JP3090219B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JP3090219B2
JP3090219B2 JP03009868A JP986891A JP3090219B2 JP 3090219 B2 JP3090219 B2 JP 3090219B2 JP 03009868 A JP03009868 A JP 03009868A JP 986891 A JP986891 A JP 986891A JP 3090219 B2 JP3090219 B2 JP 3090219B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
metal film
propagation
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03009868A
Other languages
Japanese (ja)
Other versions
JPH04253413A (en
Inventor
隆裕 佐藤
秀典 阿部
Original Assignee
キンセキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キンセキ株式会社 filed Critical キンセキ株式会社
Priority to JP03009868A priority Critical patent/JP3090219B2/en
Publication of JPH04253413A publication Critical patent/JPH04253413A/en
Application granted granted Critical
Publication of JP3090219B2 publication Critical patent/JP3090219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は漏洩弾性表面波(リ
ーキー波)を用いた弾性表面波装置に関する。弾性表面
波装置は、数μm 幅の微細な金属膜の櫛形電極や反射器
を圧電基板上に形成し、圧電基板上に発生する弾性表面
波を利用した回路素子である。弾性表面波としては、半
無限弾性体の表面に沿って伝搬するレイリー波とよばれ
る表面波が通常用いられているが、その他に圧電基板の
深さ方向にエネルギを放射しながら圧電基板表面を伝搬
する漏洩弾性表面波(リーキー波)の存在が知られてい
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device using a leaky surface acoustic wave (leaky wave). A surface acoustic wave device is a circuit element using a surface-acoustic wave generated on a piezoelectric substrate by forming a comb-shaped electrode or reflector of a fine metal film having a width of several μm on a piezoelectric substrate. As the surface acoustic wave, a surface wave called a Rayleigh wave that propagates along the surface of a semi-infinite elastic body is usually used.In addition, the surface of the piezoelectric substrate is radiated while emitting energy in the depth direction of the piezoelectric substrate. The existence of leaky surface acoustic waves (leaky waves) that propagate is known.

【0002】[0002]

【従来の技術】レイリー波及び漏洩弾性表面波につい
て、四ほう酸リチウム単結晶基板の(110)面におけ
伝搬特性の計算結果が報告されている(室田、清水、
「Li247 基板を伝搬する漏洩弾性表面波特性の
カット依存性」IEEE Ultrasonics、U
S−40、pp57−62、1988)。この報告で
は、
2. Description of the Related Art Calculation results of propagation characteristics of a Rayleigh wave and a leaky surface acoustic wave on a (110) plane of a lithium tetraborate single crystal substrate have been reported (Murota, Shimizu,
"Li 2 B 4 O 7 cut dependence of LSAW characteristics for propagating substrate" IEEE Ultrasonics, U
S-40, pp57-62, 1988). In this report,

【0003】[0003]

【数1】 をθ=0°、<001>方向をθ=90°としたときの
伝搬方向θにおける弾性表面波の伝搬速度、電気機械結
合係数(k2)、1波長当りの伝搬損失が計算されてい
る。それによれば、漏洩弾性表面波は、レイリー波に比
べて伝搬速度が速く、θ=55°〜80°の範囲では電
気機械結合係数もレイリー波に比べて大きいという計算
結果が得られている。このため、高周波化、高帯域化の
ために弾性表面波として漏洩弾性表面波を用いた弾性表
面波装置が有望視されている。
(Equation 1) When θ = 0 ° and the <001> direction is θ = 90 °
The propagation velocity, electromechanical coupling coefficient (k 2 ), and propagation loss per wavelength of the surface acoustic wave in the propagation direction θ are calculated. According to this, it has been calculated that the leaky surface acoustic wave has a higher propagation velocity than the Rayleigh wave, and that the electromechanical coupling coefficient is larger than the Rayleigh wave in the range of θ = 55 ° to 80 °. For this reason, a surface acoustic wave device using a leaky surface acoustic wave as a surface acoustic wave for increasing the frequency and bandwidth is expected to be promising.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、四ほう
酸リチウム単結晶基板についての上述の報告において
も、電気機械結合係数がレイリー波に比べて大きいθ=
55°〜80°の範囲では、1波長当りの伝搬損失がレ
イリー波に比べて大きくなることが報告されている。こ
のように、漏洩弾性表面波はエネルギが圧電基板内部に
漏れるため一般に伝搬損失が大きく、弾性表面波として
用いることが困難であるという問題があった。
However, in the above-mentioned report on the lithium tetraborate single crystal substrate, the electromechanical coupling coefficient is larger than that of the Rayleigh wave.
It is reported that in the range of 55 ° to 80 °, the propagation loss per wavelength becomes larger than that of Rayleigh waves. As described above, the leakage surface acoustic wave generally has a large propagation loss since energy leaks into the inside of the piezoelectric substrate, and has a problem that it is difficult to use the surface acoustic wave as a surface acoustic wave.

【0005】本発明の目的は、漏洩弾性表面波の電気機
械結合係数が大きく、しかも伝搬損失の小さい弾性表面
波装置を提供することにある。
An object of the present invention is to provide a surface acoustic wave device having a large electromechanical coupling coefficient of a leaky surface acoustic wave and a small propagation loss.

【0006】[0006]

【課題を解決するための手段】本願発明者は、漏洩弾性
表面波の伝搬損失を低減する方法について熟考した結
果、半無限基媒質上に表面層が形成された層状媒質にお
いて、基媒質の横波の速さより表面層の横波の速さが遅
いと、基媒質の波が表面層の波にひきずられて押し上げ
られ、エネルギが表面層に集中するラブ波(Love
waves)となる現象を利用することを着想した。す
なわち、基媒質としての圧電基板上に横波の速さがより
遅い材料からなる表面層を所定厚さだけ形成すれば、漏
洩弾性表面波がラブ波になって基媒質内に漏れるエネル
ギが少なくなり伝搬損失を減少させることができると考
えた。
Means for Solving the Problems The present inventor has considered a method of reducing the propagation loss of a leaky surface acoustic wave, and as a result, in a layered medium having a surface layer formed on a semi-infinite base medium, a transverse wave of the base medium is obtained. If the speed of the transverse wave of the surface layer is slower than the speed of the surface layer, the waves of the base medium are pushed up by the waves of the surface layer, and energy is concentrated on the surface layer.
Waves). In other words, if a surface layer made of a material having a lower transverse wave speed is formed by a predetermined thickness on a piezoelectric substrate as a base medium, the energy leaking into the base medium as a leaky surface acoustic wave becomes a love wave is reduced. It was thought that the propagation loss could be reduced.

【0007】したがって、上記目的は、四ほう酸リチウ
ム単結晶基板表面に、弾性表面波を励起、受信、反射、
伝搬するための金属膜が形成された弾性表面波装置にお
いて、前記四ほう酸リチウム単結晶基板の切り出し角及
び弾性表面波の伝搬方向がオイラ角表示で(130°〜
140°、85°〜95°、55°〜80°)の範囲内
になるように前記金属膜が形成され、前記金属膜の膜厚
が、弾性表面波が前記四ほう酸リチウム単結晶基板の表
面を伝搬するラブ波となる所定値であることを特徴とす
る弾性表面波装置によって達成される。
Accordingly, the object is to excite, receive, reflect, and apply surface acoustic waves to the surface of a lithium tetraborate single crystal substrate.
In the surface acoustic wave device in which a metal film for propagation is formed, the cutout angle of the lithium tetraborate single crystal substrate and the propagation direction of the surface acoustic wave are expressed by an Euler angle (130 ° to
140 °, 85 ° to 95 °, 55 ° to 80 °), and the thickness of the metal film is set to be equal to the surface of the lithium tetraborate single crystal substrate. The surface acoustic wave device is characterized in that the surface acoustic wave device has a predetermined value that becomes a Love wave propagating through the surface acoustic wave.

【0008】[0008]

【作用】本発明によれば、四ほう酸リチウム単結晶基板
表面の金属膜の膜厚を所定厚さにすることにより、弾性
表面波をラブ波にして、伝搬損失を減少させることがで
きる。
According to the present invention, by setting the thickness of the metal film on the surface of the lithium tetraborate single crystal substrate to a predetermined thickness, the surface acoustic wave can be converted into a love wave to reduce the propagation loss.

【0009】[0009]

【実施例】本発明の−実施例による弾性表面波装置を図
1乃至図7を用いて説明する。本実施例の弾性表面波装
置は、図1に示すように、表面が(110)面である四
ほう酸リチウム単結晶からなる圧電基板11上に、イン
タディジタル型電極からなる入力櫛形電極12と出力櫛
形電極13が形成され、これら入力櫛形電極12と出力
櫛形電極13間の伝搬路領域に金属膜14が形成された
弾性表面波フィルタである。入力櫛形電極12と出力櫛
形電極13は、それぞれ20.5対で、周期10μm
(電極幅2.5μm 、波長10μm)、開口長2,000
μm であり、漏洩弾性表面波の伝搬方向がオイラ角表示
で(135°、90°、65°)になるような向きに形
成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A surface acoustic wave device according to a preferred embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the surface acoustic wave device of this embodiment has an input comb electrode 12 made of an interdigital electrode and an output electrode on a piezoelectric substrate 11 made of lithium tetraborate single crystal having a (110) surface. This is a surface acoustic wave filter in which a comb electrode 13 is formed, and a metal film 14 is formed in a propagation path region between the input comb electrode 12 and the output comb electrode 13. The input comb electrodes 12 and the output comb electrodes 13 are each 20.5 pairs and have a period of 10 μm.
(Electrode width 2.5 μm, wavelength 10 μm), aperture length 2,000
μm, and formed so that the propagation direction of the leaky surface acoustic wave becomes (135 °, 90 °, 65 °) in Eulerian angle representation.

【0010】金属膜14は金(Au)により形成されて
いる。四ほう酸リチウム単結晶よりも金属膜での方が漏
洩弾性表面波の横波が遅いので、その膜厚を所定値とす
ることにより漏洩弾性表面波をラブ波にすることが可能
である。金属膜14の膜厚を変化させた場合の伝搬速度
[m/sec]と挿入損失[dB]の測定結果を図2に
示す。金属膜14の膜厚hを漏洩弾性表面波の波長λで
割った規格化膜厚h/λが0.5%以上になると、挿入
損失が低減し、それ以上厚くしてもほぼ一定値になるこ
とが分かった。一方、規格化膜厚h/λが大きくなって
伝搬速度が大きく減少することなく、漏洩弾性表面波
を利用する優位性が損われれることはない。
The metal film 14 is formed of gold (Au). Since the transverse wave of the leaky surface acoustic wave is slower in the metal film than in the lithium tetraborate single crystal, it is possible to make the leaky surface acoustic wave into a love wave by setting the film thickness to a predetermined value. FIG. 2 shows measurement results of the propagation speed [m / sec] and the insertion loss [dB] when the thickness of the metal film 14 is changed. When the normalized thickness h / λ, which is obtained by dividing the thickness h of the metal film 14 by the wavelength λ of the leaky surface acoustic wave, is 0.5% or more, the insertion loss is reduced. It turned out to be. On the other hand, even if the normalized film thickness h / λ is increased, the propagation speed is not greatly reduced, and the advantage of using the leaky surface acoustic wave is not lost.

【0011】上述の測定結果を参考にして、表面が(1
10)面である四ほう酸リチウム単結晶からなる圧電基
板11上に金を主成分とする金属膜14が形成された場
合の漏洩弾性表面波の伝搬速度、電気機械結合係数、挿
入損失を数値計算により求めた。圧電基板11内におい
ては運動方程式と圧電方程式により変位と電位を求め、
金属膜14内においては運動方程式により変位を求め、
圧電基板11と金属膜14の境界において成立する境界
条件を満足するように位相速度を求めた。漏洩弾性表面
波の伝搬方向をオイラ角表示で(135°、90°、6
5°)とし、金属膜14の規格化膜厚h/λが0.00
0〜0.030の範囲についてシミュレーションした。
Referring to the above measurement results, the surface is (1)
10) Numerical calculation of the propagation velocity, electromechanical coupling coefficient, and insertion loss of a leaky surface acoustic wave when a metal film 14 containing gold as a main component is formed on a piezoelectric substrate 11 made of lithium tetraborate single crystal as a plane. Determined by In the piezoelectric substrate 11, displacement and potential are obtained by the equation of motion and the equation of piezoelectricity,
In the metal film 14, the displacement is obtained by the equation of motion,
The phase velocity was determined so as to satisfy the boundary condition established at the boundary between the piezoelectric substrate 11 and the metal film 14. The propagation direction of the leaky surface acoustic wave is represented by an Eulerian angle (135 °, 90 °, 6 °).
5 °), and the normalized thickness h / λ of the metal film 14 is 0.00
Simulation was performed for the range of 0 to 0.030.

【0012】そのシミュレーション結果を図3及び図4
に示す。図3において、実線は金属膜14がopenの
場合(金属膜14を絶縁体としてシミュレーションした
場合)の伝搬速度の計算結果を示し、点線は金属膜14
がshortの場合(金属膜14を導体としてシミュレ
ーションした場合)の伝搬速度の計算結果を示してい
る。図4において、実線は電気機械結合係数の計算結果
を示し、破線は金属膜14がshortの場合の1波長
当りの伝搬損失の計算結果を示し、点線は金属膜14が
openの場合の1波長当りの損失の計算結果を示して
いる。
FIGS. 3 and 4 show the simulation results.
Shown in In FIG. 3, the solid line shows the calculation result of the propagation speed when the metal film 14 is open (simulation using the metal film 14 as an insulator), and the dotted line shows the metal film 14.
Shows the calculation result of the propagation velocity when the short is (simulation using the metal film 14 as a conductor). In FIG. 4, the solid line indicates the calculation result of the electromechanical coupling coefficient, the broken line indicates the calculation result of the propagation loss per wavelength when the metal film 14 is short, and the dotted line indicates the one wavelength when the metal film 14 is open. The calculation result of the loss per hit is shown.

【0013】金属膜14の膜厚が厚くなると、図3に示
すように、漏洩弾性表面波の伝搬速度は遅くなるが、図
4に示すように、電気機械結合係数は高い値が維持さ
れ、1波長当りの伝搬損失が減少することがわかる。金
属膜14の規格化膜厚h/λが約0.5%以上では1波
長当りの伝搬損失が0dBとなる。すなわち、金属膜1
4の規格化膜厚h/λを約0.5%以上にすれば、1波
長当りの伝搬損失の小さい弾性表面波装置を実現でき
る。
When the thickness of the metal film 14 is increased, the propagation speed of the leaky surface acoustic wave is reduced as shown in FIG. 3, but the electromechanical coupling coefficient is maintained at a high value as shown in FIG. It can be seen that the propagation loss per wavelength decreases. When the normalized thickness h / λ of the metal film 14 is about 0.5% or more, the propagation loss per wavelength becomes 0 dB. That is, the metal film 1
By setting the normalized film thickness h / λ of No. 4 to about 0.5% or more, a surface acoustic wave device having a small propagation loss per wavelength can be realized.

【0014】比較例として(110)面の四ほう酸リチ
ウム単結晶基板11上にアルミニウムからなる金属膜1
4を形成した場合のシミュレーション結果を図5及び図
6に示す。図3において、実線は金属膜14がopen
の場合の伝搬速度の計算結果を示し、点線は金属膜14
がshortの場合の伝搬速度の計算結果を示してい
る。図4において、実線は電気機械結合係数の計算結果
を示し、破線は金属膜14がshortの場合の1波長
当りの伝搬損失の計算結果を示し、点線は金属膜14が
openの場合の1波長当りの伝搬損失の計算結果を示
している。
As a comparative example, a metal film 1 made of aluminum was formed on a (110) plane lithium tetraborate single crystal substrate 11.
5 and 6 show the simulation results in the case where No. 4 was formed. In FIG. 3, the solid line indicates that the metal film 14 is open.
The calculation results of the propagation velocity in the case of
Shows the calculation result of the propagation speed when is short. In FIG. 4, the solid line indicates the calculation result of the electromechanical coupling coefficient, the broken line indicates the calculation result of the propagation loss per wavelength when the metal film 14 is short, and the dotted line indicates the one wavelength when the metal film 14 is open. The calculation results of the propagation loss per hit are shown.

【0015】金属膜14の膜厚が厚くなると、図5に示
すように、漏洩弾性表面波の伝搬速度は速くなるが、図
6に示すように、電気機械結合係数は低くなり、1波長
当りの伝搬損失が減少することなく僅かであるが増大し
続け、1波長当りの伝搬損失が0dBとなることはな
い。すなわち、金属膜14をアルミニウムにより形成し
た場合には、いくら金属膜14を厚くしても伝搬損失が
減少させることができず、漏洩弾性表面波を利用した弾
性表面波装置を実現できないことがわかる。
As the thickness of the metal film 14 increases, the propagation speed of the leaky surface acoustic wave increases as shown in FIG. 5, but the electromechanical coupling coefficient decreases as shown in FIG. It continues is a slight increase without propagation loss is reduced, there is no possibility that the propagation loss per wavelength is 0 dB. That is, when the metal film 14 is formed of aluminum, the propagation loss cannot be reduced no matter how thick the metal film 14 is, and a surface acoustic wave device using a leaky surface acoustic wave cannot be realized. .

【0016】図3及び図4では漏洩弾性表面波の伝搬
向がオイラ角表示で(135°、90°、θ)でθ=6
5°の場合について計算し、伝搬損失が0dBになる金
属膜14の規格化膜厚h/λが0.5%であることがわ
かった。オイラ角表示(135°、90°、θ)のθを
変化させた場合について同様に計算して、伝搬損失が0
dBになる金属膜14の規格化膜厚h/λを計算した。そ
の結果を図7に示す、図7に示すように、オイラ角(1
35°、90°、θ)でθが67°以下の伝搬モードで
は、金属膜14の規格化膜厚h/λが次式 h/λ≧−7.75+0.43θ−4.57×10-3θ
2 の範囲(図7の斜線の範囲)であるときに、漏洩弾性表
面波の伝搬損失が0dBになり、漏洩弾性表面波を利用
した弾性表面波装置が実現できる。
3 and 4, the propagation direction of the leaky surface acoustic wave is represented by Euler angles (135 °, 90 °, θ) and θ = 6.
Calculation was performed for the case of 5 °, and it was found that the normalized thickness h / λ of the metal film 14 at which the propagation loss was 0 dB was 0.5%. The same calculation is performed for the case where θ in the Euler angle display (135 °, 90 °, θ) is changed, and the propagation loss is 0.
The normalized film thickness h / λ of the metal film 14 to be dB was calculated. The result is shown in FIG. 7, and as shown in FIG.
35 °, 90 °, the propagation mode of the following theta is 67 ° in theta), normalized film thickness h / lambda of the metal film 14 is the following equation h / λ ≧ -7.75 + 0.43θ- 4.57 × 10 - 3 θ
In the range of 2 (the shaded range in FIG. 7), the propagation loss of the leaky surface acoustic wave is 0 dB, and a surface acoustic wave device using the leaky surface acoustic wave can be realized.

【0017】本発明は上記実施例に限らず種々の変形が
可能である。例えば、上記実施例では弾性表面波伝搬
向がオイラ角表示で(135°、90°、θ)の四ほう
酸リチウム単結晶基板を用いたが、上記オイラ角表示か
ら約5°程度ずれてもよい。また、上記実施例では金か
らなる金属膜を用いたが、圧電基板表面にチタン、タン
グステン、モリブデン、アルミニウム等の金属薄膜を形
成し、この金属薄膜上に金を主成分とする合金からなる
金属膜を形成してもよい。圧電基板に対する金属膜の密
着性を向上させることができる。
The present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above-described embodiment, a lithium tetraborate single crystal substrate whose surface acoustic wave propagation direction is (135 °, 90 °, θ) in Eulerian angle display is used, but about 5 ° from the above Eulerian angle display. It may be shifted to the extent. In the above embodiment, a metal film made of gold is used. However, a metal thin film such as titanium, tungsten, molybdenum, or aluminum is formed on the surface of the piezoelectric substrate, and a metal made of an alloy containing gold as a main component is formed on the metal thin film. A film may be formed. The adhesion of the metal film to the piezoelectric substrate can be improved.

【0018】さらに、上記実施例では表面波フィルタを
例として説明したが、その他の弾性表面波装置でもよ
い。例えば、圧電基板上にインタディジタル型電極から
なる端子電極を一対のグレーティング反射器により挟ん
で構成した弾性表面波共振子に本発明を適用してもよ
い。なお、本発明では圧電基板に用いた四ほう酸リチウ
ム単結晶は点群4mmの対称性を有するから、漏洩弾性
表面波の諸特性はオイラ角表示(λ、μ、θ)で所定の
対称性を示す。例えば、オイラ角表示(λ、μ、θ)で
θ=80°とθ=100°における漏洩弾性表面波の諸
特性は同じである。
Further, in the above embodiment, the surface acoustic wave filter has been described as an example, but other surface acoustic wave devices may be used. For example, the present invention may be applied to a surface acoustic wave resonator in which a terminal electrode formed of an interdigital electrode is sandwiched between a pair of grating reflectors on a piezoelectric substrate. In the present invention, since the lithium tetraborate single crystal used for the piezoelectric substrate has a symmetry of a point group of 4 mm, various characteristics of the leaky surface acoustic wave have a predetermined symmetry in Euler angle display (λ, μ, θ). Show. For example, the characteristics of leaky surface acoustic waves at θ = 80 ° and θ = 100 ° in the Eulerian angle display (λ, μ, θ) are the same.

【0019】[0019]

【発明の効果】以上の通り、本発明によれば、四ほう酸
リチウム単結晶基板表面の金属膜を金を主成分とする金
属により形成し、その膜厚を所定厚さにすることによ
り、弾性表面波をラブ波にして伝搬損失を減少させるこ
とができ、漏洩弾性表面波を利用した弾性表面波装置を
実現できる。
As described above, according to the present invention, the metal film on the surface of the lithium tetraborate single crystal substrate is formed of a metal containing gold as a main component, and the film thickness is set to a predetermined thickness, whereby the elasticity is improved. The propagation loss can be reduced by changing the surface wave into a love wave, and a surface acoustic wave device using a leaky surface acoustic wave can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による弾性表面波装置を示す
図である。
FIG. 1 is a diagram illustrating a surface acoustic wave device according to an embodiment of the present invention.

【図2】本発明の一実施例による弾性表面波装置におけ
る金属膜の規格化膜厚を変化させた場合の伝搬速度及び
挿入損失の測定結果を示すグラフである。
FIG. 2 is a graph showing measurement results of a propagation velocity and an insertion loss when a normalized thickness of a metal film is changed in a surface acoustic wave device according to one embodiment of the present invention.

【図3】本発明の一実施例による弾性表面波装置におけ
る金属膜の規格化膜厚を変化させた場合の伝搬速度のシ
ミュレーション結果を示すグラフである。
FIG. 3 is a graph showing a simulation result of a propagation velocity when the normalized thickness of the metal film is changed in the surface acoustic wave device according to one embodiment of the present invention.

【図4】本発明の一実施例による弾性表面波装置におけ
る金属膜の規格化膜厚を変化させた場合の電気機械結合
係数及び1波長当りの伝搬速度のシミュレーション結果
を示すグラフである。
FIG. 4 is a graph showing a simulation result of an electromechanical coupling coefficient and a propagation velocity per wavelength when a normalized thickness of a metal film is changed in a surface acoustic wave device according to an embodiment of the present invention.

【図5】金属膜をアルミニウムで形成した比較例におけ
る金属膜の規格化膜厚を変化させた場合の伝搬速度のシ
ミュレーション結果を示すグラフである。
FIG. 5 is a graph showing a simulation result of a propagation speed when a standardized thickness of a metal film is changed in a comparative example in which a metal film is formed of aluminum.

【図6】金属膜をアルミニウムで形成した比較例におけ
る金属膜の規格化膜厚を変化させた場合の電気機械結合
係数及び1波長当りの伝搬損失のシミュレーション結果
を示すグラフである。
FIG. 6 is a graph showing a simulation result of an electromechanical coupling coefficient and a propagation loss per wavelength when a normalized thickness of a metal film is changed in a comparative example in which a metal film is formed of aluminum.

【図7】本発明の一実施例による弾性表面波装置におけ
る漏洩弾性表面波の伝搬方向を変化させた場合の伝搬
失が0dBになる規格化膜厚の範囲を示すグラフであ
る。
[7] a graph showing the normalized film thickness range propagation loss <br/> loss is 0dB in the case of changing the propagation direction of the leaky surface acoustic wave in the surface acoustic wave device according to an embodiment of the present invention is there.

【符号の説明】[Explanation of symbols]

11…圧電基板 12…入力櫛形電極 13…出力櫛形電極 14…金属膜 11 piezoelectric substrate 12 input comb electrode 13 output comb electrode 14 metal film

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 四ほう酸リチウム単結晶基板表面に、弾
性表面波を励起、受信、反射、伝搬するための金属膜が
形成された弾性表面波装置において、 前記四ほう酸リチウム単結晶基板の切り出し角及び弾性
表面波の伝搬方向がオイラ角表示で(130°〜140
°、85°〜95°、55°〜80°)の範囲内になる
ように前記金属膜が形成され、 前記金属膜の膜厚が、弾性表面波が前記四ほう酸リチウ
ム単結晶基板の表面を伝搬するラブ波となる所定値であ
ることを特徴とする弾性表面波装置。
1. A surface acoustic wave device in which a metal film for exciting, receiving, reflecting, and propagating a surface acoustic wave is formed on a surface of a lithium tetraborate single crystal substrate. And the propagation direction of the surface acoustic wave is expressed by an Euler angle (130 ° to 140 °).
°, 85 ° to 95 °, 55 ° to 80 °), and the thickness of the metal film is such that the surface acoustic wave is applied to the surface of the lithium tetraborate single crystal substrate. A surface acoustic wave device having a predetermined value to be a propagating love wave.
【請求項2】 請求項1記載の弾性表面波装置におい
て、 漏洩弾性表面波の伝搬方向がオイラ角表示(130°〜
140°、85°〜95°、θ)においてθ=55°〜
67°の範囲内になるように前記金属膜が形成され、 前記金属膜が金を主成分とする金属で形成され、 前記金属膜の膜厚hを弾性表面波の波長λで規格化した
規格化膜厚h/λが、次式 h/λ≧−7.75+0.43θ−4.57×10-3θ
2 の範囲であることを特徴とする弾性表面波装置。
2. The surface acoustic wave device according to claim 1, wherein the propagation direction of the leaky surface acoustic wave is represented by an Euler angle (130 ° to 130 °).
140 °, 85 ° to 95 °, θ), θ = 55 ° to
The metal film is formed so as to be within a range of 67 °, the metal film is formed of a metal containing gold as a main component, and the thickness h of the metal film is standardized by a wavelength λ of a surface acoustic wave. The thickness h / λ is calculated by the following equation: h / λ ≧ −7.75 + 0.43θ−4.57 × 10 −3 θ
2. A surface acoustic wave device having a range of 2 .
JP03009868A 1991-01-30 1991-01-30 Surface acoustic wave device Expired - Lifetime JP3090219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03009868A JP3090219B2 (en) 1991-01-30 1991-01-30 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03009868A JP3090219B2 (en) 1991-01-30 1991-01-30 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH04253413A JPH04253413A (en) 1992-09-09
JP3090219B2 true JP3090219B2 (en) 2000-09-18

Family

ID=11732120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03009868A Expired - Lifetime JP3090219B2 (en) 1991-01-30 1991-01-30 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3090219B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093509A1 (en) * 2007-01-29 2008-08-07 Murata Manufacturing Co., Ltd. Elastic boundary wave device

Also Published As

Publication number Publication date
JPH04253413A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
JP4757860B2 (en) Surface acoustic wave functional element
US7489065B2 (en) Boundary acoustic wave device
KR100346805B1 (en) Surface acoustic wave device
JP3173300B2 (en) Love wave device
JP3358688B2 (en) Surface acoustic wave device
JP4109877B2 (en) Surface acoustic wave functional element
JP3391309B2 (en) Surface wave device and communication device
JP3568025B2 (en) Surface wave device and communication device
JP3244094B2 (en) Surface acoustic wave device
JP3126416B2 (en) Surface acoustic wave device
JP3219885B2 (en) Surface acoustic wave device
JP3281510B2 (en) Surface acoustic wave device
JPH06164306A (en) Surface acoustic wave resonator
JP3090219B2 (en) Surface acoustic wave device
JP2002152003A (en) Surface acoustic wave filter
JP2008092610A (en) Surface acoustic wave substrate and surface acoustic wave functional element
JP3090218B2 (en) Surface acoustic wave device
WO1997047085A1 (en) Surface acoustic wave element
JP3597483B2 (en) Surface acoustic wave device
JPH10190407A (en) Surface acoustic wave element
JP3597454B2 (en) Surface acoustic wave device
JP3302462B2 (en) Surface acoustic wave device
JP3378388B2 (en) Surface acoustic wave device
KR100611297B1 (en) Surface acoustic wave element
JPH09205336A (en) Surface acoustic wave element

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11