JP3085383U - CPU heat sink - Google Patents

CPU heat sink

Info

Publication number
JP3085383U
JP3085383U JP2001006734U JP2001006734U JP3085383U JP 3085383 U JP3085383 U JP 3085383U JP 2001006734 U JP2001006734 U JP 2001006734U JP 2001006734 U JP2001006734 U JP 2001006734U JP 3085383 U JP3085383 U JP 3085383U
Authority
JP
Japan
Prior art keywords
heat
cavity
cpu
dissipating
highly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001006734U
Other languages
Japanese (ja)
Inventor
軒文 陸
Original Assignee
赫▲烱▼精密科技股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赫▲烱▼精密科技股▲分▼有限公司 filed Critical 赫▲烱▼精密科技股▲分▼有限公司
Priority to JP2001006734U priority Critical patent/JP3085383U/en
Application granted granted Critical
Publication of JP3085383U publication Critical patent/JP3085383U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

(57)【要約】 【課題】 排熱効果に優れ、コストが小さいCPU排熱
板を提供する。 【解決手段】 中央底端近くの内部に腔室110が設け
られ、腔室の頂、底端に蓋が200、201が取付けら
れ腔室110の頂、底端を完全に密閉する。蓋200、
201が溶接または嵌付されて腔室110の上下を完全
に密閉する前に、予め腔室110の内部に高導熱性物質
120または121が入れられる。高導熱性物質120
または121は、周囲が腔室110の内壁と完全に密着
する形状に形成され、CPUの熱が集中する中心部に直
接接近して配置されCPUの熱を素早く吸収する。排熱
フィン102はCPU排熱板100の周囲に設けられ、
高導熱性物質120または121が吸収した熱が伝達さ
れ、その熱を発散する。これによって、排熱効果に優
れ、材料コストの上昇が従来の排熱板よりもはるかに低
くなり、生産や使用の拡大を容易にする。
(57) [Problem] To provide a CPU heat-dissipating plate excellent in heat-dissipating effect and low in cost. SOLUTION: A cavity 110 is provided near the center bottom end, and lids 200 and 201 are attached to the top and bottom ends of the cavity to completely seal the top and bottom ends of the cavity 110. Lid 200,
Before the upper and lower portions of the cavity 110 are completely sealed by welding or fitting the high heat conductive material 120 or 121 into the interior of the cavity 110 in advance. High heat conductive material 120
Or, 121 is formed in a shape in which the periphery is completely in close contact with the inner wall of the cavity 110, and is arranged directly close to the central portion where the heat of the CPU is concentrated, and quickly absorbs the heat of the CPU. The heat-dissipating fins 102 are provided around the CPU heat-dissipating plate 100,
The heat absorbed by the highly heat-conductive material 120 or 121 is transmitted and dissipated. As a result, the heat-dissipating effect is excellent, and the increase in material cost is much lower than that of the conventional heat-dissipating plate, thereby facilitating the expansion of production and use.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the invention belongs]

本考案は、CPU排熱板の構造改善に関する。 The present invention relates to improving the structure of a CPU heat exhaust plate.

【0002】[0002]

【従来の技術】[Prior art]

排熱は、コンピュータ内部のCPUの正常な作動を確保するために極めて重要 である。そのため多くのCPUの頂端には、CPUの熱を素早く排除し、CPU の内部に大量の熱を蓄積せず、CPUが焼けてしまうことを防止する排熱板が重 ねて設けられる。市場に流通しているCPU排熱板はすべてが単一の導熱材で一 体製成され、底端にはCPUに重ね置かれる平坦面が形成されており、周囲およ び上端には均一に数枚の排熱フィンが設けられている。導熱材は導熱性に優れる 銅材、または導熱性が次級であるアルミ材に分けられるが、表面の排熱増益効果 を拡大することによって、少々導熱性が悪くより経済的な次級導熱材(アルミ材 )をもって排熱板を作っても排熱効果には影響しない。この他、コンピュータの 開発初期のいくつかの段階で開発されたCPUは仕事量と速度の向上の差異が大 きくないので、小さな排熱板でもCPUの排熱に応じることができ、高価な導熱 性に優れる銅材を使っても増える材料コストは大きくなく、生産者はそれを受け 入れることができる。 Exhausted heat is extremely important to ensure proper operation of the CPU inside the computer. For this reason, many CPUs are provided at the top with overlapping heat-dissipating plates that quickly remove heat from the CPU, do not accumulate a large amount of heat inside the CPU, and prevent the CPU from burning. All CPU heat-dissipating plates on the market are integrally made of a single heat-conducting material, with a flat surface formed at the bottom end to be placed on the CPU, and a uniform surface around and at the top end. Are provided with several heat-dissipating fins. The heat-conducting material is divided into copper, which has excellent heat-conductivity, and aluminum, which has superior heat-conductivity. Even if the heat-dissipating plate is made of (aluminum), it does not affect the heat-dissipating effect. In addition, CPUs developed at several stages in the early stages of computer development have little difference in the amount of work and speed improvement, so even a small heat-dissipating plate can respond to the CPU's heat-dissipation, resulting in expensive heat transfer. The increased material costs will not be significant even if high quality copper is used, and producers can accept them.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the invention]

本考案の目的は、排熱効果に優れ、コストが小さいCPU排熱板を提供するこ とにある。 An object of the present invention is to provide a CPU heat-dissipating plate which is excellent in heat-dissipating effect and low in cost.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

上述の課題を解決するための本考案のCPU排熱板は、中央底端近くの内部に 設けられている腔室と、腔室の頂、底端に取付けられ腔室の頂、底端を完全に密 閉する蓋と、蓋が溶接または嵌付されて腔室の上下を完全に密閉する前に予め腔 室の内部に入れられ、周囲が腔室の内壁と完全に密着する形状に形成され、CP Uの熱が集中する中心部に直接接近して配置されCPUの熱を素早く吸収する高 導熱性物質と、周囲に各々設けられ、高導熱性物質が吸収した熱が伝達されその 熱を発散する排熱フィンとを備える。 The CPU heat-dissipating plate of the present invention for solving the above-mentioned problems includes a cavity chamber provided near the center bottom end, and a top and bottom end of the cavity chamber attached to the top and bottom ends of the cavity chamber. A lid that is completely closed and a lid that is welded or fitted into the chamber in advance before completely sealing the top and bottom of the cavity, forming a shape that completely adheres to the inner wall of the cavity The highly heat-conducting material that is disposed directly close to the central part of the CPU where heat is concentrated and absorbs the heat of the CPU quickly, and the heat that is provided on the periphery and that is absorbed by the highly heat-conducting material is transmitted and transmitted. And a heat-dissipating fin that disperses heat.

【0005】 これによって、従来のCPU排熱板のように単一の次級導熱材をもって一体製 成されることにより排熱不良になり易い、という問題を改善し、かつ腔室内に銅 等高価な導熱性の高い物質を入れるのでその体積が自然に排熱板全体より小さく なり、高価な材料の体積が減り、全体が高価な単一の高導熱性材料から一体製成 される従来の排熱板よりコストが小さくなる。このように排熱効果に優れ、材料 コストの上昇が従来の高価な単一の高導熱性材料から一体製成される排熱板より もはるかに低いことは、生産や使用の拡大を容易にする。[0005] This improves the problem that heat is likely to be generated poorly by being integrally formed with a single second-order heat conductive material as in a conventional CPU heat-dissipating plate. Since the heat-dissipating substance contains a highly heat-conducting substance, its volume naturally becomes smaller than that of the entire heat-dissipating plate, and the volume of expensive materials is reduced. Lower cost than hot plate. The excellent heat dissipation effect and the increase in material costs are much lower than those of conventional heat-extraction plates made of a single high-heat-conductivity material, which makes it easier to expand production and use. I do.

【0006】[0006]

【考案の実施の形態】[Embodiment of the invention]

以下、本考案の実施例を図面に基づいて説明する。 図1は本考案の一実施例によるCPU排熱板全体の斜視図であり、それに合わ せて図2の分解図、ならびに図3の平面図を参照する。それら図面に示すように 、本実施例のCPU排熱板100の構造としては、その底端にCPUに重ね置か れる平坦面が形成され、かつ四週には均一に数枚の排熱フィン101、102、 ・・・が設けられ、表面積を拡大することをもってCPU(上述の図面には示さ れていない、図4〜図7を参照)の仕事熱を発散する。表面積の排熱増益効果を 拡大することによって、排熱フィン101、102、・・・のあるCPU排熱板 100は導熱性のやや悪い、より経済的な次級導熱材から作られるが、改善され た所としてはCPU排熱板100の中央底端近くの内部に腔室110を設け、そ の腔室110の頂、底端に蓋を付けて完全に密閉し、蓋200、201を溶接ま たは緊密に嵌付して腔室110の上、下を完全に密閉する前、予め高導熱性物質 120または121を腔室110内に入れ、その高導熱性物質120の周囲を腔 室110の内壁と完全に密着させる。さらに、CPU排熱板100の腔室110 内の高導熱性物質120をCPUの熱が集中する中心部に直接接近させる。密閉 されたCPU排熱板100は表面が研磨されて滑らかになると図1に示すように なり、全体的外観としては腔室110が露出せず、または中央に一周の細い溶接 の痕110Aがあるだけである。腔室110内に入れる高導熱性物質121が銅 のような固体であれば、その高導熱性物質121の周壁を腔室110の内壁と凹 凸によって互いに嵌付け合う形状にし、腔室110内に緊密配合の嵌付法をもっ てその高導熱性物質121を詰め込む。緊密配合の嵌付は優れた効果があり、甚 だしくは蓋200、201を溶接または緊密に嵌付ける必要がなく、導熱性物質 121は脱落しない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an entire CPU heat dissipation plate according to an embodiment of the present invention. Referring to FIG. 2, an exploded view of FIG. 2 and a plan view of FIG. As shown in the drawings, the structure of the CPU heat-dissipating plate 100 of the present embodiment has a flat surface formed on the CPU at the bottom end thereof, and a uniform number of heat-dissipating fins 101, four weeks. Are provided to dissipate the work heat of the CPU (not shown in the above drawings, see FIGS. 4 to 7) by increasing the surface area. By expanding the effect of increasing the surface area heat dissipation, the CPU heat dissipation plate 100 with the heat dissipation fins 101, 102,... Is made of a less economical, more economical next-generation heat conduction material. The place where the cavity 110 is provided near the center bottom end of the CPU heat dissipation plate 100, and the top and bottom ends of the cavity 110 are covered with lids to be completely sealed, and the lids 200 and 201 are welded. Alternatively, before completely sealing the upper and lower portions of the cavity 110 by tight fitting, the highly heat-conductive substance 120 or 121 is put into the cavity 110 in advance, and the periphery of the high heat-conductive substance 120 is sealed in the cavity. Completely adhere to the inner wall of 110. Further, the highly heat-conductive substance 120 in the cavity 110 of the CPU heat-dissipating plate 100 is made to directly approach the central portion of the CPU where heat is concentrated. When the surface of the hermetically sealed CPU heat exhaust plate 100 is polished and smoothed, it becomes as shown in FIG. 1. As a whole, the cavity 110 is not exposed, or there is a narrow welding trace 110A around the center in the center. Only. If the highly heat-conducting substance 121 to be put into the cavity 110 is a solid such as copper, the peripheral wall of the high heat-conductivity substance 121 is shaped to fit into the inner wall of the cavity 110 by concave and convex. The highly heat-conductive substance 121 is packed by a tightly fitting method. The tight mix fit has an excellent effect, and it is not necessary to weld or tightly fit the lids 200, 201 and the heat conductive material 121 does not fall off.

【0007】 なお、CPU排熱板100内部の腔室110内に高導熱性物質120を入れた 構成の作用は図4〜図7に示すとおりである。図4に示すのは前述の高導熱性物 質120が導熱性に優れた固体の場合で、緊密配合方式によって腔室110内に 充満し、その高導熱性物質120の平らな底面は直接CPU300の表面に接触 しているのでCPU300の熱を排出することができる。または図5に示すよう に、腔室110内に充填される高導熱性物質120は固体であってもよく(加熱 すると液体になる固体の蝋塊でもよい)、この場合、蓋200、201による溶 接または緊密嵌付法をもって高導熱性物質120が腔室110から落下しないよ うに腔室110の上、下を完全に閉鎖する。または図6に示すように、腔室11 0内に充填される高導熱性物質120は液体であってもよく(例えばアルコール 、水)、腔室110に充満しないで予め膨張のスペース112を残すように充填 する。この場合、液体が連続的に気体になる熱蓄積過程によって、排熱板100 の下にあるCPU300の仕事熱を快速に吸収し、腔室110内は気化によって 高温の蒸気が導入され、それが上昇過程において腔室110頂端のやや冷たい内 周に当たり、熱が腔室の壁面から外部の排熱フィン101、102を伝って発散 し、再度凝結して腔室110の底部に落ちて快速排熱の効果が達成される。腔室 110の隙間の密閉施工においては強化溶接を行い、全体が蒸発時に上昇する圧 力に耐えて爆発しないようにする。また、図7に示すように、腔室110内に充 填される高導熱性物質120は吸熱量の高い気体であってもよく、直接気体分子 の吸熱力によってCPU排熱板100の下にあるCPU300の熱を発散する。The operation of the configuration in which the highly heat-conductive substance 120 is put in the cavity 110 inside the CPU heat-dissipating plate 100 is as shown in FIGS. FIG. 4 shows a case where the above-mentioned highly heat-conductive material 120 is a solid having excellent heat conductivity, which is filled in the cavity 110 by a tight blending method, and the flat bottom surface of the highly heat-conductive material 120 is directly connected to the CPU 300. The heat of the CPU 300 can be exhausted because it is in contact with the surface of the CPU. Alternatively, as shown in FIG. 5, the highly heat-conductive substance 120 filled in the cavity 110 may be a solid (or a solid wax mass which becomes liquid when heated). The upper and lower portions of the cavity 110 are completely closed so that the highly heat-conductive substance 120 does not fall from the cavity 110 by welding or tight fitting. Alternatively, as shown in FIG. 6, the highly heat-conducting substance 120 filled in the cavity 110 may be a liquid (for example, alcohol or water), and does not fill the cavity 110, leaving a space 112 for expansion beforehand. Fill as shown. In this case, due to the heat accumulation process in which the liquid continuously becomes a gas, the work heat of the CPU 300 below the exhaust heat plate 100 is rapidly absorbed, and high-temperature steam is introduced into the cavity 110 by vaporization. During the ascent process, it hits the slightly cold inner circumference at the top end of the cavity 110, and heat is radiated from the wall of the cavity through the external heat-dissipating fins 101, 102, condenses again, falls to the bottom of the cavity 110, and is quickly discharged The effect is achieved. When the gap between the cavity chambers 110 is sealed, reinforced welding is performed so that the entire body withstands the pressure that increases during evaporation and does not explode. Further, as shown in FIG. 7, the highly heat-conductive substance 120 filled in the cavity 110 may be a gas having a high heat absorption, and may be directly below the CPU heat-dissipating plate 100 by the heat absorption of gas molecules. The heat of a certain CPU 300 is dissipated.

【0008】 また、図8に本考案の別の実施例によるCPU排熱板を示す。図に示すように 、腔室110の周囲内壁は歯車のような複数枚の歯溝110A、110B・・・ ・に形成され、腔室110内に入れられる固体の高導熱性物質120の周囲にも これら複数枚の歯溝110A、110B・・・・に対応して互いに緊密に嵌合で きる溝歯120A、120B・・・・が設けられ、これら歯溝110A、110 B・・・・の面によって、腔室110内の高導熱性物質と腔壁との排熱接触表面 積が拡大され、熱が腔室内壁から外へ発散する速度を高める。FIG. 8 shows a CPU heat dissipation plate according to another embodiment of the present invention. As shown in the figure, the inner wall around the cavity 110 is formed in a plurality of tooth spaces 110A, 110B,... Such as gears, and around the solid high heat conductive material 120 put in the cavity 110. Are provided corresponding to the plurality of tooth grooves 110A, 110B,... So as to be able to be tightly fitted to each other, and these tooth grooves 110A, 110B,. The surface enlarges the heat dissipating contact area between the highly thermally conductive material in the cavity 110 and the cavity wall, increasing the rate at which heat is dissipated out of the cavity wall.

【0009】 上述から分かるように、本考案のCPU排熱板は高導熱性物質を埋め込むこと によって、従来のCPU排熱板が単一の次級導熱材をもって一体製成され排熱不 良になり易く、または一般によく見られる排熱板全体を値段の高い単一の高導熱 性材料で一体製造しコストが高くなってしまう、という欠点を改善するもので、 その排熱効果は優れており、かつこれまでに公開使用されたことが見られない新 規性を有するものである。As can be seen from the above, the CPU heat-dissipating plate of the present invention embeds a highly heat-conducting substance, whereby the conventional CPU heat-dissipating plate is integrally formed with a single next-order heat-conducting material, and the heat dissipation is poor. This is an improvement over the drawback that it is easy to produce, or the entire heat-dissipating plate that is commonly seen is made of a single expensive high-heat-conductivity material, which increases the cost.The heat-dissipating effect is excellent. It has a novelty that has never been used publicly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の一実施例によるCPU排熱板を示す斜
視図である。
FIG. 1 is a perspective view illustrating a CPU heat dissipation plate according to an embodiment of the present invention;

【図2】本考案の一実施例によるCPU排熱板を示す分
解図である。
FIG. 2 is an exploded view showing a CPU heat dissipation plate according to an embodiment of the present invention;

【図3】本考案の一実施例によるCPU排熱板を示す平
面図である。
FIG. 3 is a plan view illustrating a CPU heat dissipation plate according to an embodiment of the present invention;

【図4】本考案の一実施例によるCPU排熱板の一構成
を示す断面図である。
FIG. 4 is a cross-sectional view illustrating a configuration of a CPU heat dissipation plate according to an embodiment of the present invention;

【図5】本考案の一実施例によるCPU排熱板の別の構
成を示す断面図である。
FIG. 5 is a sectional view showing another configuration of the CPU heat dissipation plate according to the embodiment of the present invention;

【図6】本考案の一実施例によるCPU排熱板のさらに
別の構成を示す断面図である。
FIG. 6 is a cross-sectional view showing still another configuration of the CPU heat dissipation plate according to the embodiment of the present invention;

【図7】本考案の一実施例によるCPU排熱板のまたさ
らに別の構成を示す断面図である。
FIG. 7 is a cross-sectional view showing still another configuration of the CPU heat dissipation plate according to the embodiment of the present invention;

【図8】本考案の別の実施例によるCPU排熱板を示す
斜視図である。
FIG. 8 is a perspective view showing a CPU heat dissipation plate according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100 CPU排熱板 101、102 排熱フィン 110 腔室 120、121 高導熱性物質 200、201 蓋 300 CPU REFERENCE SIGNS LIST 100 CPU heat-dissipating plate 101, 102 heat-dissipating fin 110 cavity chamber 120, 121 highly heat-conductive substance 200, 201 lid 300 CPU

Claims (4)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】 中央底端近くの内部に設けられている腔
室と、 前記腔室の頂、底端に取付けられ、前記腔室の頂、底端
を完全に密閉する蓋と、 前記蓋が溶接または嵌付されて前記腔室の上下を完全に
密閉する前に予め前記腔室の内部に入れられ、周囲が前
記腔室の内壁と完全に密着する形状に形成され、CPU
の熱が集中する中心部に直接接近して配置され、前記C
PUの熱を素早く吸収する高導熱性物質と、 周囲に各々設けられ、前記高導熱性物質が吸収した熱が
伝達されその熱を発散する排熱フィンと、 を備えることを特徴とするCPU排熱板。
1. a cavity provided in the interior near a central bottom end; a lid attached to the top and bottom ends of the cavity to completely seal the top and bottom ends of the cavity; Is welded or fitted into the cavity beforehand to completely seal the upper and lower portions of the cavity, and is formed into a shape in which the periphery is completely in close contact with the inner wall of the cavity, and a CPU is provided.
Placed directly close to the center where heat is concentrated,
A CPU having a high heat-conducting material that quickly absorbs heat of the PU; and a heat-dissipating fin that is provided around each of the heat-conducting materials and that transfers the heat absorbed by the high-heat-conducting material and radiates the heat. Hot plate.
【請求項2】 前記腔室は、周囲の内壁に歯車状の複数
の歯溝が形成され、 前記腔室の内部に入れられる高導熱性物質は、固体であ
り、周囲には前記複数の歯溝と対応して互いに緊密に嵌
合する溝歯が設けられ、 前記歯溝の面によって前記腔室の内部の高導熱性物質と
前記腔室の壁との排熱接触表面積は拡大されることを特
徴とする請求項1記載のCPU排熱板。
2. The cavity has a plurality of gear-shaped tooth grooves formed on a peripheral inner wall thereof, the highly heat-conductive substance put into the interior of the cavity is solid, and the plurality of teeth are provided around the cavity. Groove teeth are provided which closely fit each other in correspondence with the grooves, and the surface of the tooth grooves increases the heat-dissipation contact surface area between the highly heat-conductive substance inside the cavity and the wall of the cavity. The CPU heat exhaust plate according to claim 1, wherein:
【請求項3】 前記CPUは、前記CPU排熱板の下方
に配置され、 前記高導熱性物質は、前記腔室の内部に充填され、液体
であり、前記腔室に充満しないで予め膨張のスペースを
残して充填され、前記液体が連続的に気体になる熱蓄積
過程によって前記CPUの仕事熱を快速に吸収し、 前記液体の蒸発時に上昇する圧力に全体が耐えるように
前記腔室の隙間の密閉施工において強化溶接が行われる
ことを特徴とする請求項1記載のCPU排熱板。
3. The CPU is disposed below the CPU heat-dissipating plate, and the highly heat-conducting substance is filled in the cavity and is a liquid. The space between the cavity chambers is filled so that the space is filled and the heat of the CPU is rapidly absorbed by a heat accumulation process in which the liquid continuously turns into a gas, and the entirety withstands a pressure rising when the liquid evaporates. The CPU heat-dissipating plate according to claim 1, wherein strengthening welding is performed in the hermetic construction.
【請求項4】 前記高導熱性物質は、前記腔室の内部に
充填され、吸熱量の高い気体であることを特徴とする請
求項1記載のCPU排熱板。
4. The CPU heat-dissipating plate according to claim 1, wherein the highly heat-conducting substance is filled in the cavity and is a gas having a high heat absorption.
JP2001006734U 2001-10-16 2001-10-16 CPU heat sink Expired - Fee Related JP3085383U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001006734U JP3085383U (en) 2001-10-16 2001-10-16 CPU heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001006734U JP3085383U (en) 2001-10-16 2001-10-16 CPU heat sink

Publications (1)

Publication Number Publication Date
JP3085383U true JP3085383U (en) 2002-04-26

Family

ID=43236828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001006734U Expired - Fee Related JP3085383U (en) 2001-10-16 2001-10-16 CPU heat sink

Country Status (1)

Country Link
JP (1) JP3085383U (en)

Similar Documents

Publication Publication Date Title
US6957692B1 (en) Heat-dissipating device
US7293601B2 (en) Thermoduct
TWI426859B (en) Heat dissipation module, flat heat column thereof and manufacturing method for flat heat column
US20110024085A1 (en) Heat pipe and method for manufacturing the same
TWM517314U (en) Heat dissipation apparatus
US20070277961A1 (en) Heat dissipation module and heat column thereof
TW202001178A (en) Vapor chamber and manufacturing method for thesame
TWI684095B (en) High-performance electronics cooling system
JP3085383U (en) CPU heat sink
CN201828175U (en) Heat pipe-type radiator
CN210982726U (en) Radiator and laser radar
CN102345991A (en) Heat pipe type radiator
TWM301938U (en) Thermal power equipment
TWM589819U (en) Heat dissipation device using phase change for heat transfer
CN104427824B (en) Radiator
CN108550557B (en) Solid-liquid integrated chip radiator and manufacturing process thereof
TWM523894U (en) Heat dissipation structure and water-cooling device comprising the same
TWI315177B (en) Plate type heat pipe
CN110471044A (en) Radiator and laser radar
CN2596415Y (en) Heat pipe type microprocessor radiator
JP3086847U (en) Heat sink with fan
JP2006333605A (en) Manufacturing method of radiation structure for commutator
TWI507653B (en) Heat dissipation unit
JP3665583B2 (en) Box heat pipe
TWM477602U (en) Heat dissipating unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees