JP3083617B2 - Transparent sheet heating element - Google Patents

Transparent sheet heating element

Info

Publication number
JP3083617B2
JP3083617B2 JP35645591A JP35645591A JP3083617B2 JP 3083617 B2 JP3083617 B2 JP 3083617B2 JP 35645591 A JP35645591 A JP 35645591A JP 35645591 A JP35645591 A JP 35645591A JP 3083617 B2 JP3083617 B2 JP 3083617B2
Authority
JP
Japan
Prior art keywords
transparent
thin film
log
expression
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35645591A
Other languages
Japanese (ja)
Other versions
JPH05174951A (en
Inventor
健司 中谷
将夫 鈴木
和仁 森貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP35645591A priority Critical patent/JP3083617B2/en
Publication of JPH05174951A publication Critical patent/JPH05174951A/en
Application granted granted Critical
Publication of JP3083617B2 publication Critical patent/JP3083617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、透明面状発熱体に関
し、特に液晶素子用ヒーターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent sheet heating element, and more particularly to a heater for a liquid crystal device.

【0002】[0002]

【従来の技術】液晶素子の動作特性は、それが設置され
ている環境温度に大きく影響される。温度が低くなる
と、例えば0℃以下の温度になると応答速度が低下し、
また−30℃以下になると実用上支障をきたすようにな
る。
2. Description of the Related Art The operating characteristics of a liquid crystal element are greatly affected by the environmental temperature in which it is installed. When the temperature decreases, for example, when the temperature becomes 0 ° C. or less, the response speed decreases,
If the temperature is lower than -30 ° C, practical problems will be caused.

【0003】例えば、自動車等の各種ディスプレイとし
て使用されるものでは、低温度であっても正常に作動す
ることが望まれている。
[0003] For example, it is desired that a device used as various displays of an automobile or the like operates normally even at a low temperature.

【0004】従来そのような環境下で使用される液晶素
子は、格子状又は周辺に枠状の発熱抵抗体を配置して加
熱する方法が提案されているが、この方法では液晶素子
全体を均一に加熱することが困難であり、不透明な発熱
体を配置することにより液晶素子の表示に邪魔になった
り、また、表示面積の縮小など不都合があった。
Conventionally, a method of heating a liquid crystal element used in such an environment by arranging a grid-like or frame-shaped heating resistor in the periphery has been proposed. In this method, the entire liquid crystal element is made uniform. However, arranging an opaque heating element hinders the display of the liquid crystal element, and also has disadvantages such as a reduction in the display area.

【0005】そこで本発明者等は、先に透明基板上に積
層した透明導電性薄膜の両端部に電極を設け、この電極
間に電圧を印加する方法を提案した。
Therefore, the present inventors have proposed a method in which electrodes are provided at both ends of a transparent conductive thin film previously laminated on a transparent substrate, and a voltage is applied between the electrodes.

【0006】[0006]

【発明が解決しようとする問題点】本発明者らが先に提
案した方法によると、液晶素子全体に亘って均一に加熱
することができるが、以下の問題が発生した。
According to the method proposed by the present inventors, heating can be performed uniformly over the entire liquid crystal element, but the following problems occur.

【0007】透明面状発熱体に印加する印加パワーが大
きい場合は、該面状発熱体が高温度になり発熱体自体を
破損せしめることにより、場合によっては液晶素子まで
破損することがある。面状発熱体又は液晶素子へ温度制
御機構をつけることも考えられるが、コストアップの要
因となり好ましい方法ではない。また、印加パワーを小
さくすると液晶素子自体の加温を充分に行うことができ
ないか、加温に長時間を要し、自動車のスタートに支障
をきたす。
When the applied power applied to the transparent sheet heating element is large, the sheet heating element becomes high temperature and damages the heating element itself, and in some cases, even the liquid crystal element may be damaged. It is conceivable to attach a temperature control mechanism to the sheet heating element or the liquid crystal element, but this is not a preferable method because it causes a cost increase. In addition, if the applied power is reduced, the liquid crystal element itself cannot be sufficiently heated, or a long time is required for heating, which hinders the start of the automobile.

【0008】また、上記のように、液晶素子の加熱には
印加電圧とその印加パワーが重要であるが、更に、透明
導電性薄膜の表面抵抗値も上記との兼ね合いで重要な因
子である。表面抵抗値が低い程面状発熱体としては好ま
しいが、低抵抗値になるように透明導電性薄膜層を設計
すると、面状発熱体の可視光透過率が低下することにな
り、液晶素子の透過率の低下をきたし、そのためバック
ライトの輝度を高めることを要し、バックライトの寿命
の点で好ましくなく、消費電力のアップ等の問題があ
る。
As described above, the applied voltage and the applied power are important for heating the liquid crystal element, and the surface resistance of the transparent conductive thin film is also an important factor in view of the above. The lower the surface resistance is, the more preferable the planar heating element is. However, if the transparent conductive thin film layer is designed to have a low resistance value, the visible light transmittance of the planar heating element is reduced, and the The transmittance is reduced, and therefore, it is necessary to increase the luminance of the backlight, which is not preferable in terms of the life of the backlight, and has a problem such as an increase in power consumption.

【0009】[0009]

【問題を解決するための手段】上記のような問題点を解
決すべく鋭意研究の結果、透明基板上に積層した透明導
電性薄膜の両端部に電極を設け、この電極に電圧を印加
することにより電極間の該透明導電性薄膜に熱を発生す
るようにした透明面状発熱体において、(A)該透明導
電性薄膜が、透明基板上に積層された透明導電性薄膜の
表面抵抗をR(Ω/□)とし、透明導電性薄膜の膜厚を
t(オングストローム)としたとき、10≦R≦30に
おいて log t=−0.011R+2.065 …(1)式 log t=−0.011R+2.360 …(2)式 1≦R≦10において log t=−0.043R+2.386…(3)式 log t=−0.043R+2.643…(4)式 及び R=30 …(5)式 R= 1 …(6)式 の(1),(2),(3),(4),(5),(6)式
にかこまれた範囲であって、かつ、波長550nmで測
定された平行光線透過率T(%)が t≧−8T+690 …(7)式 の(7)式を満足するものであり、かつ(B)本文で定
義された方法により透明導電性薄膜の両端部に印加され
る電圧V(V)と、印加パワーP(W/cm・秒)と
の関係が、 log P=−0.037V+2.703…(8)式 及び log P=−0.037V+0.546…(9)式 の(8)式及び(9)式でかこまれた範囲である透明面
状発熱体とすれば良いことを見出した。
[Means for Solving the Problems] As a result of intensive research to solve the above problems, electrodes are provided at both ends of a transparent conductive thin film laminated on a transparent substrate, and a voltage is applied to the electrodes. And (A) the transparent conductive thin film laminated on a transparent substrate has a surface resistance of R (Ω / □) and the thickness of the transparent conductive thin film is t (angstrom), log t = −0.011R + 2.065 when 10 ≦ R ≦ 30 Expression (1) log t = −0.011R + 2 .360 (2) expression 1 ≦ R ≦ 10 log t = −0.043R + 2.386 (3) expression log t = −0.043R + 2.643 (4) expression and R = 30 (5) expression R = 1 (1) in the equation (6) , (2), (3), (4), (5), and (6), and the parallel light transmittance T (%) measured at a wavelength of 550 nm is t ≧ − 8T + 690 (7) Expression (7) that satisfies the expression (7), and (B) a voltage V (V) applied to both ends of the transparent conductive thin film by the method defined in the main text and an applied power P The relationship with (W / cm 2 · second) is expressed by log P = −0.037V + 2.703 (8) and log P = −0.037V + 0.546 (9). It has been found that a transparent sheet heating element within the range enclosed by the expression (3) may be used.

【0010】図1に本発明の例として、透明面状発熱体
の断面図を示す。
FIG. 1 is a sectional view of a transparent sheet heating element as an example of the present invention.

【0011】本発明に使用される透明基板1はポリエス
テル樹脂、ポリナフタレート樹脂、ポリアミド樹脂、ポ
リイミド樹脂、アクリレート樹脂、ポリカーボネート樹
脂の他に在来公知の高分子樹脂が使用でき、板状、フイ
ルム状いずれでもよい。次の電極加工、保護層加工、更
には、偏光板への張りつけ等の加工、軽量性、耐衝撃性
の点から、フイルム状で50〜500μm厚みの高分子
樹脂が用いられる。特に75〜180μm厚みが好適で
ある。
For the transparent substrate 1 used in the present invention, a conventionally known polymer resin can be used in addition to a polyester resin, a polynaphthalate resin, a polyamide resin, a polyimide resin, an acrylate resin, and a polycarbonate resin. Any shape may be used. From the viewpoint of the following electrode processing, protective layer processing, further processing such as bonding to a polarizing plate, lightness and impact resistance, a film-like polymer resin having a thickness of 50 to 500 μm is used. Particularly, a thickness of 75 to 180 μm is preferable.

【0012】本発明の接着層3は、在来公知の接着剤、
感圧性粘着剤のいずれでも使用できるが、前記透明基板
への加工性、後述する偏光板11への貼り合せ及び耐久
性の点からアクリレート系感圧性粘着剤が好んで用いら
れる。
The adhesive layer 3 of the present invention comprises a conventionally known adhesive,
Although any pressure-sensitive adhesive can be used, an acrylate-based pressure-sensitive adhesive is preferably used in view of processability to the transparent substrate, bonding to a polarizing plate 11 described later, and durability.

【0013】接着層3の厚みは特に制限はないが、通常
5〜100μmであり、特に10〜70μmが常用され
ている。なお接着層3は、あらかじめ透明基板1へ加工
した後、透明導電性薄膜2を加工してもよく、また一旦
透明基板1へ透明導電性薄膜2を加工した後、他面へ加
工することもできる。特に後者の場合に良質の透明導電
性薄膜2を得ることができる。
Although the thickness of the adhesive layer 3 is not particularly limited, it is usually 5 to 100 μm, and usually 10 to 70 μm. The adhesive layer 3 may be processed into the transparent substrate 1 in advance, and then the transparent conductive thin film 2 may be processed. Alternatively, the transparent conductive thin film 2 may be once processed into the transparent substrate 1 and then processed into another surface. it can. Particularly in the latter case, a high quality transparent conductive thin film 2 can be obtained.

【0014】透明基板1、透明導電性薄膜2、透明絶縁
層4、電極及び接着層8を有する透明フイルム9を加工
した後、接着層3を加工してもよい。特に、この場合
は、前記の如く、あらかじめ接着層3を加工した場合に
比較して、その後の加工及び取扱い中における接着剤の
裁断粉及び加工工程での接着剤のはみ出しによる各層間
への混入を除くことができるので、より収率よく透明面
状ヒーターを得ることができる。この加工法をとる場合
は、加工工程で、透明基板1への傷の発生、又はオリゴ
マー発生防止のため、あらかじめ、透明基板1の背面
へ、適宜発生防止層を加工しておくことが好ましい。
After processing the transparent substrate 9, the transparent conductive thin film 2, the transparent insulating layer 4, the electrode and the transparent film 9 having the adhesive layer 8, the adhesive layer 3 may be processed. In particular, in this case, as described above, compared to the case where the adhesive layer 3 has been previously processed, the adhesive is cut into powder during the subsequent processing and handling, and the adhesive is mixed into the respective layers due to the protrusion of the adhesive in the processing step. Can be removed, so that a transparent sheet heater can be obtained with higher yield. When this processing method is employed, it is preferable to appropriately process an anti-occurrence layer on the back surface of the transparent substrate 1 in advance in order to prevent generation of scratches or oligomers on the transparent substrate 1 in the processing step.

【0015】本発明における透明導電性薄膜2は金属薄
膜を用いるのが好都合である。金属薄膜は、例えばA
g、Au、Cu、Ni、Al、Crがあり、特に透明
性、電気特性の点からAg、Au、Cuの群より選ばれ
た1種又は合金が好んで用いられる。
It is convenient to use a metal thin film as the transparent conductive thin film 2 in the present invention. The metal thin film is, for example, A
There are g, Au, Cu, Ni, Al, and Cr, and one or an alloy selected from the group of Ag, Au, and Cu is particularly preferably used in terms of transparency and electrical characteristics.

【0016】透明導電性薄膜の膜厚t(オングストロー
ム)は、該透明導電性薄膜の表面抵抗R(Ω/□)との
関係で、10≦R≦30において log t=−0.011R+2.065 …(1)式 log t=−0.011R+2.360 …(2)式 1≦R≦10において log t=−0.043R+2.386…(3)式 log t=−0.043R+2.643…(4)式 及び R=30 …(5)式 R= 1 …(6)式 の(1),(2),(3),(4),(5),(6)式
にかこまれた範囲であって、かつ、透明基板1に透明導
電性薄膜2が積層された状態で、波長550nmにおけ
る平行光線透過率T(%)が t≧−8T+690 …(7)式 を満足するように選ばれる。
The thickness t (angstrom) of the transparent conductive thin film is log t = −0.011R + 2.065 when 10 ≦ R ≦ 30 in relation to the surface resistance R (Ω / □) of the transparent conductive thin film. Expression (1) log t = −0.011R + 2.360 Expression (2) When 1 ≦ R ≦ 10 log t = −0.043R + 2.386 Expression (3) log t = −0.043R + 2.643 ( 4) Formula and R = 30 Formula (5) Formula R = 1 Formula (6) Formula (1), (2), (3), (4), (5), and the range encompassed by Formula (6) And in a state where the transparent conductive thin film 2 is laminated on the transparent substrate 1, the parallel light transmittance T (%) at a wavelength of 550 nm is selected so as to satisfy t ≧ −8T + 690 (7) .

【0017】通常(7)式を満足するためには、前記金
属薄膜の片面、又は両面に高屈折率誘電体薄膜、例え
ば、TiO2 、ITO、In2 3 、ZnOなどを積層
することが好ましい場合が多い。
Usually, in order to satisfy the expression (7), a high-refractive-index dielectric thin film, for example, TiO 2 , ITO, In 2 O 3 , ZnO or the like is laminated on one or both sides of the metal thin film. Often preferred.

【0018】上記(1)〜(7)式を越えると、透明面
状発熱体としての透明性、電気特性等を発現させること
は困難となる。上記範囲内ではじめて透明面状発熱体と
しての性能を具備させることが可能となる。
If the above formulas (1) to (7) are exceeded, it becomes difficult to develop transparency, electrical characteristics, and the like as a transparent sheet heating element. The performance as a transparent sheet heating element can be provided only within the above range.

【0019】なお、これらの薄膜は前記の透明基板1の
上に、在来公知の方法で形成される。
These thin films are formed on the transparent substrate 1 by a conventionally known method.

【0020】本発明における透明絶縁層4はあってもな
くてもよいが、あった方が好ましく、その場合従来公知
の熱硬化型、紫外線硬化型の樹脂が使用される。透明で
あればいかなる樹脂でもよいが、特に耐久性の点からハ
ロゲン元素の含有量の少ないものがよく、通常500pp
m 以下、特に100ppm 以下が好ましい。透明絶縁層4
は、従来公知の印刷法、塗工法等で設けられるが、膜厚
は2〜50μmであり、特に5〜30μmである。
The transparent insulating layer 4 in the present invention may or may not be provided, but is preferably provided. In this case, a conventionally known thermosetting or ultraviolet curing resin is used. Any resin may be used as long as it is transparent. However, from the viewpoint of durability, a resin having a low halogen element content is preferable.
m, particularly preferably 100 ppm or less. Transparent insulating layer 4
Is provided by a conventionally known printing method, coating method, or the like, and has a thickness of 2 to 50 μm, particularly 5 to 30 μm.

【0021】本発明法における電極10は、透明導電性
薄膜2の両端部(電気回路的意味での両端部)へ形成さ
れる。
The electrodes 10 in the method of the present invention are formed at both ends (both ends in terms of an electric circuit) of the transparent conductive thin film 2.

【0022】透明導電性薄膜2の上に、(導電性)樹脂
5を在来公知の方法、例えば、印刷法、塗工法で形成す
る。導電性樹脂層5は、通常銀粉、金粉、カーボン粉、
その他の金属粉と、ビニル系、フェノール系、エポキシ
系、ポリアミド系等の樹脂との混合体のいずれでも使用
できる。特に電極としての導電性の点から、銀粉と上記
樹脂系との混合体が好んで用いられる。膜厚は、焼成後
の膜厚として、2〜20μm、通常5〜20μmであ
る。
The (conductive) resin 5 is formed on the transparent conductive thin film 2 by a conventionally known method, for example, a printing method or a coating method. The conductive resin layer 5 is usually made of silver powder, gold powder, carbon powder,
Any mixture of other metal powders and resins such as vinyl, phenol, epoxy and polyamide resins can be used. In particular, a mixture of silver powder and the above-mentioned resin system is preferably used from the viewpoint of conductivity as an electrode. The film thickness is 2 to 20 μm, usually 5 to 20 μm, as a film thickness after firing.

【0023】本発明法は、前記(導電性)樹脂層5の上
に、(絶縁性)接着層を有する導電性金属箔又は導電性
金属線6を設ける。導電性金属箔又は線6は、銅、銀、
金、その他の金属箔いずれでも使用できるが、通常銅箔
で充分であり、通常5〜50μmの膜厚が用いられる
が、該導電性金属箔6を(導電性)樹脂層5上への加工
する容易性、その後の導電性樹脂層7の加工性及び透明
フイルム9の加工性と、気泡かみ込み等の外観不良を回
避するためにも、導電性金属箔6の膜厚は15〜50μ
mが好んで用いられる。
According to the method of the present invention, a conductive metal foil or a conductive metal wire 6 having an (insulating) adhesive layer is provided on the (conductive) resin layer 5. The conductive metal foil or wire 6 is made of copper, silver,
Although any of gold and other metal foils can be used, copper foil is usually sufficient, and a film thickness of 5 to 50 μm is usually used, but the conductive metal foil 6 is processed on the (conductive) resin layer 5. The thickness of the conductive metal foil 6 is set to 15 to 50 μm in order to facilitate the processability of the conductive resin layer 7 and the processability of the transparent film 9 and avoid appearance defects such as entrapment of bubbles.
m is preferably used.

【0024】なお、前記導電性金属箔6に設けられてい
る(絶縁性)接着層は、通常、加工性の点から5〜10
0μm膜厚の感圧粘着剤が設けられる。特に、(導電
性)樹脂層5への接着力及び電極部10の全体厚み、透
明フイルム9加工後の気泡かみ込み防止等から、10〜
60μmが好んで用いられる。絶縁性接着層は、導電性
接着剤に比べて、コストを安く抑えることができ、か
つ、前述の如く、電極部全体の膜厚を薄く抑えることが
できるので、加工性の点ですぐれている。
The (insulating) adhesive layer provided on the conductive metal foil 6 usually has a thickness of 5 to 10 in terms of workability.
A pressure-sensitive adhesive having a thickness of 0 μm is provided. In particular, the adhesive strength to the (conductive) resin layer 5 and the overall thickness of the electrode portion 10 and the prevention of air bubble entrapment after processing the transparent film 9, etc.
60 μm is preferably used. The insulating adhesive layer is excellent in workability because the cost can be reduced in comparison with the conductive adhesive, and the thickness of the entire electrode portion can be reduced as described above. .

【0025】本発明の好ましい態様は、前記導電性金属
箔6の全体を被覆したように、該導電性金属箔6の上に
導電性樹脂層7を1層又は2層重ねて加工する。導電性
樹脂層7は、前記の導電性樹脂層5と同じ材料を用いて
もよく、また、前記に記載した違った材料を用いてもよ
い。1層当りの膜厚は、焼成後2〜20μm、好ましく
は5〜20μmである。1層加工では、導電性金属箔の
端部への導電性樹脂層の乗りが悪い場合があるので、2
層加工が好ましい。
In a preferred embodiment of the present invention, one or two conductive resin layers 7 are processed on the conductive metal foil 6 so as to cover the entirety of the conductive metal foil 6. The conductive resin layer 7 may use the same material as the above-described conductive resin layer 5 or may use a different material described above. The film thickness per layer is 2 to 20 μm after firing, preferably 5 to 20 μm. In one-layer processing, the conductive resin layer may not be easily mounted on the end of the conductive metal foil.
Layer processing is preferred.

【0026】本発明において、前記の構成体へ必要に応
じて更に接着層8を有する透明フイルム9を在来公知の
方法、例えばラミネート等の方法により設ける。接着層
8は特に制限はなく、前記の接着層3と同じ種類の膜厚
5〜100μm、特に10〜70μmが常用される。透
明フイルム9は前記の透明基板1と同じ種類の材料から
用いられ、通常1〜100μm、特に5〜50μmの厚
みが好んで用いられる。
In the present invention, if necessary, a transparent film 9 having an adhesive layer 8 is provided on the above-mentioned structure by a conventionally known method, for example, a method such as lamination. The thickness of the adhesive layer 8 is not particularly limited, and a thickness of 5 to 100 μm, particularly 10 to 70 μm, of the same kind as the adhesive layer 3 is usually used. The transparent film 9 is made of the same kind of material as the transparent substrate 1 described above, and usually has a thickness of 1 to 100 μm, particularly preferably 5 to 50 μm.

【0027】上記の如く得られた透明面状発熱体15
は、あらかじめ偏光板11、液晶素子12及び偏光板1
3と積層された上に、圧着して使用される。
The transparent sheet heating element 15 obtained as described above
Are the polarizing plate 11, the liquid crystal element 12, and the polarizing plate 1 in advance.
3 and then used by crimping.

【0028】なお、本発明は、例示として、接着層3を
透明基板1側へ積層した状態について説明したが、接着
層3を、透明絶縁層4側へ積層し、偏光板11へ圧着し
て使用することもできる。
Although the present invention has been described by way of example in which the adhesive layer 3 is laminated on the transparent substrate 1 side, the adhesive layer 3 is laminated on the transparent insulating layer 4 side and pressed against the polarizing plate 11 by pressing. Can also be used.

【0029】本発明は、上記の如く、得られた透明面状
発熱体を偏光板11、液晶素子12及び偏光板13と積
層されて使用されるが、透明面状発熱体へ印加する電圧
と印加パワーは、次の如き範囲で実施される。
In the present invention, as described above, the obtained transparent sheet heating element is used by being laminated on the polarizing plate 11, the liquid crystal element 12, and the polarizing plate 13, and the voltage applied to the transparent sheet heating element is determined. The applied power is performed in the following range.

【0030】本発明法における透明面状発熱体への印加
電圧V(V)と印加パワーP(W/cm2 ・秒)は、寸法
110×110mm角、厚さ3mmの板ガラスへ電極をもう
け、有効導電面が100×100mm角の上記の如く作製
された透明面状発熱体15を接着層3を介して貼りつ
け、室温条件下において行った時、 log P=−0.037V+2.703…(8)式 及び log P=−0.037V+0.546…(9)式 の(8)式及び(9)式でかこまれた範囲になるように
選択される。好ましくは、 log P=−0.037V+2.590…(10)式 及び log P=−0.037V+1.532…(11)式 の(10)式及び(11)式でかこまれた範囲である。
The applied voltage V (V) and applied power P (W / cm 2 · second) to the transparent sheet heating element in the method of the present invention are as follows: electrodes are formed on a sheet glass of dimensions 110 × 110 mm square and 3 mm thick; When the transparent surface heating element 15 having an effective conductive surface of 100 × 100 mm square manufactured as described above is pasted through the adhesive layer 3 and is performed under room temperature conditions, log P = −0.037V + 2.703. 8) and log P = −0.037V + 0.546 (9) Equation (8) is selected so as to fall within the range enclosed by the equations (8) and (9). Preferably, log P = −0.037V + 2.590 (10) and log P = −0.037V + 1.532 (11) The range enclosed by the expressions (10) and (11).

【0031】なお、上記寸法、厚みの板ガラスは通常の
車載用液晶素子の寸法、厚みに酷似しており、また、透
明面状発熱体も同様であって、熱伝達の点から、実用に
極めて近いものである。
The sheet glass having the above-mentioned dimensions and thickness is very similar to the dimensions and thickness of a normal liquid crystal element for a vehicle, and the same is true of the transparent sheet heating element. It is close.

【0032】上記(8)式を越えると透明面状発熱体の
表面温度が100℃を越えてしまい、透明面状発熱体自
体が破壊することが起る。特に透明面状発熱体の透明導
電性薄膜に微小のキズ、欠陥があった場合、また、電極
部に微小の欠陥があった場合に多く発生しやすい。更
に、高温になることにより液晶素子自体の破損、偏光板
の変質等好ましからざる問題が発生する。本発明(8)
式範囲内ではその発生がなくなるので好ましい。
When the value exceeds the expression (8), the surface temperature of the transparent sheet heating element exceeds 100 ° C., and the transparent sheet heating element itself is broken. In particular, when the transparent conductive thin film of the transparent sheet heating element has minute scratches and defects, and when the electrode portion has minute defects, it often occurs. Further, undesired problems such as breakage of the liquid crystal element itself and deterioration of the polarizing plate due to the high temperature occur. The present invention (8)
This is preferable within the range of the formula, since the occurrence is eliminated.

【0033】一方、本発明の(1)式未満になると、透
明面状発熱体の表面温度が低くなり、例えば温度上昇分
(=表面温度−室温)が10℃以下となり、従って、冬
期間駐車等で車輌温度が低くなっていた場合、液晶素子
の立上りが遅くなって、液晶素子の正常作動に時間がか
かることになるなどの問題が発生する。
On the other hand, when the value is less than the expression (1) of the present invention, the surface temperature of the transparent sheet-like heating element becomes low, for example, the temperature rise (= surface temperature−room temperature) becomes 10 ° C. or less. For example, when the vehicle temperature is low, the rise of the liquid crystal element is delayed, which causes a problem that it takes time for the liquid crystal element to normally operate.

【0034】従って、液晶素子、透明面状発熱体及び偏
光板等の構成材料、及び、液晶素子の作動の点から本発
明の範囲に設定されて行なわれる。
Therefore, the present invention is set within the scope of the present invention in terms of the constituent materials such as the liquid crystal element, the transparent sheet heating element and the polarizing plate, and the operation of the liquid crystal element.

【0035】次に実施例を示すが、本発明は何らこれに
限定されるものではない。
Next, examples will be shown, but the present invention is not limited to these examples.

【0036】[0036]

【実施例1】ポリエステルフイルム125μmの上にス
パッタリング法により真空度1.5×10-3Torrで
TiO2 薄膜を200オングストローム形成した後、真
空度2.0×10-3TorrでAg薄膜120オングス
トロームを積層し、次いでTiO2 薄膜を真空度1.5
×10-3Torrで積層して透明導電性フイルムを得
た。平行光線透過率は、波長550nmにおいて80%
であり、表面抵抗値は10.0Ω/□であった。
Example 1 A TiO 2 thin film was formed on a polyester film 125 μm by sputtering at a vacuum of 1.5 × 10 −3 Torr at 200 Å, and then at a vacuum of 2.0 × 10 −3 Torr, an Ag thin film of 120 Å. And then deposit the TiO 2 thin film at a vacuum of 1.5
A transparent conductive film was obtained by laminating at 10 -3 Torr. The parallel light transmittance is 80% at a wavelength of 550 nm.
And the surface resistance was 10.0 Ω / □.

【0037】次に、前記透明導電性フイルムの背面にア
クリレート系感圧接着剤40μmを加工して、粘着剤付
き透明導電性フイルムを得た。
Next, an acrylate-based pressure-sensitive adhesive of 40 μm was processed on the rear surface of the transparent conductive film to obtain a transparent conductive film with an adhesive.

【0038】上記の透明導電性フイルムを100mm×1
10mmに切断し、有効導電面が100mm×100mmにな
るようにするため、110mmの両端部を5mmづつ残し
て、アクリレート系透明絶縁層(帝国インキ製、TEC
―4440)を50mmの巾で、膜厚10μmになるよう
にスクリーン印刷の後、紫外光を照射して固化せしめ
た。
The above transparent conductive film is 100 mm × 1
Acrylic transparent insulating layer (manufactured by Teikoku Ink Co., Ltd., manufactured by Teikoku Ink Co., Ltd.)
(4440) was screen-printed so as to have a width of 50 mm and a film thickness of 10 μm, and then was solidified by irradiation with ultraviolet light.

【0039】その後、両端部へ5mm巾で、Agペースト
を10μm膜厚(乾燥後膜厚換算)で印刷し、100℃
で30分間乾燥し、第1層目の導電性樹脂層をえた。続
いて、巾2mm、長さ120mmアクリレート系粘着層20
μmを有する膜厚30μmの銅箔を、第1層目の導電性
樹脂の上に貼りつけ、更にその上に、5mm巾で第1層目
と全く同様にAgペーストを印刷して乾燥した。
Thereafter, an Ag paste was printed on both ends in a width of 5 mm with a thickness of 10 μm (converted to a thickness after drying),
For 30 minutes to obtain a first conductive resin layer. Subsequently, the acrylate-based adhesive layer 20 having a width of 2 mm and a length of 120 mm was used.
A copper foil having a thickness of 30 μm and a thickness of 30 μm was stuck on the conductive resin of the first layer, and an Ag paste was further printed thereon in a width of 5 mm in exactly the same manner as the first layer and dried.

【0040】更に上記の構成体の上に、アクリレート系
粘着剤(膜厚20μm)を有するポリエステルフイルム
25μm厚よりなる保護フイルムを全面に亘って被覆す
るようにラミネートして透明面状ヒーターをえた。かく
して得られたヒーターの可視光透過率は81%で、10
Ω/□であった。
Further, a protective film having a thickness of 25 μm and a polyester film having an acrylate-based pressure-sensitive adhesive (film thickness of 20 μm) was laminated on the above-mentioned structure so as to cover the entire surface to obtain a transparent sheet heater. The visible light transmittance of the heater thus obtained was 81% and 10%.
Ω / □.

【0041】このヒーターを110mm×110mm角の3
mm厚みの板ガラスに貼合せ、25℃の室温において、電
圧24Vで1.5時間通電したところ、ヒーターの表面
温度は測定室温からの温度差として80℃上昇してい
た。その際の印加パワーは50W/cm2 ・秒であった。
This heater is a 3 × 110 mm × 110 mm square.
When bonded to a plate glass having a thickness of mm and energized at a voltage of 24 V for 1.5 hours at a room temperature of 25 ° C., the surface temperature of the heater increased by 80 ° C. as a temperature difference from the measured room temperature. The applied power at that time was 50 W / cm 2 · second.

【0042】[0042]

【実施例2,3,4】実施例1において、Ag薄膜の膜
厚を90、200、200オングストロームとした以外
は、実施例1と全く同様にヒーターを作製し、電圧を印
加した結果、表1の通りであった。
Examples 2, 3, and 4 A heater was manufactured in exactly the same manner as in Example 1 except that the thickness of the Ag thin film was changed to 90, 200, and 200 angstroms. 1

【0043】[0043]

【比較例1】ポリエステルフイルム125μmの上に、
スパッタリング法によって、真空度3.0×10-3To
rr下でAu薄膜150オングストロームを積層した外
は、実施例1と全く同様に作製したヒーターを実施例1
と同様に評価した。結果は表1に示した。
Comparative Example 1 On a polyester film 125 μm,
The degree of vacuum is 3.0 × 10 −3 To by a sputtering method.
A heater manufactured in exactly the same manner as in Example 1 except that an Au thin film of 150 Å was laminated under rr was used.
Was evaluated in the same way as The results are shown in Table 1.

【0044】なお、Au薄膜を積層した透明導電性フイ
ルムの特性は、表面抵抗値は、本発明の範囲内であった
が、透明率が60%と低く本発明の範囲に満たなかっ
た。
As for the characteristics of the transparent conductive film on which the Au thin film was laminated, the surface resistance was within the range of the present invention, but the transparency was as low as 60%, which was below the range of the present invention.

【0045】[0045]

【比較例2,3,4】実施例3,4と全く同様に作製さ
れたヒーターを実施例1と同様に評価した結果を表1に
示す。
Comparative Examples 2, 3, and 4 Table 1 shows the results of evaluating heaters manufactured in exactly the same manner as in Examples 3 and 4 in the same manner as in Example 1.

【0046】比較例2では、板ガラスに貼合せたヒータ
ーが高温度のため破壊し通電不能となった。比較例3で
は同様にヒーターが破壊したのみならず、板ガラスが熱
のために破損を発生した。
In Comparative Example 2, the heater bonded to the plate glass was broken due to the high temperature and could not be energized. In Comparative Example 3, not only the heater was broken, but also the sheet glass was broken due to heat.

【0047】[0047]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の透明面状ヒーターの断面概念図を表わ
す。
FIG. 1 is a conceptual sectional view of a transparent sheet heater according to the present invention.

【図2】液晶素子と組合せて使用した場合の断面概念図
を表わす。
FIG. 2 is a conceptual cross-sectional view when used in combination with a liquid crystal element.

【図3】本発明における透明導電性薄膜の膜厚と表面抵
抗の範囲を示す概念図である。
FIG. 3 is a conceptual diagram showing a range of a film thickness and a surface resistance of a transparent conductive thin film according to the present invention.

【図4】本発明における透明導電性薄膜の積層した透明
導電性フイルムの透過率の範囲を示す概念図である。
FIG. 4 is a conceptual diagram showing a range of transmittance of a transparent conductive film in which a transparent conductive thin film is laminated according to the present invention.

【図5】本発明における透明面状発熱体の印加電圧と印
加パワーの範囲を示す概念図である。
FIG. 5 is a conceptual diagram showing a range of applied voltage and applied power of a transparent sheet heating element according to the present invention.

【符号の説明】 1 透明基板 2 透明導電性薄膜 3,8 接着層 4 透明絶縁層 5,7 導電性樹脂層 6 絶縁性接着層付き導電性金属箔 9 透明フイルム 10 電極 11,13 偏光板 12 液晶素子 14 バックライト[Description of Signs] 1 Transparent substrate 2 Transparent conductive thin film 3,8 Adhesive layer 4 Transparent insulating layer 5,7 Conductive resin layer 6 Conductive metal foil with insulating adhesive layer 9 Transparent film 10 Electrode 11,13 Polarizing plate 12 Liquid crystal element 14 Backlight

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭61−13494(JP,U) (58)調査した分野(Int.Cl.7,DB名) H05B 3/20 G02F 1/133 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Showa 61-13494 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) H05B 3/20 G02F 1/133

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明基板上に積層した透明導電性薄膜の
両端部に電極を設け、この電極に電圧を印加することに
より電極間の該透明導電性薄膜に熱を発生するようにし
た透明面状発熱体において、 (A)該透明導電性薄膜が、透明基板上に積層された透
明導電性薄膜の表面抵抗をR(Ω/□)とし、透明導電
性薄膜の膜厚をt(オングストローム)としたとき、 10≦R≦30において log t=−0.011R+2.065 …(1)式 log t=−0.011R+2.360 …(2)式 1≦R≦10において log t=−0.043R+2.386…(3)式 log t=−0.043R+2.643…(4)式 及び R=30 …(5)式 R= 1 …(6)式 の(1),(2),(3),(4),(5),(6)式
にかこまれた範囲であって、かつ、波長550nmで測
定された平行光線透過率T(%)が t≧−8T+690 …(7)式 の(7)式を満足するものであり、かつ(B)本文で定
義された方法により透明導電性薄膜の両端部に印加され
る電圧V(V)と、印加パワーP(W/cm・秒)と
の関係が、 log P=−0.037V+2.703…(8)式 及び log P=−0.037V+0.546…(9)式 の(8)式及び(9)式でかこまれた範囲にすることを
特徴とする透明面状発熱体。
1. A transparent surface in which electrodes are provided at both ends of a transparent conductive thin film laminated on a transparent substrate, and a voltage is applied to the electrodes to generate heat in the transparent conductive thin film between the electrodes. (A) The transparent conductive thin film is laminated on a transparent substrate, the surface resistance of the transparent conductive thin film is R (Ω / □), and the thickness of the transparent conductive thin film is t (angstrom). When 10 ≦ R ≦ 30, log t = −0.011R + 2.065 (1) Expression log t = −0.011R + 2.360 (2) Expression 1 ≦ R ≦ 10 log t = − 0.043R + 2.386 (3) Expression log t = −0.043R + 2.643 (4) Expression and R = 30 (5) Expression R = 1 (6) Expressions (1), (2), The range encompassed by equations (3), (4), (5), and (6) And the parallel light transmittance T (%) measured at a wavelength of 550 nm satisfies the expression (7) of t ≧ −8T + 690 (7), and is defined as (B) in the text. The relationship between the voltage V (V) applied to both ends of the transparent conductive thin film by the above method and the applied power P (W / cm 2 · second) is expressed by log P = −0.037 V + 2.703 (8) A transparent sheet heating element characterized by the following formula: log P = −0.037V + 0.546 (9) Formula (8) and (9).
JP35645591A 1991-12-25 1991-12-25 Transparent sheet heating element Expired - Fee Related JP3083617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35645591A JP3083617B2 (en) 1991-12-25 1991-12-25 Transparent sheet heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35645591A JP3083617B2 (en) 1991-12-25 1991-12-25 Transparent sheet heating element

Publications (2)

Publication Number Publication Date
JPH05174951A JPH05174951A (en) 1993-07-13
JP3083617B2 true JP3083617B2 (en) 2000-09-04

Family

ID=18449098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35645591A Expired - Fee Related JP3083617B2 (en) 1991-12-25 1991-12-25 Transparent sheet heating element

Country Status (1)

Country Link
JP (1) JP3083617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618793B2 (en) * 1994-09-19 2005-02-09 三井化学株式会社 Transparent sheet heater and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05174951A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
JP5023556B2 (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
KR101270784B1 (en) Electroconductive laminate, and electromagnetic wave shielding film and protective plate for plasma display
US6040056A (en) Transparent electrically conductive film-attached substrate and display element using it
EP1849594B1 (en) Conductive laminated body, electromagnetic wave shielding film for plasma display and protection plate for plasma display
CA1320527C (en) Bus bar arrangement for a heated transparency
JP2012009873A (en) Conductive stacked body, manufacturing method for the same, electromagnetic wave shielding film for plasma display, and protection plate for plasma display
JP2009059666A (en) Film with transparent conductive layer, flexible functional elements, and manufacturing methods therefor
JP2002326305A (en) Perspective electromagnetic wave shielding panel, method for manufacturing the same, and display device
WO2020022270A1 (en) Transparent electroconductive film for heater, and heater
JP4577734B2 (en) Low reflective resistive touch panel and method for manufacturing the same
JPH04289685A (en) Transparent sheet-like heater
JP3083617B2 (en) Transparent sheet heating element
JP2977169B2 (en) Transparent sheet heater
JP2002246788A (en) Transparent electromagnetic radiation shielding material
JP2770013B2 (en) Electroluminescence display device
JP2004304373A (en) Filter for display and method for manufacturing the same
JP2552505Y2 (en) Transparent sheet heater
JPH0112663B2 (en)
JPH1123804A (en) Electrically conductive antireflection film
JP3157344B2 (en) Method for manufacturing conductive sheet and display device
KR102326674B1 (en) Heating element and method for manufacturing thereof
JP3549392B2 (en) Display noise suppression method
JP2007165593A (en) Conductive laminate, electromagnetic wave shielding film for plasma display and protection board for plasma display
JP2002268568A (en) Manufacturing method for optical filter for display and plasma display panel on which the filter is installed
JPH09143680A (en) Transparent conductive film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees