JP3078733B2 - 三次元曲率の測定方法 - Google Patents

三次元曲率の測定方法

Info

Publication number
JP3078733B2
JP3078733B2 JP07284489A JP28448995A JP3078733B2 JP 3078733 B2 JP3078733 B2 JP 3078733B2 JP 07284489 A JP07284489 A JP 07284489A JP 28448995 A JP28448995 A JP 28448995A JP 3078733 B2 JP3078733 B2 JP 3078733B2
Authority
JP
Japan
Prior art keywords
curvature
dimensional
measured
curved surface
paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07284489A
Other languages
English (en)
Other versions
JPH09101136A (ja
Inventor
幸宏 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP07284489A priority Critical patent/JP3078733B2/ja
Publication of JPH09101136A publication Critical patent/JPH09101136A/ja
Application granted granted Critical
Publication of JP3078733B2 publication Critical patent/JP3078733B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、曲面で構成された各種
物体や地形等の三次元曲率を測定する方法に関する。
【0002】
【従来の技術】物体の形を測定するとき、寸法計測の外
に球,立方体等といった大まかな形状を測定している。
しかし、曲率は、具体的な測定手段がないことから、実
際的には測定していないのが通常である。従来の方法で
は、二次元の曲率を測定できても、三次元の曲率を測定
することは極めて困難である。三次元曲率を測定する従
来法としては、界面からある距離だけ離れた位置に別の
曲面を仮定し、その仮想曲面の面積と元の曲面の面積と
を比較することにより、曲面の平均曲率Hやガウス曲率
Kを求めることが知られている。この場合、元の曲面の
面積をS0 とすると、そのときの仮想曲面の面積Sは、
元の曲面からの距離dを用いて次式で表される。ただ
し、距離dは、元の曲面の表側に仮想曲面を想定すると
きは正,裏側に仮想曲面を想定するときは負とする。こ
の式から平均曲率Hやガウス曲率Kが求められる。 S=S0 (1±2d〈H〉+〈K〉d2
【0003】
【発明が解決しようとする課題】しかし、各種曲面で構
成された複雑な物体の形状を測定しようとすると、単純
な寸法計測だけでは、物体の形状を十分に表すことがで
きない。しかも、自然界には、人体,動植物,地形等を
始めとして複雑な曲面で構成された物体の方が圧倒的に
多い。そこで、これら物体の形状を把握するためには、
三次元曲面を正確に測定する必要が生じる。この点、前
掲した三次元曲率を測定する従来法では、双曲面の曲率
測定が原理的に不可能であることに加え、局部的な曲率
を求めることができないという欠点もある。本発明は、
このような問題を解消すべく案出されたものであり、曲
面上の経路を測定又は計算し、それらの経路の交点で三
次元曲率を求めることにより、物体の形状に拘らず、全
体的或いは局部的な二次元及び三次元曲率を高精度で求
めることを目的とする。
【0004】
【課題を解決するための手段】本発明の三次元曲率の測
定方法は、その目的を達成するため、被測定対象である
物体の形状を測定して三次元形状データを得、この三次
元形状データから多角形集合体を再構成し、三次元曲率
を求める注目点p(0,0)を定め、その注目点p
(0,0)を通る複数の経路u,vを想定し、経路u,
vを表す関数式p(u,0),p(0,v)を求め、関
数式p(u,0),p(0,v)の一次微分pu (u,
0),pv (0,v)及び二次微分puu(u,0),p
vv(0,v)から次のパラメータE,F,G,L,Nを
求め、 E=pu ・pu , F=pu ・pv , G=pv ・pv L=puu・e, N=pvv・e (ただし、eは、(pu ×pv )/|pu ×pv |で表
される法線ベクトル) パラメータE,F,G,L,Nから次式のフィッティン
グ関数を使用して平均曲率H及びガウス曲率Kを求める
ことを特徴とする。 f(i,H,K)=4Fi 2{Lii −K(Eii −Fi 2)}2 −{Eii +Gii −2H(Eii −Fi 2)}2 ・・・・(3) (ただし、iは、経路の組合せを示す。) 測定精度を上げるためには、注目点p(0,0)を通る
3つ以上の経路を想定し、2種類以上の経路の組合せで
平均曲率H及びガウス曲率Kを求めることが好ましい。
【0005】
【作用】曲面は、一般にベクトルp(u,v)としてパ
ラメータ表示される。u,v座標の採り方は任意であ
り、微分幾何の第1,第2基本形式のパラメータE,
F,G,L,M,Nが次のように表される。ただし、e
は、(pu ×pv )/|pu×pv |で表される法線ベ
クトルであり、サブスクリプトは偏微分を意味する。 E=pu ・pu , F=pu ・pv , G=pv ・pv L=puu・e, M=puv・e N=pvv・e E,F,Gは、注目点を曲面に沿って移動させたとき、
注目点での接平面の変化の状況に対応する。また、L,
M,Nは、法線ベクトルが曲面に沿ってどのように変化
していくかに対応する。これらのパラメータは、平均曲
率H,ガウス曲率K等の幾何学的パラメータを表現する
のに好適なパラメータであり、特に平均曲率H及びガウ
ス曲率KはE,F,G,L,M,Nで単純に書き下すこ
とができる。
【0006】平均曲率H及びガウス曲率Kは、これらの
パラメータを使用して次式(1)及び(2)で表示され
る。ただし、κ1及びκ2は、曲面上のある点を通過する
測地線の曲率のうち、最大又は最小の主曲率である。 そこで、曲面上のある点を注目点p(0,0)とし、注
目点p(0,0)での曲率を算出することとする。先
ず、曲面p上で注目点p(0,0)を含む二つの経路
u,vを想定する。経路u,vは、曲面をカットし、そ
の断面上でのそれぞれv=0,u=0の場合の経路とし
て定義することができる。各経路u,vを曲線として適
当な関数でフィッティングさせることにより、曲面p
(u,0)及びp(0,v)が近似的に表される。更
に、一次微分及び二次微分によってpu(u,0),pv
(0,v),puu(u,0),pvv(0,v)が求めら
れるため、注目点p(0,0)におけるパラメータE,
F,G,L,Nが定まる。
【0007】平均曲率H及びガウス曲率Kは、経路の選
択に影響されない曲率であることから、前掲の式(1)
及び(2)から求めることができる。たとえば、式
(1)及び(2)を変形してパラメータMを消去すると
きにより、次式(3)をフィッティング関数としてH及
びKを求める。ただし、式(3)におけるiは、経路の
組合せを示す。 f(i,H,K)=4Fi 2{Lii −K(Eii −Fi 2)}2 −{Eii +Gii −2H(Eii −Fi 2)}2 ・・・・(3) このようにして、本発明によるとき、三次元的な曲面形
状を表すのに必要な平均曲率H及びガウス曲率Kが求め
られる。ここで、測定精度を向上させるためには、数種
類の経路を組み合わせて平均曲率H及びガウス曲率Kを
算出することが好ましい。具体的には、3つ以上の経路
を想定し、2種類以上の組合せで算出する。しかし、曲
面形状によっては、複数の組合せを考える必要なく、1
種類の組合せで十分に精度良く平均曲率H及びガウス曲
率Kを測定できる場合もある。
【0008】本発明は、たとえば図1に示す設備構成の
装置を使用し、各種物体の曲率が測定される。この三次
元曲率測定装置は、三次元形状測定装置1,その制御装
置2及び解析ユニット3から構成されている。三次元形
状測定装置1は、被測定物体4の表面の位置を三次元移
動可能な接触子5や光学的手段等によって測定する装置
である。接触子5を使用する場合、制御装置2からの信
号に従って接触子5が移動し、被測定物体4との接触/
非接触を検出する。検出信号は制御装置2に入力され、
被測定物体4の表面の位置が測定される。この操作を被
測定物体4の表面全体に対して行うことにより、被測定
物体4の表面形状が把握される。得られた形状データ
は、解析ユニット3に送られ、解析ユニット3で測定結
果から被測定物体4の形状をポリゴンと呼ばれる多角形
の集合体として再構成する。このとき、三次元曲率を測
定する注目点を選び、その注目点でのおおよその法線ベ
クトルを注目点の回りのポリゴンのそれぞれの法線ベク
トルの平均として算出し、暫定法線ベクトルを定める。
【0009】次いで、暫定法線ベクトルと注目点を含む
面によって切り取られる形状データを経路とし、三次ス
プライン関数等の適当な関数でフィティングさせる。暫
定法線ベクトルと注目点を含む面には、暫定法線ベクト
ルの周りに関する自由度があるので、角度を変えて断面
を計算し、複数の経路とその関数形を求める。このよう
にして求めた経路の組合せから、組合せそれぞれに対し
て前述したパラメータE,F,G,L,Nを求める。そ
して、これらパラメータE,F,G,L,Nを用い、前
掲(3)式から平均曲率H及びガウス曲率Kをフィッテ
ィングによって求める。求められた平均曲率H及びガウ
ス曲率Kは、種々の分野で利用される。たとえば、平均
曲率Hと表面張力とを組み合わせるとき、曲面の表及び
裏に加わる圧力の差に対応する値が求められる。したが
って、平均曲率Hからその曲面上での負荷のかかり具合
を知ることができる。逆に、負荷の許容量が判っている
場合には、その曲面の強度を推測できる。他方、ガウス
曲率Kは、曲面の畳み込まれ具合を表し、地図・地形等
の解析に重要な指標として使用される。たとえば、山間
を縫うように走る道路やカーブの多い道路では、曲面が
複雑になるほど地図上の距離と実際の距離の差が大きく
なる。このような地形の解析に際しガウス曲率Kを使用
すると、実際の距離や左右のカーブの量が正確に解析さ
れる。
【0010】
【実施例】
実施例1:本実施例では、球の三次元曲率を測定した。
測定に使用した球のデータを図2に三次元表示する。デ
ータの全体は立方体をしており、データのフレームの一
遍の長さを1とすると、球の半径は0.3である。デー
タは、64×64×40個の配列データから成り立って
おり、これはレーザ走査共焦点顕微鏡で測定されたデー
タに対応している。球の表面を細かな多角形で近似し、
三次元デジタイザで球の表面をトレースし、三次元形状
を測定した。測定された三次元形状から本発明に従って
解析した三次元曲率を図3に示す。このとき、球の表面
上の点を無作為に選び、曲率測定を適用した。平均曲率
を横軸に、ガウス曲率を縦軸にとり、結果をプロットし
た。また、選択する点を1000点とることによって、
曲率の分布を求めた。被測定物体が球であることから、
平均曲率がおおよそ3.3,ガウス曲率がおおよそ1
1.1になる筈であるが、データに多少のバラツキがみ
られた。バラツキの中心は、座標点で(3.5,10)
近傍に位置していた。
【0011】他方、従来の曲率測定に使用されている式
S=S0 (1±2d〈H〉+〈K〉d2 )に従って平均
曲率及びガウス曲率を求めた。ここでは図4に示すよう
に式の変数dを横軸にとり、dを変化させて仮想曲面の
面積Sを測定し、平均曲率H及びガウス曲率Kを見積も
っている。dの方向としては法線ベクトルが通常用いら
れるが、一般の物体では法線ベクトルの測定が困難であ
る。そこで、デジタル化した曲面のデータからおおまか
な法線ベクトルの方向を見積もって使用したが、その精
度は十分とはいえない。すなわち、従来法では、法線ベ
クトルの情報が必要であり、一般にはその測定が困難で
ある。この対比から、従来法では法線ベクトルの精度が
重要であるが、本発明によるとき、高精度の法線ベクト
ルを必要とせず、安定した結果が得られることが判る。
【0012】実施例2: 本実施例では、円柱の三次元曲率を測定した。測定に使
用した円柱のデータを図5に三次元表示する。データの
フレームの一遍の長さを1とすると、円柱の半径は0.
3である。円柱の長さはデータ全体であることから1で
あるが、これは三次元曲率に影響を与えない。本発明に
従って測定した三次元曲率を、実施例1と同じ形式で図
6に示す。被測定物体が円柱であることから、平均曲率
は1.3,ガウス曲率は0である。図6に示されるよう
に三次元曲率にバラツキがあるものの、分布の中心では
ほぼ正しい値になっている。この場合のバラツキは、計
算上の誤差に起因するものであり、曲面データの測定精
度によって改善される。他方、従来法で測定した三次元
曲率は、図7に示すように法線ベクトルが非常に小さい
領域において高精度で曲率を決定しているが、その範囲
が非常に狭い。これは、仮想曲面が実際の曲面から離れ
すぎると異常な値が得られることを示しており、仮想曲
面を想定すること自体が技術的な困難を含んでいること
を意味する。これに対し、本発明では、法線ベクトルを
必要としないことから、図6に示すように高精度の測定
結果が得られる。
【0013】実施例3:本実施例では、ギロイドの三次
元曲率を測定した。測定対象のギロイドは、平均曲率が
0であるような極小曲面で周期的な三次元ネットワーク
をもつ形状であり、そのデータを図8に三次元表示す
る。本発明に従って測定した三次元曲率を、実施例1と
同じ形式で図9に示す。測定結果は、平均曲率H≒0,
ガウス曲率K≒0に分布の中心があり、信頼性の高いも
のであることが判る。他方、従来法で測定した三次元曲
率を、実施例1と同じ形式で図10に示す。図10で
は、法線ベクトルの長さが非常に小さい領域で良好な結
果になっているようにみられるが、実際の面積測定の結
果から信頼性のある値でないことが判った。また、法線
ベクトルの長さが大きく精度のでやすい領域では、信頼
性のない値になっていた。このように平均曲率が実質上
0になると、実曲面と仮想曲面の面積の差が非常に小さ
くなることから、従来法では測定誤差に埋もれてしま
い、正しい曲率を求めることができなくなる。以上の各
実施例から、本発明に従った測定法では、いかなる図形
に対しても一定の精度で三次元曲率を測定できることが
確認された。
【0014】
【発明の効果】以上に説明したように、本発明において
は、被測定対象である物体の注目点を通る複数の経路を
想定し、その経路上の曲面データを測定することによっ
て、物体の二次元及び三次元的な曲率を求めている。こ
の方式によるとき、曲面全体を一つの関数で表示する必
要がなく、また正確な法線の方向を知ることを必要とせ
ずに、三次元曲率という幾何学的な量をパラメータとし
て物体形状を測定,認識できる。このようにして得られ
た測定結果は、たとえば物体の構造強度の計算,地図,
地形の解析等に利用される。
【図面の簡単な説明】
【図1】 本発明を実施するための設備構成を示す例
【図2】 本発明実施例1で被測定対象として使用した
【図3】 実施例1の球の平均曲率とガウス曲率との関
【図4】 実施例1の球を従来法で測定したときの法線
ベクトル長さと平均曲率,ガウス曲率との関係
【図5】 本発明実施例2で被測定対象として使用した
円柱
【図6】 実施例2の円柱の平均曲率とガウス曲率との
関係
【図7】 実施例2の円柱を従来法で測定したときの法
線ベクトル長さと平均曲率,ガウス曲率との関係
【図8】 本発明実施例3で被測定対象として使用した
ギロイド
【図9】 実施例3のギロイドの平均曲率とガウス曲率
との関係
【図10】 実施例3のギロイドを従来法で測定したと
きの法線ベクトル長さと平均曲率,ガウス曲率との関係

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 被測定対象である物体の形状を測定して
    三次元形状データを得、この三次元形状データから多角
    形集合体を再構成し、三次元曲率を求める注目点p
    (0,0)を定め、その注目点p(0,0)を通る複数
    の経路u,vを想定し、経路u,vを表す関数式p
    (u,0),p(0,v)を求め、関数式p(u,
    0),p(0,v)の一次微分pu (u,0),pv
    (0,v)及び二次微分puu(u,0),pvv(0,
    v)から次のパラメータE,F,G,L,Nを求め、 E=pu ・pu , F=pu ・pv , G=pv ・pv L=puu・e, N=pvv・e (ただし、eは、(pu ×pv )/|pu ×pv |で表
    される法線ベクトル) パラメータE,F,G,L,Nから次式のフィッティン
    グ関数を使用して平均曲率H及びガウス曲率Kを求める
    ことを特徴とする三次元曲率の測定方法。 f(i,H,K)=4Fi 2{Lii −K(Eii
    i 2)}2−{Eii +Gii −2H(Eii
    i 2)}2 (ただし、iは、経路の組合せを示す。)
  2. 【請求項2】 請求項1記載の注目点p(0,0)を通
    る3つ以上の経路を想定し、2種類以上の経路の組合せ
    で平均曲率H及びガウス曲率Kを求めることを特徴とす
    る三次元曲率の測定方法。
JP07284489A 1995-10-04 1995-10-04 三次元曲率の測定方法 Expired - Fee Related JP3078733B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07284489A JP3078733B2 (ja) 1995-10-04 1995-10-04 三次元曲率の測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07284489A JP3078733B2 (ja) 1995-10-04 1995-10-04 三次元曲率の測定方法

Publications (2)

Publication Number Publication Date
JPH09101136A JPH09101136A (ja) 1997-04-15
JP3078733B2 true JP3078733B2 (ja) 2000-08-21

Family

ID=17679184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07284489A Expired - Fee Related JP3078733B2 (ja) 1995-10-04 1995-10-04 三次元曲率の測定方法

Country Status (1)

Country Link
JP (1) JP3078733B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301791B2 (ja) * 2002-10-04 2009-07-22 三菱重工業株式会社 Cadシステム及びcadプログラム
US7346999B2 (en) * 2005-01-18 2008-03-25 General Electric Company Methods and system for inspection of fabricated components
JP6090849B2 (ja) * 2013-03-26 2017-03-08 国立大学法人横浜国立大学 曲率演算装置、曲率線書込装置、曲率演算方法およびプログラム

Also Published As

Publication number Publication date
JPH09101136A (ja) 1997-04-15

Similar Documents

Publication Publication Date Title
JP6529463B2 (ja) 道路構造化装置、道路構造化方法、及び道路構造化プログラム
US8054471B2 (en) System and method for analyzing displacements and contouring of surfaces
Newcombe et al. Kinectfusion: Real-time dense surface mapping and tracking
Huang et al. Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology
CN103678754B (zh) 信息处理装置及信息处理方法
EP0915434B1 (en) System for depicting surfaces using volumetric distance maps
US20050052452A1 (en) 3D computer surface model generation
CN103106632B (zh) 一种基于均值漂移的不同精度三维点云数据的融合方法
JP3059495B2 (ja) 三次元立体形状処理方式
Martin Estimation of principal curvatures from range data
CN105261061B (zh) 一种识别冗余数据的方法及装置
CN110849376A (zh) 基于公式的大圆航线二维地图显示方法
CN110135011B (zh) 一种基于视觉的柔性板振动形态可视化方法
JP3078733B2 (ja) 三次元曲率の測定方法
Raspanti et al. A vision‐based, 3D reconstruction technique for scanning electron microscopy: Direct comparison with atomic force microscopy
EP1899676B1 (en) Mapping a surface profile
JPH03255303A (ja) 多方向からのステレオペア像を用いた三次元立体像再構築方法
Gomółka et al. Restitution of 3D scenery with coherent and structured light scanner technologies
Guelch Line photogrammetry: a tool for precise localization of 3D points and lines in automated object reconstruction
JP2002116019A (ja) プローブ式形状測定装置
JP4323268B2 (ja) 形状測定装置、形状測定方法、形状解析装置
Antal et al. Virtually and depth sensor generated Moire pictures in screening and treatment of scoliosis
US6396585B1 (en) Method for measurement and verification of the optimum optical path for ring laser gyroscope
Martišek et al. Mathematical Principles of Object 3D Reconstruction by Shape-from-Focus Methods. Mathematics 2021, 9, 2253
Zhang Monocular Single Image Recovery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees