JP3082314B2 - Ceramics with good lubricity, ceramic mechanism members, and method of manufacturing the same - Google Patents

Ceramics with good lubricity, ceramic mechanism members, and method of manufacturing the same

Info

Publication number
JP3082314B2
JP3082314B2 JP03159417A JP15941791A JP3082314B2 JP 3082314 B2 JP3082314 B2 JP 3082314B2 JP 03159417 A JP03159417 A JP 03159417A JP 15941791 A JP15941791 A JP 15941791A JP 3082314 B2 JP3082314 B2 JP 3082314B2
Authority
JP
Japan
Prior art keywords
silicon nitride
ceramic
mechanism member
pores
ceramic mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03159417A
Other languages
Japanese (ja)
Other versions
JPH04362071A (en
Inventor
志朗 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP03159417A priority Critical patent/JP3082314B2/en
Publication of JPH04362071A publication Critical patent/JPH04362071A/en
Application granted granted Critical
Publication of JP3082314B2 publication Critical patent/JP3082314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高速回転を要求される
軸受や摺動部材等の摩擦部分の機構部材に用いられる潤
滑性の良いセラミックスおよびこれをもちいたセラミッ
クス機構部材ならびにその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic member having good lubricity used for a mechanical member of a friction portion such as a bearing or a sliding member requiring high speed rotation, a ceramic member using the same, and a method of manufacturing the same. .

【0002】[0002]

【従来の技術】最近の工作機械に対しては、高速回転化
による加工能率と加工精度の向上の要求がますます強ま
っている。これに対応すべくアンギュラ玉軸受や摺動部
材などの軸受関係に窒化珪素他のセラミックスを使って
軽量化をはかり軸受への加重条件を改良することによっ
て高速回転化を可能としてきた。セラミックス自体は耐
熱性が良く従前の材料に比べて耐焼付性も良いため、自
己潤滑性の材料としてさまざまの分野で使用されてい
が、高速回転化の一層のニーズに対しては、セラミック
スでも対応が困難な状況になってきている。原因として
は接触面の油切れが大きいと考えられる。窒化珪素を用
いた自己潤滑性のセラミックスをシャフトや摺動膜のよ
うな機械部品に用いることが、特開昭61−28107
3号公報に示されている。このセラミックスは、酸化ア
ルミニウムおよび酸化イットリウムを加えた窒化珪素を
粉砕混合処理した後相互に連結した空隙を持つように等
圧プレスされ予備成形多孔質物品を形成する。次いでこ
の予備成形多孔質物品を焼結して焼結多孔質物品とし、
その空隙に軽質機械油や二硫化モリブデン等の潤滑材を
充填して自己潤滑性物質を形成するものである。このセ
ラミックスを用いた自己潤滑性物質では、相互に連結し
た空隙の口径は、窒化珪素粒子の粒径と成形圧力に基づ
いて変化するので焼結多孔質物品の表面にのみ制御され
た空隙を成形することは困難であった。
2. Description of the Related Art In recent machine tools, there is an increasing demand for improvement of machining efficiency and machining accuracy by high-speed rotation. To cope with this, the bearings such as angular contact ball bearings and sliding members have been reduced in weight by using silicon nitride and other ceramics to improve the load conditions on the bearings, thereby enabling high-speed rotation. Ceramics themselves are used in various fields as self-lubricating materials because they have good heat resistance and good seizure resistance compared to conventional materials. Is becoming a difficult situation. It is considered that the cause is that the contact surface is out of oil. Japanese Patent Application Laid-Open No. 61-28107 discloses the use of self-lubricating ceramics using silicon nitride for mechanical parts such as shafts and sliding films.
No. 3 discloses this. This ceramic is subjected to pulverization and mixing treatment of silicon nitride to which aluminum oxide and yttrium oxide have been added, and is then isostatically pressed to have interconnected voids to form a preformed porous article. Then, the preformed porous article is sintered to form a sintered porous article,
The gap is filled with a lubricant such as light mechanical oil or molybdenum disulfide to form a self-lubricating substance. In this self-lubricating substance using ceramics, the diameter of interconnected voids changes based on the particle size of silicon nitride particles and the molding pressure, so that controlled voids are formed only on the surface of the sintered porous article. It was difficult to do.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来のセラ
ミックスが持つ上記の欠点を除去し表面付近にのみ制御
された気孔を持つ多孔質を有したセラミックスを提供す
るとともに、従来の自己潤滑性多孔質物質を用いた機構
部材の前記欠点を除去し、機構部材を構成する焼結体の
表面付近に設けた多数の気孔の口径を制御し表面付近を
多孔質とし、それに潤滑剤を含侵させることにより摺動
部分の油切れの発生を防いだもので、工作機械などの高
速回転化に対応する潤滑性の良いセラミックス部材を提
供するものである。さらに、本発明は、このような構造
を持つセラミックス部材の製法を提供するものである。
SUMMARY OF THE INVENTION The present invention eliminates the above-mentioned drawbacks of the conventional ceramics and provides a ceramic having pores controlled only in the vicinity of the surface. The disadvantage of the mechanism member using a porous material is eliminated, the diameter of a number of pores provided near the surface of the sintered body constituting the mechanism member is controlled, the surface is made porous, and a lubricant is impregnated therein. By doing so, the occurrence of oil shortage in the sliding portion is prevented, and an object of the present invention is to provide a ceramic member having good lubricating properties corresponding to high-speed rotation of a machine tool or the like. Further, the present invention provides a method for producing a ceramic member having such a structure.

【0004】[0004]

【課題を解決するための手段】セラミックスの緻密な窒
化珪素の核部分の表面付近に、制御された気孔を持つ多
孔層を設ける。機構部材の核となる部分を一定の粒度に
制御された窒化珪素造粒粉で構成し、この核部分の周り
に粒度がそれぞれ制御された窒化珪素と窒化硼素の混合
粉の層を被せてCIP成形し、その成形体を焼結・加工
することにより、表面に制御された気孔を有する多孔層
を具備するセラミックス部材を作成し、その後この気孔
に潤滑剤を含侵させることによって、潤滑性の良いセラ
ミックス機構部材を得るものである。
A porous layer having controlled pores is provided near the surface of a nucleus portion of dense silicon nitride of ceramics. The core portion of the mechanism member is composed of a silicon nitride granulated powder having a controlled particle size, and a layer of a mixed powder of silicon nitride and boron nitride having a controlled particle size is applied around the core portion to form a CIP. By molding and sintering and processing the molded body, a ceramic member having a porous layer having controlled pores on its surface is created, and then the pores are impregnated with a lubricant to thereby improve lubricity. A good ceramic mechanism member is obtained.

【0005】[0005]

【作用】セラミックス表面にのみ人工的に口径と多孔度
が制御された気孔を設けることによって、機械強度を維
持しかつ表面に多孔性のセラミックスを提供でき、この
セラミックスを機構部材に用いるときには、気孔に潤滑
剤を含侵させることによって摺動部分の油切れの発生を
防ぐことができる。
[Function] By providing pores whose diameter and porosity are artificially controlled only on the ceramic surface, mechanical strength can be maintained and porous ceramics can be provided on the surface. Impregnation with a lubricant can prevent running out of oil in the sliding portion.

【0006】[0006]

【実施例】以下、本発明を説明する。本発明のセラミッ
クスは、緻密な窒化珪素(Si34)からなる核部分
と、この核部分の表面を覆う制御された気孔を有する窒
化珪素と窒化硼素(BN)の混合粉体(Si34−B
N)を焼結して得た多孔層からなる。本発明のセラミッ
クスの出発物質は、窒化珪素(Si34)である。窒化
珪素原料を粉砕した後、所望により結合剤を混合し造粒
機にかけて所望の粒径に造粒する。他方、窒化珪素造粒
粉に窒化硼素の粉を0.5〜5wt%の割合で添加させ
た混合粉を作成し適宜の粒径に造粒する。窒化珪素単味
の造粒体を中心としその周囲に窒化珪素と窒化硼素の混
合粉体からな造粒体を配置し、これを加圧成形し焼成し
た後窒化硼素を分解除去して、表面に制御された気孔を
もつ多孔層を有するセラミックスを製作する。気孔生成
の原理は以下の様に説明できる。窒化硼素は、窒化珪素
に比べ焼結温度がかなり高いため焼結時には窒化珪素粒
子の焼結は進行するが窒化硼素の存在する個所の焼結が
進まず相互に結合せずにそれぞれの粒子が独立して残
る、この残留する相互に結合していない窒化硼素を水蒸
気又は酸の存在下で熱することにより分解すると連続し
た一定の深さの気孔が生成する。気孔の口径は、窒化珪
素造粒粉の径および窒化硼素の粒径ならびに混合粉体の
混合割合によって変化するため、それぞれの造粒粉の粒
径および混合割合を制御することにより気孔の口径を制
御できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below. The ceramics of the present invention comprises a core portion made of dense silicon nitride (Si 3 N 4 ) and a mixed powder (Si 3 ) of silicon nitride and boron nitride (BN) having controlled pores covering the surface of the core portion. N 4 -B
N) is a porous layer obtained by sintering. The starting materials of the ceramic of the present invention is a silicon nitride (Si 3 N 4). After pulverizing the silicon nitride raw material, if necessary, a binder is mixed and the mixture is granulated to a desired particle size by a granulator. On the other hand, a mixed powder in which boron nitride powder is added at a ratio of 0.5 to 5 wt% to silicon nitride granulated powder is prepared and granulated to an appropriate particle size. A granule made of a mixed powder of silicon nitride and boron nitride is placed around a granule made of silicon nitride alone, and is pressed, baked, and then decomposed to remove boron nitride. A ceramic having a porous layer with controlled pores is manufactured. The principle of pore generation can be explained as follows. Since the sintering temperature of boron nitride is much higher than that of silicon nitride, sintering of silicon nitride particles proceeds during sintering, but sintering of the portion where boron nitride exists does not progress and each particle is not bonded to each other. Decomposition of this remaining, non-interconnected boron nitride by heating in the presence of water vapor or acid produces a continuous, constant depth pore. Since the pore diameter varies depending on the diameter of the silicon nitride granulated powder, the particle diameter of boron nitride, and the mixing ratio of the mixed powder, the diameter of the pores is controlled by controlling the particle diameter and the mixing ratio of each granulated powder. Can control.

【0007】以下、例1として、図1に示される緻密な
窒化珪素の核部分2を有しその表面に多孔層3を設けた
アンギュラー玉軸受1の製作を図2を用いて説明する。
まず、窒化珪素原料を粉砕機によって粉砕した後必要に
応じ結合剤を混合し造粒して単味の造粒粉を得る。この
造粒粉の粒子径はセラミックス機構部材1に要求される
核の強度ならびに成形圧力などを考慮して決定される。
この窒化珪素単味の造粒粉を加圧成形法など任意の成形
方法によって球状に成形し単味部分21を得る。他方、
窒化珪素の造粒粉に窒化硼素の粉を混合の後造粒して多
孔層用の材料を調整する。さきに成形した単味部分21
核として周りに窒化珪素と窒化硼素の混合粉体31を添
加しラバー型4の中に装填する。次いでこのラバー型4
を水または油が充填された加圧機のシリンダ5内に納め
ピストン6により圧力を加えるCIP法(ラバープレス
法)により均質に加圧成形し予備成形体を得る。この予
備成形体を通常の焼成炉に装填し焼成する。焼成された
窒化珪素球を仕上げ加工しさらに表面部分に残留する窒
化硼素を通常の方法によって分解除去することによっ
て、窒化珪素の核部分2の表面に制御された気孔を有す
る多孔層3を形成する。その後該気孔に軽質機械油また
は二硫化モリブデン等の潤滑剤を減圧下に充填し、表面
に制御された気孔をもつ多孔層を有する窒化珪素球から
なるアンギュラー玉軸受1を製作する。窒化珪素の分解
除去は、焼成の工程の後半において水蒸気または酸の存
在のもとに加熱を行うようにして連続して行うこともで
きるし、焼成完了後仕上げ加工の前に処理することもで
きる。
Hereinafter, as Example 1, the production of an angular ball bearing 1 having a dense silicon nitride core portion 2 shown in FIG. 1 and having a porous layer 3 on the surface thereof will be described with reference to FIG.
First, a silicon nitride raw material is pulverized by a pulverizer, and then, if necessary, a binder is mixed and granulated to obtain a plain granulated powder. The particle diameter of the granulated powder is determined in consideration of the strength of the core required for the ceramic mechanism member 1 and the molding pressure.
This single-part silicon nitride granulated powder is formed into a spherical shape by an arbitrary molding method such as a pressure molding method, and a single-part portion 21 is obtained. On the other hand,
After mixing the powder of boron nitride with the powder of silicon nitride, the mixture is granulated to prepare a material for the porous layer. Simple part 21 molded earlier
A mixed powder 31 of silicon nitride and boron nitride is added as a nucleus and charged into the rubber mold 4. Then this rubber mold 4
Is placed in a cylinder 5 of a press machine filled with water or oil, and uniformly press-formed by a CIP method (rubber press method) in which pressure is applied by a piston 6 to obtain a preform. The preform is loaded into a normal firing furnace and fired. The fired silicon nitride spheres are finish-processed, and the boron nitride remaining on the surface portion is decomposed and removed by an ordinary method to form a porous layer 3 having controlled pores on the surface of the silicon nitride core portion 2. . After that, the pores are filled with a lubricant such as light mechanical oil or molybdenum disulfide under reduced pressure to produce an angular ball bearing 1 made of silicon nitride spheres having a porous layer with controlled pores on the surface. The decomposition and removal of silicon nitride can be performed continuously by heating in the presence of water vapor or acid in the latter half of the firing step, or can be performed after the completion of firing and before finishing. .

【0008】次ぎに、例2として図3に示される緻密な
窒化珪素からなる核部分2の表面に多孔層3を設けた高
温環境下で使用する軸物の摺動部材8の製作を図4およ
び図5によって説明する。有底円筒形状のラバープレス
型4の内部に所望の径の円筒状の仕切り板7を位置させ
る。この仕切り板とプレス型との間に形成される環状の
空間には、所定の割合と粒度に調整された窒化珪素と窒
化硼素の混合粉体31を適宜加圧して充填し、仕切り板
7の内部空間には所望の粒径の窒化珪素単味の造粒粉2
1を適宜加圧して充填する。この後仕切り板7を取り除
きラバー型の上部を覆った後、水または油を充填した加
圧機のシリンダ5内に装填しピストン6で圧力を加えて
CIP成形を行い予備成形体を得る。この予備成形体を
焼成し窒化珪素の核部分2の表面に制御された気孔を有
する多孔層3を形成する。その後窒化硼素を分解除去し
た後研削加工することによって、表面に制御された気孔
を持つ多孔層3を有し緻密な窒化珪素の核部分2を有す
る成形体を得、該気孔に軽質機械油または二硫化モリブ
デン等の潤滑剤を減圧下に充填し、表面に制御された気
孔をもつ多孔層を有する潤滑性の良いセラミックスの軸
物摺動体8を得る。図6は、図1におけるアンギュラー
玉軸受1の表面にある多孔層の拡大図である。この図に
よれば、周囲が白くなっている粒状体9は窒化珪素の粒
子であり、各々の粒子は焼結によって相互に結合されて
機構部材としての強度と耐摩擦性を有するものであり、
黒い部分10は窒化珪素粒子の間に位置した窒化硼素を
加熱によって分解除去した部分で相互に連結した気孔が
を構成される、本発明による効果が理解できる。図7
は、第1図におけるアンギュラー玉軸受1の表面付近の
断面図である。この図によれば緻密な窒化珪素からなる
核部分2の表面に多孔層3が構成され、多孔層は窒化珪
素の粒子9が相互に結合しており、窒化珪素粒子9の間
に位置した窒化硼素を加熱によって分解除去して生じた
気孔が連結して表面に達していることが理解できる。
Next, as an example 2, a sliding member 8 for a shaft used in a high-temperature environment in which a porous layer 3 is provided on the surface of a core portion 2 made of dense silicon nitride as shown in FIG. This will be described with reference to FIG. A cylindrical partition plate 7 having a desired diameter is positioned inside a rubber press die 4 having a bottomed cylindrical shape. An annular space formed between the partition plate and the press die is filled with a mixed powder 31 of silicon nitride and boron nitride adjusted to a predetermined ratio and particle size by appropriately pressing the powder. In the internal space, a simple granulated powder of silicon nitride having a desired particle size 2
1 is filled by appropriately pressing. Then, after the partition plate 7 is removed and the upper part of the rubber mold is covered, it is loaded into a cylinder 5 of a press machine filled with water or oil, and pressure is applied by a piston 6 to perform CIP molding to obtain a preform. The preform is fired to form a porous layer 3 having controlled pores on the surface of the silicon nitride core 2. Thereafter, boron nitride is decomposed and removed, followed by grinding, to obtain a compact having a porous layer 3 having controlled pores on its surface and having a core portion 2 of dense silicon nitride. A lubricant such as molybdenum disulfide is filled under reduced pressure to obtain a lubricating ceramic shaft slide 8 having a porous layer having controlled pores on the surface. FIG. 6 is an enlarged view of the porous layer on the surface of the angular ball bearing 1 in FIG. According to this figure, the granular material 9 whose periphery is white is silicon nitride particles, and the respective particles are mutually bonded by sintering and have strength and friction resistance as a mechanical member,
The black portion 10 is a portion where the boron nitride located between the silicon nitride particles is decomposed and removed by heating to form interconnected pores, so that the effect of the present invention can be understood. FIG.
FIG. 2 is a sectional view near the surface of the angular ball bearing 1 in FIG. According to this figure, a porous layer 3 is formed on the surface of a core portion 2 made of dense silicon nitride, and the porous layer has silicon nitride particles 9 bonded to each other, and the porous layer 3 is located between the silicon nitride particles 9. It can be understood that pores generated by decomposing and removing boron by heating are connected to reach the surface.

【0009】[0009]

【発明の効果】核部分の表面に配置する窒化珪素と窒化
硼素との混合粉体の混合割合および粒度を制御すること
により、多孔層の気孔の口径と多孔度を自由に制御する
ことができるとともに、混合粉体の層を核部分の任意の
位置、任意の厚さで配置することにより、セラミックス
表面の任意の個所に大きさと深さを制御された気孔を持
つ多孔層を容易にかつ正確に形成することができる。
By controlling the mixing ratio and the particle size of the mixed powder of silicon nitride and boron nitride disposed on the surface of the core portion, the pore diameter and porosity of the porous layer can be freely controlled. At the same time, by arranging the layer of the mixed powder at an arbitrary position and an arbitrary thickness on the core, it is possible to easily and accurately form a porous layer having pores of controlled size and depth at any place on the ceramic surface. Can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るセラミックス製アンギュラー玉軸
受の断面図である。
FIG. 1 is a cross-sectional view of a ceramic angular contact ball bearing according to the present invention.

【図2】図1に示す本発明に係るセラミックス製アンギ
ュラー玉軸受の製造法を示す概念図である。
FIG. 2 is a conceptual diagram showing a method of manufacturing the ceramic angular contact ball bearing according to the present invention shown in FIG.

【図3】本発明に係るセラミックス製軸物摺動部材の断
面図である。
FIG. 3 is a sectional view of a ceramic shaft sliding member according to the present invention.

【図4】図3に示される本発明に係るセラミックス製軸
物摺動部材の製造過程を示す断面図である。
FIG. 4 is a cross-sectional view showing a process of manufacturing the ceramic shaft sliding member according to the present invention shown in FIG. 3;

【図5】図3に示される本発明に係るセラミックス製軸
物摺動部材の製造法を示す概念図である。
FIG. 5 is a conceptual diagram showing a method of manufacturing the ceramic shaft sliding member according to the present invention shown in FIG. 3;

【図6】図1に示された、本発明によりえられたアンギ
ュラー玉軸受の表面の状態を示す拡大図である。
FIG. 6 is an enlarged view showing the state of the surface of the angular ball bearing obtained by the present invention shown in FIG. 1;

【図7】図1に示された、本発明によりえられたアンギ
ュラー玉軸受の表面付近の断面の状態を示す拡大断面図
である。
FIG. 7 is an enlarged sectional view showing a state of a section near the surface of the angular ball bearing obtained by the present invention shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 アンギュラー軸受 2 窒化珪素からなる緻密な核部分 3 多孔層 4 ラバー型 5 プレス機シリンダ 6 プレス機ピストン 7 仕切り板 8 軸物摺動体 9 窒化珪素粒子 10 気孔 21 窒化珪素造粒体 31 混合粉体 DESCRIPTION OF SYMBOLS 1 Angular bearing 2 Dense core part made of silicon nitride 3 Porous layer 4 Rubber type 5 Press cylinder 6 Press piston 7 Partition plate 8 Shaft sliding body 9 Silicon nitride particles 10 Pores 21 Silicon nitride granules 31 Mixed powder

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B28B 3/00 102 C04B 41/87 F16C 33/62 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) B28B 3/00 102 C04B 41/87 F16C 33/62

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化珪素造粒粉を焼結して得た緻密な核
部分と、該核の表面に窒化珪素と窒化硼素の混合物を配
置し焼結して得た制御された口径と制御された深さの気
孔を有する多孔層とからなるセラミックス。
1. A dense core portion obtained by sintering granulated silicon nitride powder, and a controlled diameter and control obtained by sintering a mixture of silicon nitride and boron nitride on the surface of the core. And a porous layer having pores of a given depth.
【請求項2】 窒化珪素造粒粉を焼結して得た緻密な核
部分と、該核の表面に窒化珪素と窒化硼素の混合物を配
置し焼結して得た制御された口径と制御された深さの気
孔を有する多孔層と、該気孔に充填された潤滑剤とから
なるセラミックス機構部材。
2. A dense core portion obtained by sintering silicon nitride granulated powder, and a controlled diameter and control obtained by sintering a mixture of silicon nitride and boron nitride on the surface of the core. Ceramic member comprising a porous layer having pores of a given depth, and a lubricant filled in the pores.
【請求項3】 セラミックス機構部材はアンギュラー玉
軸受であることを特徴とする請求項2記載のセラミック
ス機構部材。
3. The ceramic mechanism member according to claim 2, wherein the ceramic mechanism member is an angular ball bearing.
【請求項4】 セラミックス機構部材は軸物摺動部材で
あることを特徴とする請求項2記載のセラミックス機構
部材。
4. The ceramic mechanism member according to claim 2, wherein the ceramic mechanism member is a shaft sliding member.
【請求項5】 該窒化珪素と窒化硼素の混合物は、0.
5〜5wt%の窒化硼素を含むことを特徴とする請求項
2記載のセラミックス機構部材。
5. The mixture of silicon nitride and boron nitride has a concentration of 0.1%.
The ceramic mechanism member according to claim 2, wherein the ceramic mechanism member contains 5 to 5 wt% of boron nitride.
【請求項6】 該潤滑剤は、軽質機械油または二硫化モ
リブデンであることを特徴とする請求項2記載のセラミ
ックス機構部材。
6. The ceramic mechanism member according to claim 2, wherein the lubricant is light mechanical oil or molybdenum disulfide.
【請求項7】 緻密な窒化珪素からなる核部分と、この
核部分の表面に配置された制御された口径と深さの気孔
を有する多孔層と、該多孔層に保持された潤滑剤からな
るセラミックス機構部材の製造方法であって、制御され
た粒度の窒化珪素造粒粉を中心部に配置しその表面部分
に制御された粒度の窒化珪素と窒化硼素の混合粉体配置
して加圧成形する工程と、この成形体を焼成する工程
と、焼結されない窒化硼素を分解除去することにより制
御された気孔を有する多孔層を形成する工程と、該気孔
に潤滑剤を充填する工程と、からなるセラミックス機構
部材の製造方法。
7. A core comprising dense silicon nitride, a porous layer having pores of controlled diameter and depth disposed on the surface of the core, and a lubricant held by the porous layer. A method of manufacturing a ceramic mechanism member, wherein a granulated powder of silicon nitride having a controlled particle size is arranged in a central portion, and a mixed powder of silicon nitride and boron nitride having a controlled particle size is arranged on a surface portion thereof and pressure-formed. And a step of firing this molded body, a step of forming a porous layer having controlled pores by decomposing and removing unsintered boron nitride, and a step of filling the pores with a lubricant. A method for manufacturing a ceramic mechanism member.
【請求項8】 該加圧成形工程は、CIP法であること
を特徴とする請求項7記載のセラミックス機構部材の製
造方法。
8. The method according to claim 7, wherein the pressure forming step is a CIP method.
【請求項9】 セラミックス機構部材はアンギュラー玉
軸受であることを特徴とする請求項7記載のセラミック
ス機構部材の製造方法。
9. The method for manufacturing a ceramic mechanism member according to claim 7, wherein the ceramic mechanism member is an angular ball bearing.
【請求項10】 セラミックス機構部材は軸物摺動部材
であることを特徴とする請求項7記載のセラミックス機
構部材の製造方法。
10. The method for manufacturing a ceramic mechanism member according to claim 7, wherein the ceramic mechanism member is a shaft sliding member.
【請求項11】 該窒化珪素と窒化硼素の混合物は、
0.5〜5wt%の窒化硼素を含むことを特徴とする請
求項7記載のセラミックス機構部材の製造方法。
11. The mixture of silicon nitride and boron nitride comprises:
8. The method for manufacturing a ceramic mechanism member according to claim 7, comprising 0.5 to 5% by weight of boron nitride.
【請求項12】 該潤滑剤は、軽質機械油または二硫化
モリブデンであることを特徴とする請求項7記載のセラ
ミックス機構部材の製造方法。
12. The method according to claim 7, wherein the lubricant is light mechanical oil or molybdenum disulfide.
【請求項13】 該潤滑剤の充填は、減圧下に行われる
ことを特徴とする請求項7記載のセラミックス機構部材
の製造方法。
13. The method according to claim 7, wherein the filling of the lubricant is performed under reduced pressure.
JP03159417A 1991-06-04 1991-06-04 Ceramics with good lubricity, ceramic mechanism members, and method of manufacturing the same Expired - Fee Related JP3082314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03159417A JP3082314B2 (en) 1991-06-04 1991-06-04 Ceramics with good lubricity, ceramic mechanism members, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03159417A JP3082314B2 (en) 1991-06-04 1991-06-04 Ceramics with good lubricity, ceramic mechanism members, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04362071A JPH04362071A (en) 1992-12-15
JP3082314B2 true JP3082314B2 (en) 2000-08-28

Family

ID=15693295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03159417A Expired - Fee Related JP3082314B2 (en) 1991-06-04 1991-06-04 Ceramics with good lubricity, ceramic mechanism members, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3082314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102408531B1 (en) * 2021-11-25 2022-06-14 주식회사 첨단랩 Manufacturing method of silicon nitride ball with toughness and strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102408531B1 (en) * 2021-11-25 2022-06-14 주식회사 첨단랩 Manufacturing method of silicon nitride ball with toughness and strength

Also Published As

Publication number Publication date
JPH04362071A (en) 1992-12-15

Similar Documents

Publication Publication Date Title
SE503343C2 (en) Mechanical sealing utilizing pore-containing material and pore-containing cemented carbide and method of making thereof
JPH05254914A (en) Method for making sintered body
CN114930041A (en) Ceramic rolling element with skeleton structure
JP3082314B2 (en) Ceramics with good lubricity, ceramic mechanism members, and method of manufacturing the same
RU1828521C (en) Method for manufacturing radial bearings
JPS6442374A (en) Oil-impregnated porous ceramic ball
CN108373331B (en) MoS2/SiC/CfComposite ceramic material and rolling body made of same
JP5203814B2 (en) Sintered oil-impregnated bearing material
JP3999468B2 (en) SLIDING BODY, MANUFACTURING METHOD THEREOF, AND MECHANICAL SEAL
JPS5919717A (en) Heat resistant non-oil feeding structure
RU2713254C1 (en) Method of making articles from metal powders
JPH0238540A (en) Production of nongreased sliding material
US6126710A (en) Method of producing a sintered slide bearing and slide bearing
JPH0668330B2 (en) Sliding member and manufacturing method thereof
JP2023513131A (en) Additive manufacturing of hollow or partially hollow rolling elements
JP2987867B2 (en) Ceramic composition and method for producing ceramic member using the composition
US4108939A (en) Porous polymeric bearing
JP4002406B2 (en) Slider and mechanical seal
JPH0518790B2 (en)
JPS6330526B2 (en)
JPH04280870A (en) Lightweight highly rigid ceramic and its production thereof
CN118574798A (en) Silicon nitride sintered body, and machine component and bearing using same
JPH0543360A (en) Sliding material and its production
JPH01111787A (en) Production of low-friction ceramics
JP2002275501A (en) Method for manufacturing sintered article

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees