b), 2 (c) and 2 (d).
2 B 1 , B 1 B 2 , and X are shown. As is clear from this graph, if a high frequency current of a rectangular wave as shown in FIG. 2A is input to the electromagnets facing each other in the deflecting lens system 4, the lower end side rib 3c of the yoke 3a of the focusing lens system 3 A magnetic flux A 2 B 1 in which a part of the deflection magnetic flux B 1 and the magnetic flux A 2 due to the eddy current are superimposed is generated in the corresponding path of the electron beam 2, and its waveform rises and rises in response to a rectangular wave input. Both falling and overshooting waveforms are obtained. On the other hand, a magnetic flux B 1 B 2 in which a deflecting magnetic flux B 1 and a magnetic flux B 2 due to an eddy current are superimposed is generated in an electron beam path at the center of the deflecting lens system 4, and its waveform is in response to a rectangular wave input Both rising and falling have undershooted waveforms. The waveform of the magnetic flux A 2 B 1 has a shape determined by the structure of the focusing lens system 3, while the waveform of the magnetic flux B 1 B 2 is determined by the material (specific resistance) and shape (thickness, length, etc.) of the metal tube 6. . Therefore, the metal cylinder 6 is moved in accordance with the waveform shown in FIG.
By properly selecting as shown in FIG. 2, it is possible to correct the transient bending of the trajectory of the electron beam on the target 5 and control the irradiation position as shown in FIG. It has been confirmed that the thickness of the metal cylinder 6 is effective in correcting the eddy current effect when the thickness is 1 to 100 μm in the case of Cu in a deflection lens system made of, for example, stainless steel, Fe, or the like. FIG. 3 is a schematic vertical sectional view at a position shifted from the position of FIG. 1 by 90 °. The trajectory of the electron beam is ideally represented by no eddy current (broken line) or conventional (two points). Chain line),
These are shown in the case of the present invention (solid line). As is clear from this figure, when the electron beam is applied to the target point O on the target 5, in an ideal case where no eddy current occurs, the target point O can be applied by energization control by the magnetic field deflecting lens system 4. Then, as shown by the two-dot chain line, the electron beam 2 is deflected by the generation of an eddy current to irradiate the point O ', thereby causing an error. On the other hand, in the present invention, the magnetic flux B 2
The A 2 is of the be obtained allowed irradiating an electron beam to the target point O by canceling equivalently the amount that is conducive to deflection of the electron beam. FIGS. 4 and 5 are schematic sectional views showing other embodiments of the present invention. In the embodiment shown in FIG. 4, the length of the metal tube 16 in the axial direction is determined by the length of the coil 3b of the focusing lens system 3. It is disposed from the middle position in the upward and downward directions to the lower end of the coil 4b of the magnetic field deflection lens system 4. Such In the embodiment the direction of the magnetic flux B to cancel the magnetic flux B 1 for the eddy current formed in the metal tube 16 by the magnetic flux B 1 similarly to the embodiment shown in Figure 1 traverses the metal tube 16 Two
Results flux A 2 also crosses the metal tube 16 due to eddy currents in addition to occur, so that the thereby the magnetic flux A 3 by eddy current generated in the metal cylinder 16 occurs in the opposite direction to the magnetic flux A 2. Accordingly, magnetic fluxes B 2 and A 3 acting in the direction of suppressing the deflection of the electron beam 2 are generated with respect to the magnetic flux A 2 acting in the direction that promotes the deflection of the electron beam 2 and the magnetic fluxes B 2 and A 3 the material of the metal tube 16 to be equal to the deflection suppressing action of the electron beam 2 deflected suppression action by the magnetic flux a 2 give the electron beam 2, and it is sufficient to set the shape and the like. Other configurations and operations are substantially the same as those of the embodiment shown in FIGS. 1 to 3, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. In the embodiment shown in FIG. 5, the metal cylinder 26 is provided so as to be limited to a position facing the lower rib 3c of the yoke 3a in the focusing lens system 3. This occurs in the magnetic flux A 3 opposite direction by the eddy current generated in the metal tube 26 by the magnetic flux A 2 crosses the metal tube 26, that act to inhibit the action of the magnetic flux A 2 to facilitate deflection of the electron beam 2 Becomes Therefore material of the metal tube 26 so that the deflection suppressing action of the magnetic flux A 3 with respect to the electron beam 2 becomes equal to the deflection conducive action of the magnetic flux A 2, so that the may be set shape. In the case of such an embodiment, as shown in FIG. 2 (b), overshoot generated in the path of the electron beam 2 corresponding to the rib 3c of the yoke 3a of the focusing lens system 3 can be suppressed, and The deflection error of the beam 2 can be reduced. In each of the embodiments described above, the configuration in which one metal cylinder is provided has been described. However, the configuration is not limited to this.
Needless to say, a plurality of metal cylinders may be provided so that a high-frequency current flows through the magnetic field deflecting lens system 4 to individually cancel magnetic fluxes caused by eddy currents generated in peripheral metal structures. Although the above-described embodiment has been described with respect to an electron beam writing apparatus, an electron beam exposure apparatus, and the like, it is needless to say that the present invention can be applied to a high-precision display, a flynes spot tube, and various other apparatuses using a high-precision magnetic deflection lens. is there. Further, in each of the embodiments described above, the case where the metal cylinder is formed using a nonmagnetic material such as Cu or Al is described.For example, the above-described metal film is formed on the inner or outer peripheral surface of a cylindrical insulator. It is needless to say that the same effect can be obtained by forming and using. [Effect of the Invention] As described above, in the apparatus of the present invention, the thickness of the metal cylinder is set to a thickness capable of generating a magnetic field having a strength that cancels out the action of the deflecting magnetic field due to the eddy current generated in the metal structure. By doing so, the magnetic field due to the eddy current generated in the surrounding metal structure is canceled out, and the effect on the electron beam can be removed, so that the present invention is excellent in that the electron beam irradiation position can be controlled at low cost and accurately. It has the effect that it has.

【図面の簡単な説明】 第1図は本発明に係る電子ビーム装置の偏向レンズ系を
示す模式的断面図、第2図(イ),(ロ),(ハ),
(ニ)は電子ビーム照射位置と時間的変化との関係を示
すグラフ、第3図は電子ビームの照射位置制御の内容を
示す説明図、第4,5図は本発明の他の実施例を示す模式
的縦断面図、第6図は従来の一般的な電子ビーム装置の
概念図、第7図は従来の電子露光装置の概念図である。 1……電子銃、2……電子ビーム、3……集束レンズ
系、3a……ヨーク、3b……コイル、3c……リブ、4……
磁界偏向レンズ系、4a……ヨーク、4b……コイル、5…
…ターゲット、616,26……金属筒 なお、図中、同一符号は同一、又は相当部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing a deflection lens system of an electron beam device according to the present invention, and FIGS.
(D) is a graph showing the relationship between the electron beam irradiation position and the temporal change, FIG. 3 is an explanatory diagram showing the contents of electron beam irradiation position control, and FIGS. FIG. 6 is a schematic view of a conventional general electron beam apparatus, and FIG. 7 is a conceptual view of a conventional electron exposure apparatus. 1 ... electron gun, 2 ... electron beam, 3 ... focusing lens system, 3a ... yoke, 3b ... coil, 3c ... rib, 4 ...
Magnetic field deflection lens system, 4a ... yoke, 4b ... coil, 5 ...
.., Target, 616, 26... Metal cylinder In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安永 政司 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機器研究所内 (56)参考文献 特開 昭57−92745(JP,A) 特開 昭54−137977(JP,A) 特公 昭57−18825(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Masashi Yasunaga               8-1-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture               Mitsubishi Electric Corporation Applied Equipment Laboratory                (56) References JP-A-57-92745 (JP, A)                 JP-A-54-137977 (JP, A)                 Tokiko 57-18825 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1.集束レンズ系及び磁界偏向レンズ系が相互に磁気的
に結合する位置に配置されている電子ビーム装置におい
て、前記集束レンズ系又は磁界偏向レンズ系の内側領域
に、前記磁界偏向レンズ系により集束レンズ系を含む周
囲の金属構造物に発生せしめられる渦電流による偏向磁
界を相殺するための磁界を発生する金属筒を配置し、そ
の厚さを前記渦電流による偏向磁界の作用を相殺する強
さの磁界を発生し得る厚さとしたことを特徴とする電子
ビーム装置。 2.金属筒を厚さ1〜100μmの銅製としたことを特徴
とする特許請求の範囲第1項記載の電子ビーム装置。
(57) [Claims] In an electron beam apparatus in which a focusing lens system and a magnetic field deflecting lens system are arranged at a position where they are magnetically coupled to each other, a focusing lens system is provided in an area inside the focusing lens system or the magnetic field deflecting lens system by the magnetic field deflecting lens system. A metal cylinder for generating a magnetic field for canceling a deflecting magnetic field due to an eddy current generated in a surrounding metal structure including a magnetic field is arranged, and the thickness of the metal cylinder is set so as to cancel the action of the deflecting magnetic field due to the eddy current. An electron beam device characterized in that the thickness is such that the generation of the electron beam is possible. 2. 2. An electron beam apparatus according to claim 1, wherein said metal cylinder is made of copper having a thickness of 1 to 100 [mu] m.
JP62189374A 1987-07-28 1987-07-28 Electron beam equipment Expired - Fee Related JP3099069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62189374A JP3099069B2 (en) 1987-07-28 1987-07-28 Electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62189374A JP3099069B2 (en) 1987-07-28 1987-07-28 Electron beam equipment

Publications (2)

Publication Number Publication Date
JPS6433834A JPS6433834A (en) 1989-02-03
JP3099069B2 true JP3099069B2 (en) 2000-10-16

Family

ID=16240247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62189374A Expired - Fee Related JP3099069B2 (en) 1987-07-28 1987-07-28 Electron beam equipment

Country Status (1)

Country Link
JP (1) JP3099069B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406657A (en) * 2013-08-09 2013-11-27 南京理工大学 Electromagnetic deflection scanning coil for machining electron beam
US10211021B2 (en) * 2016-04-11 2019-02-19 Kla-Tencor Corporation Permanent-magnet particle beam apparatus and method incorporating a non-magnetic metal portion for tunability
CN111673259B (en) * 2020-07-13 2023-10-31 广东省焊接技术研究所(广东省中乌研究院) Split type electron beam deflection yoke and electron beam apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147208A (en) * 1975-06-13 1976-12-17 Hitachi Ltd Deflector of charged particle
JPS5792745A (en) * 1980-11-29 1982-06-09 Toshiba Corp Electron beam deflecting device

Also Published As

Publication number Publication date
JPS6433834A (en) 1989-02-03

Similar Documents

Publication Publication Date Title
US4544846A (en) Variable axis immersion lens electron beam projection system
US10181389B2 (en) X-ray tube having magnetic quadrupoles for focusing and collocated steering coils for steering
US3984687A (en) Shielded magnetic lens and deflection yoke structure for electron beam column
US4806766A (en) Magnetic lens system
US10008359B2 (en) X-ray tube having magnetic quadrupoles for focusing and magnetic dipoles for steering
KR100282600B1 (en) Composite Concentric-Gap Magnetic Lenses and Deflectors with Conical Pole Pieces
JP2009508303A (en) Electron beam source for electron gun
JP3099069B2 (en) Electron beam equipment
US6130432A (en) Particle beam system with dynamic focusing
JP4954465B2 (en) Ion beam / charged particle beam irradiation system
JP2946537B2 (en) Electron optical column
JPS62232841A (en) Color picture tube with deflecting unit equipped with picture balance correcting means
JP2004505410A (en) Immersion lens with magnetic shield for charged particle beam systems
JP2004134390A (en) Particle optical device and its operation method
US4713588A (en) Image pickup tube
JP2808722B2 (en) Deflection yoke
JP2712487B2 (en) Electron beam exposure apparatus and electron beam exposure method
JP3448607B2 (en) Magnetic focusing device for cathode ray tube
JPS62219445A (en) Electron beam device
JP3502002B2 (en) Electron beam drawing apparatus, drawing method using electron beam, and method of manufacturing electromagnetic coil
JPH0646553B2 (en) Electronic beam device
JPH0537398Y2 (en)
KR20020046145A (en) Split magnetic lens for controlling a charged particle beam
JPS6019621B2 (en) polarized objective lens
JPH0422054A (en) Objective lens of transmission type electron microscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees