JPH01111787A - Production of low-friction ceramics - Google Patents

Production of low-friction ceramics

Info

Publication number
JPH01111787A
JPH01111787A JP26650987A JP26650987A JPH01111787A JP H01111787 A JPH01111787 A JP H01111787A JP 26650987 A JP26650987 A JP 26650987A JP 26650987 A JP26650987 A JP 26650987A JP H01111787 A JPH01111787 A JP H01111787A
Authority
JP
Japan
Prior art keywords
sintered body
molding
friction
solvent
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26650987A
Other languages
Japanese (ja)
Inventor
Masaaki Horiuchi
正昭 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP26650987A priority Critical patent/JPH01111787A/en
Publication of JPH01111787A publication Critical patent/JPH01111787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain low-friction ceramics with can lower the coefft. of friction of sliding parts by temporally sintering the pressure molding of ceramics and machining the temporally sintered body, then injecting fine particles having self-lubricity together with a solvent to the surface of the sliding part thereof, heating this molding to remove the solvent and subjecting the molding to normal sintering at a high temp. CONSTITUTION:The powder raw material of ceramics is press molded by a press, etc., and after the molding thereof is temporally sintered, the temporally sintered body is finished to a prescribed size by machining and the fine particle of molybdenum disulfide or carbon having the self-lubricity are injected or impregnated together with the solvent onto or in the surface of the sliding part of such temporally sintered body after the finishing. The solvent is removed by heating this molding and thereafter, the molding is subjected to normal sintering at a high temp. The resultant low-friction ceramics is adequately usable as the sliding parts of bearings, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、軸受など摺動部品に使用できる低摩擦セラミ
ックスの製造方法に係り、特に摺動向に自己潤滑性に優
れた材料を含浸させた低摩擦セラミックスの製造方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing low-friction ceramics that can be used for sliding parts such as bearings, and in particular, the present invention relates to a method for manufacturing low-friction ceramics that can be used for sliding parts such as bearings, and in particular, the present invention relates to a method for manufacturing low-friction ceramics that can be used for sliding parts such as bearings. The present invention relates to a method for manufacturing low-friction ceramics.

[従来の技術] 従来、炭化ケイ素(Sick、窒化ケイ素(3i s 
Na >アルミノ (AJ220x )ジルコニア (
Zr 02 )など種々のセラミック材料が耐熱性、耐
摩耗性が要求される個所に使用されている。
[Prior Art] Conventionally, silicon carbide (Sick), silicon nitride (3i s
Na > Alumino (AJ220x) Zirconia (
Various ceramic materials such as Zr 02 ) are used where heat resistance and wear resistance are required.

[発明が解決しようとする問題点] しかしながら、これらセラミックスは、耐摩耗性、耐熱
性は優れているものの摩擦係数が0.3〜゛1と大であ
り軸受や摺動向或いは歯車などに直接使用することはで
きない問題がある。
[Problems to be solved by the invention] However, although these ceramics have excellent wear resistance and heat resistance, they have a large coefficient of friction of 0.3 to 1, making it difficult to use them directly for bearings, sliding movements, gears, etc. There are problems that cannot be done.

本発明は上記事情を考慮してなされたもので、摺動部品
の摩擦係数が低くできる低摩擦セラミックスの製造方法
を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a method for manufacturing low-friction ceramics that can lower the coefficient of friction of sliding parts.

し問題点を解決するための手段及び作用1本発明は、上
記目的を達成するために、ヒラミックスの粉末原料をプ
レスなどにより加圧成形し、その成形体を仮焼結させた
のら、その仮焼結体を機械加工にて所定の寸法に仕上げ
、その加工後の焼結体の摺動部表面に、二硫化モリブデ
ンやカーボンなど自己潤滑性のある微粒子を溶剤と共に
注入或いは浸漬し、これを加熱して溶剤を除去したのら
、a温で本焼成するようにしたものである。
Means and Effects for Solving the Problems 1 In order to achieve the above-mentioned object, the present invention provides a method in which powder raw material of Hiramix is pressure-molded using a press or the like, and the formed body is pre-sintered. The temporary sintered body is machined to a predetermined size, and self-lubricating fine particles such as molybdenum disulfide and carbon are injected or immersed in a solvent onto the sliding surface of the sintered body after machining. After this was heated to remove the solvent, the main firing was performed at temperature A.

上記構成によれば仮焼結した、仮焼結体を機械加工した
のちの仮焼結体は、未だセラミック粒子同士が緻密化さ
れておらず、多数の気孔を有する。
According to the above configuration, the ceramic particles in the pre-sintered body obtained by machining the pre-sintered body are not yet densified and have a large number of pores.

従って摺動部に該当する表面に、その気孔を通し、気孔
内に二硫化モリブデンやカーボンや窒化ボロンなどの微
細粉末を、溶剤を用いて加圧注入したり、浸漬したりす
ることで気孔内に自己潤滑性に優れた材料をその表面か
ら所定深さ充填する。その後溶剤を加熱除去したのち、
高温度で本焼成することでm動部表面の摩擦係数0.3
以下の低摩111t=ラミツクスを製造できる。このセ
ラミックスは、例えば300℃以上の雰囲気で軸受とし
て使用する場合、そのWIa部表面は摩擦係数が低く自
己潤滑性に優れているため、潤滑油などを必要とt!f
とも高温雰囲気に耐え、かつ軸(金属性)の摩耗が少な
い良好な軸受とすることができる。
Therefore, fine powder such as molybdenum disulfide, carbon, or boron nitride is injected under pressure using a solvent or dipped into the pores of the surface corresponding to the sliding part. A material with excellent self-lubricating properties is filled to a predetermined depth from the surface. Then, after removing the solvent by heating,
The coefficient of friction on the surface of m moving parts is 0.3 by firing at high temperature.
The following low-friction 111t lamics can be manufactured. When this ceramic is used as a bearing in an atmosphere of 300°C or higher, for example, the surface of the WIa portion has a low coefficient of friction and excellent self-lubricating properties, so lubricating oil or the like is not required! f
Both can withstand high-temperature atmospheres and provide good bearings with minimal wear on the shaft (metallic).

[実施例] 以下本発明の好適−実施例を添付図面に基づいて説明す
る。
[Embodiments] Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図に示すよう軸受の雌形となる型枠1内にセラミッ
クスの原料粉末2を充填し、これを雄型3でプレス加工
する。
As shown in FIG. 1, ceramic raw material powder 2 is filled in a mold 1 that is the female shape of the bearing, and then pressed using a male mold 3.

このセラミックス原料粉末は、炭化ケイ素粉、窒化ケイ
素粉、アルミナ粉などで、これをそのまま或いはバイン
ダを加えたり、さらにスラリー状で湿式でプレス加工し
てもよい。
The ceramic raw material powder may be silicon carbide powder, silicon nitride powder, alumina powder, etc., and may be used as it is, with a binder added thereto, or may be wet-pressed in the form of a slurry.

セラミックス原料粉末2を加圧成形摂、型枠1から脱型
し、その成形体を電気炉等で1200℃程度で仮焼結し
、第2図に示した仮焼結体4とする。
The ceramic raw material powder 2 is pressure-molded, removed from the mold 1, and the molded body is pre-sintered at about 1200° C. in an electric furnace or the like to form the pre-sintered body 4 shown in FIG.

この仮焼結体4は、ポーラス組織を有し、かつ機械加工
できる程度の硬麿で仮焼結されている。
This pre-sintered body 4 has a porous structure and is pre-sintered to a degree of hardness that can be machined.

この仮焼結体4を、図示の二点鎖1”1lffiで示す
よう機械加工により切削し、所定の寸法に加工する。
This pre-sintered body 4 is machined to a predetermined size as shown by the double-dot chain 1''1lffi shown in the figure.

次に、この機械加工した仮焼結体4は、その内面4aが
情などの摺動部となる揚台、二硫化モリブデンやカーボ
ン、グラファイト、窒化ボロンなどの自己潤滑性のある
微粒子を溶剤に混入し、これを仮焼結体4の内面4aに
加圧注入或いは浸漬する。
Next, this machined temporary sintered body 4 is prepared by using a solvent such as self-lubricating fine particles such as molybdenum disulfide, carbon, graphite, and boron nitride. This is injected under pressure or dipped into the inner surface 4a of the temporary sintered body 4.

第3図は、この仮焼結体4の内面4aを拡大した状態を
示す。
FIG. 3 shows an enlarged view of the inner surface 4a of this temporary sintered body 4. As shown in FIG.

まずセラミックス原料粉末2は仮焼結にて、各粒子同志
が結合した状態となるが、粒子間には多数の気孔5がそ
の機械加工された内面4aに開口している。この気孔5
を通して自己潤滑性のある微粒子6が気孔5内に充填さ
れる。
First, the ceramic raw material powder 2 is pre-sintered so that each particle is bonded to each other, and a large number of pores 5 are opened in the machined inner surface 4a between the particles. This pore 5
Through this, self-lubricating fine particles 6 are filled into the pores 5.

その後この仮焼結体4を200℃程度に加熱して気孔5
内に侵入した溶剤を蒸発或いは熱分解等にて除去する。
After that, this temporary sintered body 4 is heated to about 200°C to form pores 5.
The solvent that has entered the tank is removed by evaporation or thermal decomposition.

その後、この仮焼結体4を高温炉内で、例えば1800
℃に本焼成を行い、第4図に示したように内面4aに潤
滑層7を有する焼結体8が得られる。
Thereafter, this pre-sintered body 4 is heated in a high-temperature furnace, for example, at a temperature of 1800 m
The main firing is carried out at a temperature of 0.degree. C. to obtain a sintered body 8 having a lubricating layer 7 on the inner surface 4a as shown in FIG.

この本焼成により得られた焼結体8は、ダイヤモンド研
磨により最終的寸法精度に仕上げる。
The sintered body 8 obtained by this main firing is finished to final dimensional accuracy by diamond polishing.

またこの本焼成により焼結体8は、収縮するため本焼成
前に、その気孔5内にポリカーポジラン、ポリシラン、
コロイダルシリカ、アルミナゾルなどの液状或いはコロ
イド状のセラミック前駆体を含浸等により充填したのち
、本焼成することで収縮を少なくし、かつ緻密なセラミ
ックス焼結体とすることができる。
Also, since the sintered body 8 shrinks due to this main firing, polycarposilane, polysilane, etc.
After filling with a liquid or colloidal ceramic precursor such as colloidal silica or alumina sol by impregnation or the like, main firing is performed to reduce shrinkage and to form a dense ceramic sintered body.

このようにして得られた焼結体8は、その内面4aに二
硫化モリブデンなどからなる潤滑層7が形成され、かつ
その潤滑層7の摩擦係数は0.3以下であり、高温雰囲
気で良好な軸受として使用できる。またこの潤滑層7は
、薄くても全体の機械的強IQは、セラミック原料の焼
結体がもつため支障がない。
The sintered body 8 thus obtained has a lubricant layer 7 made of molybdenum disulfide or the like formed on its inner surface 4a, and the coefficient of friction of the lubricant layer 7 is 0.3 or less, making it suitable for use in high-temperature atmospheres. Can be used as a bearing. Further, even if this lubricating layer 7 is thin, there is no problem because the overall mechanical strength IQ is provided by the sintered body of the ceramic raw material.

この焼結体を^温真空炉内の開閉扉のスライド軸受とし
た場合、このスライド軸受は雰囲気が真空であり、かつ
数100℃の高温になり苛酷な使用条件となっている。
When this sintered body is used as a slide bearing for an opening/closing door in a high-temperature vacuum furnace, the slide bearing has a vacuum atmosphere and a high temperature of several 100 degrees Celsius, resulting in severe operating conditions.

従来このスライド軸受にはステンレス鋼を用いていたが
、本セラミックス焼結体を使用することで摩擦の低減お
よび摩耗寿命の延長ができる。
Conventionally, stainless steel was used for this slide bearing, but by using this ceramic sintered body, friction can be reduced and wear life can be extended.

[発明の効果1 以上説明してきたことから明らかなように本発明によれ
ば、次のごとき浸れた効果を発揮する。
[Advantageous Effects of the Invention 1] As is clear from the above explanation, the present invention provides the following significant effects.

(1)  セラミックの粉末原料を焼結するにおいて、
その仮焼結体に、摺動部に当る表面の気孔に自己、11
WI性のある微粒子を充填したのち、本焼成することで
、1g動部表面の摩擦係数を小さくでき、軸受など摺動
部品として使用できる。
(1) In sintering ceramic powder raw materials,
In the pre-sintered body, self-containing 11
After being filled with fine particles that have WI properties, the material is fired to reduce the coefficient of friction on the surface of the 1g moving part, allowing it to be used as sliding parts such as bearings.

(2)  潤滑層は摺動部表面のごく一部に形成し、か
つ全体強麿はそのセラミックスの性質そのままの特徴を
残すことができる。
(2) The lubricating layer is formed on a small portion of the surface of the sliding part, and the overall strength can retain the characteristics of the ceramic.

【図面の簡単な説明】[Brief explanation of the drawing]

第゛1図〜第4図は本発明の低摩擦セラミックスの製造
方法の製造工程を示す図である。 図中、1は型枠、2はセラミック原料、4は仮焼結体、
6は自己IiI?n性のある微粒子、7は潤滑層、8は
焼結体である。 特許出願人  石川島播磨重工業株式会社代理人弁理士
 絹  谷  信  雄 第3図 第4図
FIGS. 1 to 4 are diagrams showing the manufacturing steps of the method for manufacturing low-friction ceramics of the present invention. In the figure, 1 is a formwork, 2 is a ceramic raw material, 4 is a pre-sintered body,
6 is self IiI? 7 is a lubricating layer, and 8 is a sintered body. Patent applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative patent attorney: Nobuo Kinuya Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  セラミックの粉末原料をプレスなどにより加圧成形し
、その成形体を仮焼結させたのち、その仮焼結体を機械
加工にて所定の寸法に仕上げ、その加工後の仮焼結体の
摺動部表面に二硫化モリブデンやカーボンなどの自己潤
滑性のある微粒子を溶剤と共に注入或いは浸漬し、これ
を加熱して溶剤を除去した後高温で本焼成することを特
徴とする低摩擦セラミックスの製造方法。
The ceramic powder raw material is pressure-molded using a press, etc., the compact is pre-sintered, the pre-sintered body is machined to the specified dimensions, and the pre-sintered body is rubbed after the machining. Production of low-friction ceramics characterized by injecting or immersing self-lubricating fine particles such as molybdenum disulfide or carbon into the surface of a moving part with a solvent, heating it to remove the solvent, and then firing it at a high temperature. Method.
JP26650987A 1987-10-23 1987-10-23 Production of low-friction ceramics Pending JPH01111787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26650987A JPH01111787A (en) 1987-10-23 1987-10-23 Production of low-friction ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26650987A JPH01111787A (en) 1987-10-23 1987-10-23 Production of low-friction ceramics

Publications (1)

Publication Number Publication Date
JPH01111787A true JPH01111787A (en) 1989-04-28

Family

ID=17431896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26650987A Pending JPH01111787A (en) 1987-10-23 1987-10-23 Production of low-friction ceramics

Country Status (1)

Country Link
JP (1) JPH01111787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035501C (en) * 1993-12-04 1997-07-30 江西省萍乡市化工填料公司 Active porcelain ball filler
CN115594525A (en) * 2022-10-25 2023-01-13 崇义恒毅陶瓷复合材料有限公司(Cn) Wear-resistant sheet of centrifugal machine and preparation process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035501C (en) * 1993-12-04 1997-07-30 江西省萍乡市化工填料公司 Active porcelain ball filler
CN115594525A (en) * 2022-10-25 2023-01-13 崇义恒毅陶瓷复合材料有限公司(Cn) Wear-resistant sheet of centrifugal machine and preparation process thereof
CN115594525B (en) * 2022-10-25 2023-08-18 崇义恒毅陶瓷复合材料有限公司 Wear-resistant plate of centrifugal machine and preparation process thereof

Similar Documents

Publication Publication Date Title
US3925575A (en) Ceramic treating process and product produced thereby
US3789096A (en) Method of impregnating porous refractory bodies with inorganic chromium compound
US3222438A (en) Heat resisting material and method for producing it
JP2722182B2 (en) Porous SiC bearing material having three types of pore structure and method of manufacturing the same
Jr Cichocki et al. Tailored Porosity Gradients via Colloidal Infiltration of Compression‐Molded Sponges
JPH02243572A (en) Ceramic composite
JPH08501500A (en) Method for manufacturing ceramic-metal composite material
JPH01111787A (en) Production of low-friction ceramics
US5612265A (en) Composites for wear
Semen et al. A preceramic polymer route to molded SiC ceramic parts
US3394026A (en) Method of glazing silicon nitride shaped body and article
JPS5919717A (en) Heat resistant non-oil feeding structure
CN109234559B (en) Porous self-lubricating Fe2B-Fe metal ceramic composite material and preparation method thereof
JPS62148384A (en) Silicon carbide base composite material
JPH04293998A (en) Sliding member
JPS6237517A (en) Sliding member
EP0753101B1 (en) Engine components including ceramic-metal composites
JPH0781645B2 (en) Valve body for valve
JPS6353316A (en) Slide member and its manufacture
JP3082314B2 (en) Ceramics with good lubricity, ceramic mechanism members, and method of manufacturing the same
US4689189A (en) Composite of Si3 N4 by infiltration
JPH01300079A (en) Compressor vane
Chen et al. Novel Al/Al2O3 composite foams by direct oxidation conversion
JPH04342471A (en) Reacted sintered composite ceramic, its production and sliding member using the same
JPS61281086A (en) Sliding material