JP3064643B2 - Apparatus for detecting thickness of charged object and image forming apparatus - Google Patents

Apparatus for detecting thickness of charged object and image forming apparatus

Info

Publication number
JP3064643B2
JP3064643B2 JP4056914A JP5691492A JP3064643B2 JP 3064643 B2 JP3064643 B2 JP 3064643B2 JP 4056914 A JP4056914 A JP 4056914A JP 5691492 A JP5691492 A JP 5691492A JP 3064643 B2 JP3064643 B2 JP 3064643B2
Authority
JP
Japan
Prior art keywords
voltage
charging
charged
thickness
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4056914A
Other languages
Japanese (ja)
Other versions
JPH05223513A (en
Inventor
秀幸 矢野
晴美 久郷
順治 荒矢
正 古屋
典夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4056914A priority Critical patent/JP3064643B2/en
Priority to DE69325113T priority patent/DE69325113T2/en
Priority to EP93300895A priority patent/EP0555102B1/en
Publication of JPH05223513A publication Critical patent/JPH05223513A/en
Priority to US08/371,584 priority patent/US5485248A/en
Priority to HK98112948A priority patent/HK1011838A1/en
Application granted granted Critical
Publication of JP3064643B2 publication Critical patent/JP3064643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被帯電体の厚み検知装
置及び画像形成装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting the thickness of a member to be charged.
It relates 置及 beauty image forming apparatus.

【0002】[0002]

【従来の技術】例えば、電子写真装置・静電記録装置等
の画像形成装置においては、電子写真感光体・静電記録
誘電体等の被帯電体としての像担持体を帯電処理(除電
処理も含む)する装置として従来よりコロナ帯電器が使
用されてきた。
2. Description of the Related Art For example, in an image forming apparatus such as an electrophotographic apparatus or an electrostatic recording apparatus, an image carrier as an object to be charged such as an electrophotographic photosensitive member or an electrostatic recording dielectric is subjected to a charging process (the charge removing process is also performed). In the past, a corona charger has been used as an apparatus for performing the above.

【0003】近年は、電圧を印加した、ローラ形(帯電
ローラ)やブレード形(帯電ブレード)等の帯電部材
(導電性部材)を被帯電体の面に接触させて被帯電体面
を所定の極性・電位に帯電させる接触(直接)式の帯電
装置(例えば特開昭63−167380号公報等)が実
用化されてきている。
In recent years, a charging member (conductive member) such as a roller type (charging roller) or a blade type (charging blade) to which a voltage has been applied is brought into contact with the surface of the member to be charged so that the surface of the member to be charged has a predetermined polarity. A contact (direct) type charging device (for example, Japanese Patent Application Laid-Open No. 63-167380) for charging to a potential has been put to practical use.

【0004】接触帯電装置はコロナ帯電器に比べて、電
源の低圧化が図れる、オゾン等のコロナ放電生成物の発
生が極めて少ない(オゾンレス)等の利点を有してい
る。
[0004] The contact charging device has the advantages of lowering the pressure of the power supply and generating very little corona discharge products such as ozone (ozone-less) as compared with the corona charger.

【0005】帯電部材として導電ローラ(帯電ローラ)
を用いたローラ帯電方式が帯電の安定性という点から好
ましく用いられている。
A conductive roller (charging roller) as a charging member
Is preferably used from the viewpoint of charging stability.

【0006】また、帯電部材に対する印加電圧を直流電
圧(DC電圧)のみにして被帯電体面の帯電を行なう帯
電方式(以下、DC帯電と記す)と、帯電部材に対する
印加電圧を振動電圧(時間と共に電圧値が周期的に変化
する電圧)にして被帯電体の帯電を行なう帯電方式(以
下、AC帯電と記す、特開昭63−149669号公報
等)がある。
[0006] Further, a charging method (hereinafter, referred to as DC charging) in which the surface of a member to be charged is charged with only a DC voltage (DC voltage) applied to the charging member, and an oscillating voltage (with time) applied to the charging member. There is a charging method (hereinafter, referred to as AC charging, Japanese Patent Application Laid-Open No. 63-149669, etc.) in which an object to be charged is charged with a voltage whose voltage value changes periodically.

【0007】接触帯電は、帯電部材から被帯電体への放
電によって行なわれるため、帯電部材に或るしきい値電
圧以上のDC電圧を印加することによって被帯電体の帯
電が開始される。
[0007] Since contact charging is performed by discharging from the charging member to the member to be charged, charging of the member to be charged is started by applying a DC voltage higher than a certain threshold voltage to the charging member.

【0008】具体例を示すと、被帯電体として、厚さ2
5μmのOPC感光体に対して帯電ローラを加圧当接さ
せた場合には、図5に示すよに約640V以上のDC電
圧を帯電部材としての帯電ローラに印加すれば感光体の
表面電位が上昇し始め、それ以降は印加電圧に対して傾
き1で線形に感光体表面電位が増加していく。
[0008] A specific example will be described below.
When the charging roller is brought into pressure contact with the 5 μm OPC photoconductor, as shown in FIG. 5, if a DC voltage of about 640 V or more is applied to the charging roller as a charging member, the surface potential of the photoconductor becomes low. After that, the photosensitive member surface potential linearly increases with a slope of 1 with respect to the applied voltage.

【0009】上記の感光体の表面電位が上昇し始める約
640Vの印加DC電圧値が該感光体についての帯電開
始電圧Vthである。
The applied DC voltage of about 640 V at which the surface potential of the photosensitive member starts to rise is the charging start voltage Vth for the photosensitive member.

【0010】以上のことから、作像に必要とされる所望
の感光体表面電位(帯電電位)VdをDC帯電で得るた
めには、帯電ローラにはVd+VthのDC電圧を印加す
れば良いことになる。
From the above, in order to obtain a desired photosensitive member surface potential (charging potential) Vd required for image formation by DC charging, a DC voltage of Vd + Vth should be applied to the charging roller. become.

【0011】DC帯電は帯電ローラにこのDC電圧を印
加して被帯電体としての帯電処理をするものである。
In the DC charging, the DC voltage is applied to a charging roller to perform a charging process as an object to be charged.

【0012】これは以下のように説明される。図6の
(a)は導電性のドラム基体2bの外周面に被帯電体と
しての感光体2aの層を形成してなる感光体ドラム2に
帯電部材としての帯電ローラ1を加圧当接させた状態
の、該当接部分の拡大模型図である。8は帯電バイアス
印加電源である。
This is explained as follows. FIG. 6A shows a state in which a charging roller 1 as a charging member is brought into pressure contact with a photosensitive drum 2 in which a layer of a photosensitive member 2a as a member to be charged is formed on the outer peripheral surface of a conductive drum base 2b. FIG. 4 is an enlarged model diagram of a corresponding contact portion in a folded state. Reference numeral 8 denotes a charging bias application power supply.

【0013】帯電ローラ1と感光体ドラム2間の放電に
関与する微小ギャップの空気層と感光体ドラムを電気的
な等価回路に表現すると図6の(b)のように示され
る。帯電ローラ1の示すインピーダンスは感光体ドラ
ム、空気層のそれに比べて小さく無視できるためここで
は扱わない。このため、帯電機構は単に2つのコンデン
サーC1、C2で表現できることがわかる。
FIG. 6B shows an electrical equivalent circuit of an air layer having a small gap involved in the discharge between the charging roller 1 and the photosensitive drum 2 and the photosensitive drum. The impedance of the charging roller 1 is smaller than that of the photosensitive drum and air layer and can be ignored. Therefore, it can be understood that the charging mechanism can be simply expressed by the two capacitors C1 and C2.

【0014】この等価回路に直流電圧を印加すると、電
圧はそれぞれのコンデンサーのインピーダンスに比例配
分され、空気層に印加される電圧Vairは、 Vair=C2/(C1+C2) ・・・ (1)式 になる。
When a DC voltage is applied to this equivalent circuit, the voltage is proportionally distributed to the impedance of each capacitor, and the voltage Vair applied to the air layer is calculated as follows: Vair = C2 / (C1 + C2) (1) Become.

【0015】空気層にはパッシェンの法則に従う絶縁破
壊電圧があり、空気層の厚みをg[μm]とすると、V
airが 312+6.2g[V] ・・・ (2)式 を越えると放電が起き、帯電が行われる。
The air layer has a dielectric breakdown voltage according to Paschen's law. If the thickness of the air layer is g [μm], V
When air exceeds 312 + 6.2 g [V] (2), discharge occurs and charging is performed.

【0016】はじめて放電が起きる電圧は(1)式と
(2)式が等しくなった場合のgに関する二次方程式が
重解を持つときであるので(C1もgの関数)、このと
きのDC電圧値が放電開始電圧Vthに相当する。このよ
うにして求められた理論値のVthは実験値と非常に近い
値を取る。
Since the voltage at which discharge occurs for the first time is when the quadratic equation relating to g has a multiple solution when equations (1) and (2) are equal (C1 is also a function of g), The voltage value corresponds to the discharge starting voltage Vth . V th of the theoretical value thus obtained takes a value very close to the experimental value.

【0017】ただ、接触帯電においては、環境変動によ
って接触帯電部材の抵抗値が変動すること、被帯電体と
しての感光体が耐久により削れて(磨り減り)厚みが変
化して帯電開始電圧Vthが変動することなどのために、
DC帯電方式の場合は感光体の表面電位を所望のVd値
に安定化させることが難しい。
However, in the case of contact charging, the resistance value of the contact charging member fluctuates due to environmental fluctuations, and the photoreceptor as a member to be charged is scraped off (reduced to wear) due to durability and the thickness changes to change the charging start voltage V th. May fluctuate,
In the case of the DC charging system, it is difficult to stabilize the surface potential of the photoconductor to a desired Vd value.

【0018】AC帯電は、接触帯電の更なる帯電均一化
を行うことができるものであり、所望のVdに相当する
DC電圧に、好ましくは2×Vth以上のピーク間電圧V
PPを持つAC電圧を重畳した振動電圧(VDC+VAC)を
帯電部材に印加して被帯電体の帯電処理を行うもので、
これは図7に示すようにAC電圧による帯電電位のなら
し効果を目的としたもので、DC帯電よりも帯電電位の
均一化を図ることができる。
The AC charging can make contact charging even more uniform. The DC voltage corresponding to a desired Vd is preferably reduced to a peak-to-peak voltage V of 2 × Vth or more.
An oscillating voltage (V DC + V AC ) on which an AC voltage having PP is superimposed is applied to a charging member to perform a charging process on a member to be charged.
This is for the purpose of smoothing the charging potential by the AC voltage as shown in FIG. 7, and the charging potential can be made more uniform than the DC charging.

【0019】AC電圧の波形としては正弦波に限らず、
矩形波、三角波、パルス波でもよい。直流電源を周期的
にオンーオフすることによって形成された矩形波の電圧
を含む。
The waveform of the AC voltage is not limited to a sine wave.
A rectangular wave, a triangular wave, or a pulse wave may be used. Includes a square-wave voltage formed by periodically turning on and off a DC power supply.

【0020】[0020]

【発明が解決しようとしている課題】例えば、被帯電体
としての像担持体を繰り返して使用する転写方式の画像
形成装置においては、耐久通紙により被帯電体としての
像担持体(感光体層、誘電体層等)が次第に削れてい
き、その厚み(膜厚)が逐次減少していく。このような
被帯電体としての像担持体(以下、感光体と記す)の耐
久による厚み減少は感光体の帯電処理がDC帯電でもA
C帯電でも次のよな問題が発生してくる。
For example, in a transfer type image forming apparatus in which an image carrier as a member to be charged is repeatedly used, an image carrier as a member to be charged (photosensitive layer, The dielectric layer and the like are gradually scraped, and the thickness (film thickness) thereof is gradually reduced. The thickness reduction due to the durability of such an image bearing member (hereinafter, referred to as a photoreceptor) as a member to be charged is caused even when the charging of the photoreceptor is performed by DC charging.
The following problem also occurs with C charging.

【0021】即ち、感光体を一定電位Vdに帯電するた
めに必要な電荷量Qは、感光体の静電容量Cによって決
定され、この電荷量は感光体の厚みに対して反比例す
る。
That is, the amount of charge Q required to charge the photosensitive member to a constant potential Vd is determined by the capacitance C of the photosensitive member, and this charge amount is inversely proportional to the thickness of the photosensitive member.

【0022】従って、削れた感光体を同じVdにまで帯
電するためには初期より多い電荷(帯電電流)が必要な
事になる。しかし、帯電電流が大きくなると帯電部材の
インピーダンスによる電圧降下が顕著になってくる。
Therefore, in order to charge the scraped photoreceptor to the same Vd, more charge (charging current) is required than in the initial stage. However, as the charging current increases, the voltage drop due to the impedance of the charging member becomes significant.

【0023】一般的に帯電部材としての帯電ローラは、
感光体にピンホールが生じた場合にそこに帯電電流が集
中することを防ぐために抵抗層を有しており、ローラ抵
抗として105 〜106 Ωのインピーダンス値を持って
いる。また、低温低湿環境等で耐久通紙を行うと更にロ
ーラ抵抗が上昇することと、感光体の削れによる帯電電
流の増加が合わさると、Vdの降下量が100〜200
Vにもなり、画像カブリを生じる事がある。
Generally, a charging roller as a charging member is
When a pinhole is formed in the photoreceptor, a resistive layer is provided to prevent the charging current from concentrating thereon, and the roller has an impedance value of 10 5 to 10 6 Ω as a roller resistance. Further, if the durability is further increased in a low-temperature and low-humidity environment or the like, the roller resistance further increases, and the increase in the charging current due to the scraping of the photoreceptor is combined with a decrease in Vd of 100 to 200.
V, which may cause image fogging.

【0024】以上の事から良好な画像を得るためには感
光体の厚みは15μm程度以上必要であり、これ以上の
削れを生じた場合には安定した画像を保証する事ができ
ず、感光体の寿命を越したと考える事ができる。
As described above, in order to obtain a good image, the thickness of the photoreceptor needs to be about 15 μm or more. If the photoreceptor is further shaved, a stable image cannot be guaranteed. Can be considered beyond the lifetime of

【0025】しかし従来、感光体の厚みを直接知る手段
として有効なものは少なく、感光体ドラムの通算回転数
をカウントすることで間接的に感光体削れ量、即ち感光
体の寿命を算出する方法は、使用環境、クリーニング装
置の状態等で感光体削れ量は変化するため信頼性に欠け
るものであった。また、特開昭59−69774号公報
にはコロナ帯電器で帯電された電位をプローブで測定
し、この電位と感光体の1回転する間に流れ込む電流と
から、暗減衰特性によって感光体の膜厚を検知する方法
が記載されているが、温湿度により暗減衰特性は変わる
ため、このように暗減衰特性から膜厚を検知する方法で
は精度の高い検知は行なえない。
[0025] However the conventional, effective ones less as a means to know the thickness of the photosensitive member directly, a method of calculating indirect photoconductor scraping amount, i.e. the life of the photoreceptor by counting the total rotational speed of the photosensitive drum However, the photoreceptor shaving amount varies depending on the use environment, the state of the cleaning device, and the like, and thus lacks reliability. Also, Japanese Patent Application Laid-Open No. 59-69774
Measures the potential charged by the corona charger with a probe
And the potential and the current flowing during one rotation of the photoreceptor
To detect the thickness of photoreceptor by dark decay characteristics
Is described, but the dark decay characteristics change depending on the temperature and humidity.
Therefore, the method of detecting the film thickness from the dark decay characteristic in this way is
Cannot perform highly accurate detection.

【0026】そこで本発明は、環境の影響に強い精度の
高い厚み検知が可能である、信頼性の高い厚み検知装置
を提供することを目的とする。
Therefore, the present invention provides an accurate
It is an object of the present invention to provide a highly reliable thickness detection device capable of high thickness detection.

【0027】また、被帯電体もしくは被帯電体としての
像担持体の耐久による、厚み減少状態ないしは使用限界
(寿命)としての下限厚みに達したことを環境影響少な
精度よく安定に検知して被帯電体ないしは像担持体の
交換を促す警告などの適切な対策処理を講じ得て、被帯
電体もしくは像担持体が使用限界に達したにも拘らず引
き続き使用されることによる帯電不良や画像不良の発生
等を未然に防ぐことを可能にした画像形成装置を提供す
ることを目的とする。
Further, when the thickness of the member to be charged or the image bearing member as the member to be charged is reduced, or the minimum thickness as the service limit (life) is reached, the environmental impact is reduced.
High accuracy and stable detection and take appropriate countermeasures such as warnings to prompt replacement of the charged object or the image carrier. and to provide the images forming apparatus which allows prevent improper charging and image defects such as generation by the fact that the.

【0028】[0028]

【課題を解決するための手段】本発明は下記の構成を特
徴とする、被帯電体の厚み検知装置及び画像形成装置で
ある。
The present invention SUMMARY OF THE INVENTION is characterized by the following configuration is the thickness detection instrumentation 置及 beauty image forming apparatus member to be charged.

【0029】(1)被帯電体に接触する電極部材と、
電極部材に異なる複数の電圧を印加する電圧印加手段
と、電極部材に流れる電流を検知する電流検知手段とを
有し、電極部材に異なる電圧を印加して得られたV−I
特性に基づき被帯電体の厚みを検知することを特徴とす
る被帯電体の厚み検知装置。
[0029] (1) and the electrode member in contact with the member to be charged, this
Voltage applying means for applying a plurality of different voltages to the electrode members
When, a current detecting means for detecting a current flowing through the electrode member
VI obtained by applying different voltages to the electrode members
An apparatus for detecting a thickness of a member to be charged, wherein the thickness of the member to be charged is detected based on characteristics.

【0030】(2)電極部材に印加する電圧は直流電圧
成分と交流電圧成分を重畳した振動電圧であり、被帯電
体を所定の第1の電位V1から所定の第2の電位V2に
まで帯電させるときに電極部材に流れる直流電流の測定
により被帯電体の厚みを検知することを特徴とする
(1)に記載の被帯電体の厚み検知装置。
(2) The voltage applied to the electrode member is a DC voltage
Component and AC voltage component are superimposed on each other.
The body is changed from a predetermined first potential V1 to a predetermined second potential V2.
Of DC current flowing through electrode members when charging
The thickness of the member to be charged is detected by
The device for detecting the thickness of a member to be charged according to (1) .

【0031】(3)電極部材に印加する振動電圧の直流
電圧成分は被帯電体の所望する帯電電位に相当する電圧
であり、交流電圧成分は電極部材に直流電圧を印加した
ときの被帯電体の帯電開始電圧V th の2倍以上のピーク
間電圧をもつことを特徴とする(2)に記載の被帯電体
の厚み検知装置。
(3) DC of vibration voltage applied to electrode member
The voltage component is a voltage corresponding to a desired charging potential of the member to be charged.
The AC voltage component is a DC voltage applied to the electrode member.
At least twice as high as the charging start voltage V th of the member to be charged
(2) The apparatus for detecting the thickness of a member to be charged according to (2), wherein

【0032】(4)電極部材に印加する振動電圧の直流
電圧成分を第1の電圧V1と第2の電圧V2に切り換え
る手段を有することを特徴とする(2)または(3)に
記載の被帯電体の厚み検知装置。
(4) DC of vibration voltage applied to electrode member
Switching the voltage component between the first voltage V1 and the second voltage V2
The device for detecting the thickness of a member to be charged as described in (2) or (3), further comprising means for detecting the thickness of the member to be charged.

【0033】(5)被帯電体に接触する帯電部材と、こ
の帯電部材に異なる複数の電圧を印加する電圧印加手段
と、帯電部材に流れる電流を検知する電流検知手段とを
有し、帯電部材に異なる電圧を印加して得られたV−I
特性に基づき被帯電体の厚みを検知することを特徴とす
る被帯電体の厚み検知装置。
(5) A charging member which comes into contact with the member to be charged,
Voltage applying means for applying a plurality of different voltages to the charging member
And current detecting means for detecting a current flowing through the charging member.
And VI obtained by applying different voltages to the charging member.
Detecting the thickness of the member to be charged based on the characteristics.
Device for detecting the thickness of an object to be charged.

【0034】(6)帯電部材に印加する電圧は直流電圧
成分と交流電圧成分を重畳した振動電圧であり、被帯電
体を所定の第1の電位V1から所定の第2の電位V2に
まで帯電させるときに帯電部材に流れる直流電流の測定
により被帯電体の厚みを検知することを特徴とする
(5)に記載の被帯電体の厚み検知装置。
(6) The voltage applied to the charging member is a DC voltage
Component and AC voltage component are superimposed on each other.
The body is changed from a predetermined first potential V1 to a predetermined second potential V2.
Of DC current flowing through charging member when charging
The thickness of the member to be charged is detected by
(5) The apparatus for detecting a thickness of a member to be charged according to (5) .

【0035】(7)帯電部材に印加する振動電圧の直流
電圧成分は被帯電体の所望する帯電電位に相当する電圧
であり、交流電圧成分は帯電部材に直流電圧を印加した
ときの被帯電体の帯電開始電圧V th の2倍以上のピーク
間電圧をもつことを特徴とする(6)に記載の被帯電体
の厚み検知装置。
(7) DC of vibration voltage applied to charging member
The voltage component is a voltage corresponding to a desired charging potential of the member to be charged.
The AC voltage component was obtained by applying a DC voltage to the charging member.
At least twice as high as the charging start voltage V th of the member to be charged
(6) The apparatus for detecting the thickness of a member to be charged according to (6), wherein

【0036】(8)帯電部材に印加する振動電圧の直流
電圧成分を第1の電圧V1と第2の電圧V2に切り換え
る手段を有することを特徴とする(6)または(7)に
記載の被帯電体の厚み検知装置。
(8) DC of vibration voltage applied to charging member
Switching the voltage component between the first voltage V1 and the second voltage V2
The device for detecting the thickness of an object to be charged according to (6) or (7), further comprising:

【0037】(9)像担持体と、像担持体に接触する帯
電部材と、この帯電部材に異なる複数の電圧を印加する
電圧印加手段と、帯電部材に流れる電流を検知する電流
検知手段とを有し、帯電部材に異なる電圧を印加して得
られたV−I特性に基づき像担持体の厚みを検知するこ
とを特徴とする画像形成装置。
(9) Image Carrier and Band in Contact with Image Carrier
Applying a plurality of different voltages to the charging member and the charging member
Voltage applying means and current for detecting current flowing through the charging member
Detecting means for applying different voltages to the charging member.
Detecting the thickness of the image carrier based on the obtained VI characteristics.
An image forming apparatus comprising:

【0038】(10)帯電部材に印加する電圧は直流電
圧成分と交流電圧成分を重畳した振動電圧であり、像担
持体を所定の第1の電位V1から所定の第2の電位V2
にまで帯電させるときに帯電部材に流れる直流電流の測
定により像担持体の厚みを検知することを特徴とする
(9)に記載の画像形成装置。
(10) The voltage applied to the charging member is a DC voltage.
This is an oscillating voltage in which the voltage component and the AC voltage component are superimposed.
The holding body is moved from a predetermined first potential V1 to a predetermined second potential V2.
Measurement of the DC current flowing through the charging member when charging
The thickness of the image carrier is detected by a constant
The image forming apparatus according to (9).

【0039】(11)帯電部材に印加する振動電圧の直
流電圧成分は像担持体の所望する帯電電位に相当する電
圧であり、交流電圧成分は帯電部材に直流電圧を印加し
たときの像担持体の帯電開始電圧V th の2倍以上のピー
ク間電圧をもつことを特徴とする(10)に記載の画像
形成装置。
(11) The oscillating voltage applied to the charging member
The flowing voltage component is a voltage corresponding to a desired charging potential of the image carrier.
The AC voltage component is a DC voltage applied to the charging member.
At least twice the charging start voltage Vth of the image carrier
The image according to (10), wherein the image has a voltage between blocks.
Forming equipment.

【0040】(12)帯電部材に印加する振動電圧の直
流電圧成分を第1の電圧V1と第2の電圧V2に切り換
える手段を有することを特徴とする(10)または(1
1)に記載の画像形成装置。
(12) The vibration voltage applied to the charging member
Switching the flowing voltage component between a first voltage V1 and a second voltage V2
(10) or (1),
The image forming apparatus according to 1).

【0041】[0041]

【0042】[0042]

【0043】[0043]

【0044】[0044]

【0045】[0045]

【0046】[0046]

【0047】[0047]

【0048】[0048]

【0049】[0049]

【0050】[0050]

【0051】[0051]

【0052】[0052]

【0053】[0053]

【0054】[0054]

【0055】[0055]

【0056】[0056]

【0057】[0057]

【0058】[0058]

【0059】[0059]

【0060】[0060]

【0061】[0061]

【0062】[0062]

【0063】[0063]

【0064】<作 用> 即ち、被帯電体に電極部材(帯電部材)を接触させて電
圧を印加して被帯電体をDC帯電又はAC帯電させたと
き被帯電体の厚みと電極部材に流れるDC帯電電流には
後述の実施例に説明するように相関関係がある。本発明
はこれに着目して、被帯電体に接触する電極部材(帯電
部材)と、この電極部材に異なる複数の電圧を印加する
電圧印加手段と、電極部材に流れる電流を検知する電流
検知手段とを有し、電極部材に異なる電圧を印加して得
られたV−I特性に基づき被帯電体の厚みを検知するこ
とを特徴とする被帯電体の厚み検知装置構成により、被
帯電体の厚みを電気的に検知するものであり、簡単な装
置・回路構成で、環境の影響に強い精度の高い被帯電体
厚み検知が可能になる。
< Operation > That is, when an electrode member (charging member) is brought into contact with a member to be charged and a voltage is applied to the member to be charged in a DC or AC manner, the thickness of the member to be charged and the flow to the electrode member. The DC charging current has a correlation as described in the embodiments described later. Focusing on this, the present invention focuses on the electrode member (charging
And a plurality of different voltages are applied to the electrode member.
Voltage applying means and current for detecting current flowing through the electrode member
And detecting means for applying different voltages to the electrode members.
Detecting the thickness of the member to be charged based on the obtained VI characteristics.
The thickness of the member to be charged is electrically detected by the structure of the device for detecting the thickness of the member to be charged.
The thickness can be detected.

【0065】そして、被帯電体の帯電装置や転写方式の
画像形成装置にあっては、被帯電体もしくは被帯電体と
しての像担持体の耐久による、厚み減少状態ないしは使
用限界としての下限厚みに達したことを環境影響少なく
精度よく安定に検知して被帯電体ないしは像担持体の交
換を促す警告などの適切な対策処理を講じ得て、被帯電
体もしくは像担持体が使用限界に達したにも拘らず引き
続き使用されることによる帯電不良や画像不良の発生等
を未然に防ぐことが可能となる。
In a charging device for a member to be charged or an image forming apparatus of a transfer system, the thickness of the member to be charged or the image bearing member as the member to be charged is reduced to a reduced thickness or a lower limit thickness as a usage limit. reached was that the obtained take appropriate measures processing such as alert to exchange by detecting less <br/> precisely and stably environmental impact member to be charged or image bearing member, using the member to be charged or image bearing member Despite reaching the limit, it is possible to prevent the occurrence of charging failure or image failure due to continued use, etc.

【0066】[0066]

【実施例】【Example】

<第1の実施例>(図1〜図4) (1)画像形成装置例 図1は本発明に従う画像形成装置の一例の概略構成図で
ある。本例の画像形成装置は転写式電子写真プロセス利
用のレーザービームプリンタである。
First Embodiment (FIGS. 1 to 4) (1) Example of Image Forming Apparatus FIG. 1 is a schematic configuration diagram of an example of an image forming apparatus according to the present invention. The image forming apparatus of this embodiment is a laser beam printer using a transfer type electrophotographic process.

【0067】2は像担持体としての電子写真感光体ドラ
ムであり、矢示aの時計方向にプロセススピード(回転
周速度)95mm/secで回転駆動される。
Reference numeral 2 denotes an electrophotographic photosensitive drum as an image carrier, which is driven to rotate at a process speed (rotational peripheral speed) of 95 mm / sec in a clockwise direction indicated by an arrow a.

【0068】本例の感光体ドラム2は、直径30mmの
アルミニウムドラム2b(導電性ドラム基体)の外周に
OPC感光体2aの層を塗工形成したものであり、該感
光体2aは電荷発生層の上に厚さd=25μmの電荷輸
送層(Carrier Transfer Layer:以下、CT層と記す)
を配置したものである。
The photoreceptor drum 2 of this embodiment is formed by coating a layer of an OPC photoreceptor 2a on the outer periphery of an aluminum drum 2b (conductive drum base) having a diameter of 30 mm. A carrier transport layer (Carrier Transfer Layer: hereinafter referred to as CT layer) having a thickness d = 25 μm
Is arranged.

【0069】本実施例ではこのCT層のバインダーとし
てポリカーボネート樹脂を用いており、耐久通紙によっ
て該CT層は少しづつ削れを生じて厚みが減少してい
く。
In the present embodiment, a polycarbonate resin is used as a binder for the CT layer, and the CT layer is gradually scraped by durable paper passing, and its thickness decreases.

【0070】1は感光体ドラム2の一次帯電部材として
の帯電ローラであり、芯金1aと、その外周に形成した
導電性弾性体層(導電性ゴム層)1bと、更にその外周
に形成した高抵抗層1cからなる。
Reference numeral 1 denotes a charging roller as a primary charging member of the photosensitive drum 2, which is formed on a core 1a, a conductive elastic layer (conductive rubber layer) 1b formed on the outer periphery thereof, and further formed on the outer periphery thereof. It consists of a high resistance layer 1c.

【0071】芯金1aの両端部を軸受けさせて感光体ド
ラム2に略並行に配列して感光体ドラム2面に押圧接触
させてあり、本例の場合は感光体ドラム2の回転駆動に
伴ない従動回転する。
Both ends of the cored bar 1a are supported and arranged substantially in parallel with the photosensitive drum 2, and are brought into pressure contact with the surface of the photosensitive drum 2. In the case of this embodiment, the rotation of the photosensitive drum 2 is accompanied. No driven rotation.

【0072】8は帯電ローラ1に対する帯電バイアス印
加電源であり、該電源8により帯電ローラ1に対して芯
金1aを介して所定の帯電バイアスが印加されて回転感
光体ドラム2の感光体2aの外周面が所定の極性・電位
に接触帯電処理される。
Reference numeral 8 denotes a power source for applying a charging bias to the charging roller 1. The power source 8 applies a predetermined charging bias to the charging roller 1 via the cored bar 1 a to apply a charging bias to the photosensitive member 2 a of the rotating photosensitive drum 2. The outer peripheral surface is contact-charged to a predetermined polarity and potential.

【0073】帯電ローラ1の外周の高抵抗層1cは感光
体2aにピンホール等の低耐圧欠陥部が存在もしくは発
生した場合にこの部分に帯電電流が集中して帯電ローラ
表面の電位が降下して横筋状の帯電不良を生じるのを防
ぐ役目をする。
In the high-resistance layer 1c on the outer periphery of the charging roller 1, when a low-voltage defect such as a pinhole exists or occurs in the photosensitive member 2a, the charging current concentrates on this portion, and the potential on the surface of the charging roller drops. And prevents the occurrence of horizontal streak-like charging failure.

【0074】次いで、該回転感光体ドラム2の上記帯電
処理面に不図示のレーザービームスキャナから出力され
るレーザー光3(目的の画像情報の時系列電気デジタル
画素信号に応じて強度変調されたレーザー光)による走
査露光がなされることにより、感光体2aの露光部分が
除電されて感光体2a面に画像情報の静電潜像が形成さ
れていく。
Next, a laser beam 3 (laser intensity-modulated according to a time-series electric digital pixel signal of target image information) output from a laser beam scanner (not shown) is provided on the charged surface of the rotating photosensitive drum 2. By performing the scanning exposure using light, the exposed portion of the photoconductor 2a is discharged, and an electrostatic latent image of image information is formed on the surface of the photoconductor 2a.

【0075】次いで、その潜像がジャンピング現像方式
の現像装置4により一成分磁性トナーによって反転現像
され、感光体2a面の露光された部分がトナーの付着で
可視化される。
Next, the latent image is reversely developed with a one-component magnetic toner by a developing device 4 of a jumping development system, and the exposed portion of the surface of the photoconductor 2a is visualized by the adhesion of the toner.

【0076】そのトナー像が転写ローラ5の位置にて、
不図示の給紙機構から感光体ドラム2と転写ローラ5と
の圧接ニップ部(転写部)に所定のタイミングで給送さ
れた転写材9の面に対して転写されていく。本実施例で
は転写ローラ5に対して転写バイアス印加電源10によ
り3kVの転写バイアスを印加している。
At the position of the transfer roller 5, the toner image is
The image is transferred onto the surface of the transfer material 9 fed at a predetermined timing from a paper feed mechanism (not shown) to a pressure nip portion (transfer portion) between the photosensitive drum 2 and the transfer roller 5. In this embodiment, a transfer bias of 3 kV is applied to the transfer roller 5 by the transfer bias application power supply 10.

【0077】転写部を通った転写材9は感光体ドラム2
面から分離されて定着装置7へ送られて加圧・加熱によ
りトナー像の定着を受けて画像形成物(プリント、コピ
ー)として出力される。
The transfer material 9 that has passed through the transfer section is the photosensitive drum 2
The toner image is separated from the surface and sent to the fixing device 7, where the toner image is fixed by pressurizing and heating, and output as an image formed product (print, copy).

【0078】転写材9に対するトナー像転写後の感光体
ドラム2面はブレード式クリーニング装置6のクリーニ
ングブレード(ウレタンゴム製のカウンタブレード)に
より転写残りトナーや紙粉等の付着汚染物のかき落し除
去を受けて清浄面化されて繰り返して作像に供される。
After the transfer of the toner image onto the transfer material 9, the surface of the photosensitive drum 2 is scraped off by a cleaning blade (urethane rubber counter blade) of a blade-type cleaning device 6 to remove contaminants such as untransferred toner and paper powder. The surface is then cleaned and repeatedly provided for image formation.

【0079】本例のプリンタは、感光体ドラム2、帯電
ローラ1、現像装置4、クリーニング装置6の4つのプ
ロセス機器をプリンタ本体に対して一括して着脱交換自
在のプロセスカートリッジ11とした、カートリッジ着
脱方式のものである。
The printer of this embodiment is a cartridge in which four process devices, ie, the photosensitive drum 2, the charging roller 1, the developing device 4, and the cleaning device 6, are collectively attached to and detachable from the printer main body. It is a detachable type.

【0080】(2)感光体2aの厚み検知 先に図5で述べたように、帯電ローラ1にDC電圧を印
加した場合、感光体2aの帯電は印加電圧が帯電開始電
圧Vth以上で帯電を開始し、それ以降は印加電圧の増加
分ΔVと同じ割合で線形に感光体表面電位は上昇する
(ΔVd)。ここで仮に、印加電圧VがVth以下の領域
をA領域、Vth以上をB領域と呼ぶことにする。
(2) Detection of Thickness of Photoconductor 2a As described above with reference to FIG. 5, when a DC voltage is applied to the charging roller 1, the photoconductor 2a is charged when the applied voltage is equal to or higher than the charging start voltage Vth. Is started, and thereafter, the photoconductor surface potential increases linearly at the same rate as the increase ΔV of the applied voltage (ΔVd). Here if the applied voltage V is that the following areas V th is referred to as A region, V th or more B region.

【0081】このうちA領域は印加電圧が少なく空気層
に分割される電圧が、パッシェンの法則に基づく絶縁破
壊電圧を超える事ができないために帯電が行われていな
い事から本制御には無関係の領域である。
In the area A, the applied voltage is small and the voltage divided into the air layer cannot exceed the dielectric breakdown voltage based on Paschen's law. Area.

【0082】B領域に関しては、実際に帯電ローラ1か
ら感光体2aへの放電が行われており、印加電圧Vと感
光体表面電位Vdとは感光体の膜厚や環境に関わらず、
傾き1で線形に増加するためΔV=ΔVdである。
In the area B, the discharging from the charging roller 1 to the photosensitive member 2a is actually performed, and the applied voltage V and the photosensitive member surface potential Vd are not affected by the thickness and environment of the photosensitive member.
ΔV = ΔVd because the voltage increases linearly at the slope 1.

【0083】これに対し、図2で表されるように、印加
電圧Vと帯電電流Iの関係を表すグラフは、A領域で帯
電しない事い関しては同じであるが、B領域では感光体
2aの厚みdによって傾きが変化する。
On the other hand, as shown in FIG. 2, the graphs showing the relationship between the applied voltage V and the charging current I are the same with respect to the non-charging in the A region, but are the same in the B region. The inclination changes depending on the thickness d of 2a.

【0084】これは、感光体膜厚dによって、同じVd
にまで帯電するために必要な帯電電流Iが異なる事を示
している。感光体表面電位Vdと帯電電流Iに関して
は、以下のような計算が成り立つ。
This is due to the fact that the same Vd
This shows that the charging current I required for charging up to is different. With respect to the photoconductor surface potential Vd and the charging current I, the following calculation is established.

【0085】感光体2aの厚みをd、比誘電率をε、真
空中の誘電率をε0、接触帯電部材の有効帯電幅をL、
プロセススピードをVpとすると、ここから感光体2a
の静電容量Cは計算され、以下の関係式が導かれる。
The thickness of the photosensitive member 2a is d, the relative permittivity is ε, the permittivity in vacuum is ε0, the effective charging width of the contact charging member is L,
Assuming that the process speed is Vp, the photosensitive member 2a
Is calculated, and the following relational expression is derived.

【0086】帯電電荷量Q=∫I・dt=C・Vd →帯電電流I=d/dt(C・Vd) ここで、 dC/dt=ε・ε0・L・Vp/d、 Vd=Const. であるので、 帯電電流I=ε・ε0・L・Vp・Vd/d ・・・ (3) となる。(3)式においてε,ε0,L,Vp,dは定
数であり、B領域に関してはΔV=ΔVdであることが
判っているので、両者から ΔI=ε・ε0・L・Vp・ΔVd/d =ε・ε0・L・Vp・ΔV/d ・・・ (4) と導かれ、B領域に関してはV−Iグラフの直線の傾き
が ε・ε0・L・Vp/d で表わされる事がわかった。
Charged charge amount Q = ∫I · dt = C · Vd → Charge current I = d / dt (C · Vd) where dC / dt = ε · ε0 · L · Vp / d, Vd = Const. Therefore, the charging current I = ε · ε0 · L · Vp · Vd / d (3) In equation (3), ε, ε0, L, Vp, and d are constants, and it is known that ΔV = ΔVd for the B region. Therefore, ΔI = ε · ε0 · L · Vp · ΔVd / d = Ε · ε0 · L · Vp · ΔV / d (4) It is found that the slope of the straight line of the VI graph is represented by ・ · ε0 · L · Vp / d in the B region. Was.

【0087】そこで本実施例においては、感光体ドラム
2の一次帯電部材としての帯電ローラ1を感光体厚み検
知用の電極部材に兼用して、B領域において該帯電ロー
ラ1への印加電圧Vとその時に流れる帯電電流Iを2点
で測定し、この関係からV−I特性の直線の傾きを算出
し、感光体2aの厚みを検知する事とする。
Therefore, in this embodiment, the charging roller 1 as the primary charging member of the photosensitive drum 2 is also used as an electrode member for detecting the thickness of the photosensitive drum, and the voltage V applied to the charging roller 1 in the region B is reduced. The charging current I flowing at that time is measured at two points, the inclination of the straight line of the VI characteristic is calculated from this relationship, and the thickness of the photoconductor 2a is detected.

【0088】なお、本実施例では初期膜厚25μmの感
光体2aを用いるため、初期のVthは640Vであり、
感光体2aが削れるに従ってVthは減少するため印加電
圧640V以上であればB領域であるとみなすことがで
きる。
In this embodiment, since the photosensitive member 2a having an initial film thickness of 25 μm is used, the initial V th is 640 V,
Since Vth decreases as the photoreceptor 2a is scraped, if the applied voltage is 640 V or more, it can be regarded as the B region.

【0089】また、上記(3)式から判るように、Iと
Vdを測定する事によっても同様に膜厚を検知する事が
可能である。ただVdの測定には、プリンタ本体に感光
体表面電位測定器を別に設ける、また別の電源等のハー
ドが必要になる。
As can be seen from the above equation (3), it is possible to detect the film thickness similarly by measuring I and Vd. However, to measure Vd, a photoconductor surface potential measuring device is separately provided in the printer body, and another hardware such as a power supply is required.

【0090】以上の制御を行う際の条件であるが、測定
時に感光体電位はある決まった値でないと帯電電位と帯
電電流の関係が明らかにならないため、画像露光を行
い、電位を0にした状態で測定を行う。また、それぞれ
の電圧を印加する時間は、ノイズの影響等を除去するた
めに感光体ドラム1回転分づつとし、この間に測定され
る電流を平均している。
The conditions for performing the above control are as follows. Since the relationship between the charging potential and the charging current is not clear unless the potential of the photosensitive member is a certain value at the time of measurement, image exposure was performed and the potential was set to 0. Perform the measurement in the state. The time for applying each voltage is set to be equal to one rotation of the photosensitive drum in order to eliminate the influence of noise and the like, and the current measured during this period is averaged.

【0091】本制御による感光体2aの膜厚測定は感光
体ドラム2の前回転時に行なっており、画像形成に悪影
響を与えないようなシーケンスになっている。
The measurement of the film thickness of the photosensitive member 2a by this control is performed during the pre-rotation of the photosensitive drum 2, and the sequence is such that the image formation is not adversely affected.

【0092】本制御を行うためには、あらかじめV−I
特性の傾きと感光体2aの膜厚dの関係を測定する必要
がある。そこで、感光体2aの膜厚dがそれぞれ15μ
m、17μm、21μm、25μmである感光体ドラム
2を用いて測定を行った。
In order to perform this control, VI-
It is necessary to measure the relationship between the characteristic inclination and the film thickness d of the photoconductor 2a. Therefore, the thickness d of the photoconductor 2a is 15 μm each.
The measurement was performed using the photosensitive drums 2 having m, 17 μm, 21 μm, and 25 μm.

【0093】図2にその内の代表例として15μmと2
5μmの感光体膜厚dの場合のV−I特性を示した。
FIG. 2 shows a typical example of 15 μm and 2 μm.
The VI characteristics when the photoconductor thickness d is 5 μm are shown.

【0094】25℃×60%RHの通常環境(以下、N
/N環境と記す)、32.5℃×85%RHの高温高湿
環境(以下、H/H環境と記す)、15℃×10%RH
の低温低湿環境(以下、L/L環境と記す)において、
グラフの切片は変化するものの、傾きは一定であり、感
光体2aの膜厚dのみに依存する事が実験的にも立証さ
れた。
Normal environment of 25 ° C. × 60% RH (hereinafter referred to as N
/ N environment), high temperature and high humidity environment of 32.5 ° C. × 85% RH (hereinafter referred to as H / H environment), 15 ° C. × 10% RH
In low temperature and low humidity environment (hereinafter referred to as L / L environment),
Although the intercept of the graph changes, the inclination is constant, and it has been experimentally proved that the graph depends only on the film thickness d of the photoconductor 2a.

【0095】上記の5つの膜厚に対する傾きを基にし
て、膜厚dと傾きの関係をグラフにしたものを図3に実
験値グラフ(a)として示した。
FIG. 3 shows an experimental value graph (a) in which the relationship between the film thickness d and the gradient is graphed based on the gradients for the above five film thicknesses.

【0096】参考のため、前記(4)式において本実施
例でのプリンタに対応する数値としてε=3,ε0=
8.85×10-12 ,L=20cm,Vp=95mm/
secを代入して求めた理論式の値を理論式グラフ
(b)としてプロットして示した。若干の誤差はあるも
のの実験値との一致を見た。本実施例では理論式グラフ
(b)ではなく、実際に実験で求めた実験値グラフ
(a)に基づく制御を行う事とする。
For reference, in equation (4), ε = 3 and ε0 = as values corresponding to the printer in this embodiment.
8.85 × 10 −12 , L = 20 cm, Vp = 95 mm /
The value of the theoretical equation obtained by substituting sec is plotted and shown as a theoretical equation graph (b). Although there were some errors, they agreed with the experimental values. In the present embodiment, the control is performed based on the experimental value graph (a) actually obtained by the experiment instead of the theoretical expression graph (b).

【0097】本実施例では、図3のグラフ(a)の感光
体膜厚dとV−I特性の傾きの関係をプリンタ制御部
(不図示)のROMに記憶させておき、得られたV−I
特性の傾きから感光体膜厚dが計算できるような構成に
なっており、傾きが、良好な画像が得られる感光体膜厚
dの下限である15μmに相当する32×10-3μA/
Vを超えた場合にプリンタ前面の警告表示灯(不図示)
を点灯させるとともに、ホストコンピュータ(不図示)
に対しても感光体寿命を知らせる信号を送る構成になっ
ている。
In this embodiment, the relationship between the photoconductor thickness d and the gradient of the VI characteristic in the graph (a) of FIG. 3 is stored in the ROM of the printer control unit (not shown). -I
The photosensitive member thickness d can be calculated from the characteristic slope, and the slope is 32 × 10 −3 μA /, which is equivalent to 15 μm, which is the lower limit of the photosensitive member thickness d at which a good image can be obtained.
Warning indicator light (not shown) on the front of the printer when it exceeds V
And a host computer (not shown)
, A signal for notifying the life of the photoconductor is sent.

【0098】この警告表示或いは更には以後のプリンタ
動作が禁止されることによりオペレータは感光体(感光
体ドラム)が寿命に達したことを認識して、本例の場合
はプロセスカートリッジ11の新旧交換を行なうもの
で、感光体の寿命を精度よく検知して感光体が使用限界
に達しているにも拘らず使用されることによる帯電不良
や画像不良の発生を防止することができる。
The operator recognizes that the photosensitive member (photosensitive drum) has reached the end of its life by this warning display or further prohibiting the printer operation. In this case, the operator replaces the process cartridge 11 with a new or old one. This makes it possible to accurately detect the life of the photoreceptor and prevent the occurrence of charging failure and image defect due to use of the photoreceptor even though it has reached the usage limit.

【0099】(3)プリンタ耐久試験例 以下に、実際に耐久試験を行った例を示す。(3) Printer Endurance Test Example An example of an actual endurance test is shown below.

【0100】まず、プリンタの前回転時に、図4に示す
ように放電開始電圧Vth以上の2つの電圧V1,V2を
帯電ローラ1に印加し、それぞれ流れる電流I1,I2
を測定する。ここでV1,V2はB領域である必要があ
るため、本実施例では640V以上の電圧を選択し、 V1=1000[V]、 V2=1500[V] とした。
First, during the pre-rotation of the printer, two voltages V1 and V2 higher than the discharge starting voltage Vth are applied to the charging roller 1 as shown in FIG.
Is measured. Here, since V1 and V2 need to be in the B region, a voltage of 640 V or more is selected in this embodiment, and V1 = 1000 [V] and V2 = 1500 [V].

【0101】B領域でのV−I特性の傾きは (I2−I1)/(V2−V1) で計算される。The slope of the VI characteristic in the region B is calculated by (I2-I1) / (V2-V1).

【0102】耐久初期においては感光体膜厚dは25μ
mであったため、 I1=5.5μA, I2=14μA と測定され、傾きは17×10-3μA/Vであった。
In the initial stage of durability, the photosensitive member film thickness d is 25 μm.
m, it was determined that I1 = 5.5 μA and I2 = 14 μA, and the slope was 17 × 10 −3 μA / V.

【0103】これを、N/N環境において15000枚
通紙した時点で本制御を行ったところ、 I1=16μA, I2=32μA で、傾きが32×10-3μA/Vとなり、予め設定され
た値を上回ったためプリンタは警告表示灯を点灯し、ホ
ストコンピュータに対しても警告を行ないプリンタ使用
を停止させた。
When this control was performed when 15,000 sheets were passed in the N / N environment, I1 = 16 μA, I2 = 32 μA, and the slope became 32 × 10 −3 μA / V, which was set in advance. Since the value exceeded the value, the printer turned on the warning indicator light and issued a warning to the host computer to stop using the printer.

【0104】この時点で感光体膜厚dを測定したところ
約15μmであり、本制御が妥当である事が証明され
た。
At this time, when the thickness d of the photosensitive member was measured, it was about 15 μm, and it was proved that this control was appropriate.

【0105】このように、本実施例では接触帯電部材に
印加する電圧Vと、このときに流れる帯電電流Iを測定
する事によりV−I特性の傾きを測定し、感光体2aの
膜厚dを検知する事が可能になった。
As described above, in this embodiment, the gradient of the VI characteristic is measured by measuring the voltage V applied to the contact charging member and the charging current I flowing at this time, and the film thickness d of the photosensitive member 2a is measured. Can be detected.

【0106】これにより、従来適当な方法がなかった感
光体2aの膜厚(寿命)検知を、新たに特別な装置構成
等を取る事なく、簡単に行う事ができるようになった。
As a result, the film thickness (lifetime) of the photosensitive member 2a, which has not been conventionally provided with an appropriate method, can be easily detected without newly taking a special device configuration or the like.

【0107】本実施例では、一次帯電部材としての帯電
ローラ1を感光体膜厚検知における電極部材として兼用
させたものであるが、導電性の転写ローラ5を感光体膜
厚検知における電極部材として兼用して同様の制御を行
う事が可能である。
In this embodiment, the charging roller 1 as a primary charging member is used also as an electrode member for detecting the thickness of the photosensitive member, but the conductive transfer roller 5 is used as an electrode member for detecting the thickness of the photosensitive member. It is also possible to perform the same control as a double use.

【0108】また次の第2の実施例に示したように感光
体膜厚検知のための専用の電極部材を配設して同様の制
御を行う事も可能である。
Further, as shown in the second embodiment, the same control can be performed by disposing a dedicated electrode member for detecting the thickness of the photosensitive member.

【0109】<第2の実施例>(図8) 本実施例は感光体膜厚を検知するための専用の電極部材
を配設した装置例である。
<Second Embodiment> (FIG. 8) This embodiment is an example of an apparatus provided with a dedicated electrode member for detecting the thickness of the photosensitive member.

【0110】前述の第1の実施例のように感光体の一次
帯電部材としての帯電ローラ1を感光体膜厚を検知する
ための電極部材に兼用使用した場合は、第1の実施例で
述べたように2つの電圧V1,V2をそれぞれ印加する
必要がある。また、画像形成時には膜厚を検知する事が
できないという問題があるが、専用の電極部材を設ける
事によってこの問題は解決できる。
In the case where the charging roller 1 as the primary charging member of the photosensitive member is also used as the electrode member for detecting the thickness of the photosensitive member as in the first embodiment, the description will be made in the first embodiment. As described above, it is necessary to apply two voltages V1 and V2, respectively. Further, there is a problem that the film thickness cannot be detected at the time of image formation, but this problem can be solved by providing a dedicated electrode member.

【0111】本実施例はそのような構成の装置例であ
り、図8の(a)は装置要部の一部切欠き上面図、
(b)はその側面図である。
This embodiment is an example of an apparatus having such a configuration. FIG. 8A is a partially cutaway top view of a main part of the apparatus.
(B) is a side view thereof.

【0112】クリーニング装置6と帯電ローラ1との間
位置において、感光体ドラム回転方向aの上流側と下流
側とに、感光体除電手段としての露光ランプ12と、感
光体2a面に対する接触電極部材としての一対の第1と
第2の接触子13・14を配設してある。
At a position between the cleaning device 6 and the charging roller 1, an exposure lamp 12 as a photoconductor discharging means and a contact electrode member with respect to the surface of the photoconductor 2 a are provided upstream and downstream in the rotation direction a of the photoconductor drum. And a pair of first and second contacts 13 and 14 are provided.

【0113】第1と第2の接触子13・14は感光体ド
ラム2の母線方向に間隔をあけて配列して感光体2a面
に接触させてある。本実施例の各接触子はそれぞれ幅1
cmのブレード状の導電部材であり、ブレードの材質は
ウレタンゴムの表面に導電性を付与したウレタン塗料
(日本アチソン製、商品名エムラロン)を厚さ20μm
で塗布したものである。
The first and second contacts 13 and 14 are arranged at intervals in the generatrix direction of the photosensitive drum 2 and are in contact with the surface of the photosensitive member 2a. Each contact of this embodiment has a width of 1
cm is a blade-shaped conductive member, and the material of the blade is a urethane paint (trade name: EMURALON, manufactured by Acheson Japan) with a thickness of 20 μm, which is made of urethane rubber.
Is applied.

【0114】感光体除電手段12はDCオフセット電圧
を0VにしたAC帯電器を用いる事も可能である。接触
子13・14はローラ形状・パッド形状等の形態のもの
を用いる事も可能である。
As the photosensitive member discharging means 12, an AC charger with a DC offset voltage of 0V can be used. The contacts 13 and 14 may be in the form of a roller, a pad, or the like.

【0115】第1と第2の2つの接触子13・14には
それぞれ別の電圧を印加されており、流れる電流を測定
する事ができるような構成になっている。印加する電圧
は図6に示すB領域である事が必要であるため、本実施
例では第1の接触子13には1000V、第2の接触子
14には1500V、をそれぞれ印加した。
Different voltages are applied to the first and second two contacts 13 and 14, respectively, so that the flowing current can be measured. Since the voltage to be applied needs to be in the region B shown in FIG. 6, 1000 V is applied to the first contact 13 and 1500 V is applied to the second contact 14 in this embodiment.

【0116】本実施例のプリンタ構成は第1の実施例の
プリンタ(図1)に示したものと同様であるが、帯電ロ
ーラ1による感光体ドラム2の帯電は下記のDC電圧と
AC電圧との重畳振動電圧の印加によるAC帯電とし
た。
The configuration of the printer of this embodiment is the same as that of the printer of the first embodiment (FIG. 1), but the charging of the photosensitive drum 2 by the charging roller 1 is performed by the following DC voltage and AC voltage. AC charging by application of the superposed oscillation voltage.

【0117】DC電圧:−700V(Vdに相当) AC電圧:ピーク間電圧VPP=1900V 周波数f=550Hz 正弦波 この装置を用いて、感光体2aの膜厚dが予め15μm
である事が判明している感光体ドラム2を用いて測定を
行った。測定中は露光ランプ12を点灯させてあり、膜
厚測定用の第1及び第2の接触子13・14を通過する
ときの感光体2aの表面電位は約0Vであった。
DC voltage: -700 V (corresponding to Vd) AC voltage: Peak-to-peak voltage V PP = 1900 V Frequency f = 550 Hz Sine wave Using this apparatus, the thickness d of the photosensitive member 2a is 15 μm in advance.
The measurement was performed using the photosensitive drum 2 which was found to be the following. During the measurement, the exposure lamp 12 was turned on, and the surface potential of the photoconductor 2a when passing through the first and second contacts 13 and 14 for measuring the film thickness was about 0V.

【0118】この時、1000VのDC電圧が印加され
ている第1の接触子13には0.8μA、1500Vの
DC電圧が印加されている第2の接触子14には1.6
μAの電流が流れた。この値によって計算されたV−I
特性の傾きは1.6×10-3μA/Vであった。
At this time, 0.8 μA is applied to the first contact 13 to which a DC voltage of 1000 V is applied, and 1.6 to the second contact 14 to which a DC voltage of 1500 V is applied.
A current of μA flowed. VI calculated by this value
The slope of the characteristic was 1.6 × 10 −3 μA / V.

【0119】前記(4)式で表されるようにV−I特性
の傾きは有効帯電幅Lに比例するため、この数値は第1
の実施例において同一条件で得られた傾き32×10-3
μA/Vの1/20ということで対応が取れる。
Since the slope of the VI characteristic is proportional to the effective charging width L as expressed by the above equation (4), this value is the first
32 × 10 −3 obtained under the same conditions in the embodiment of FIG.
Correspondence can be taken with 1/20 of μA / V.

【0120】以上の結果から、本実施例においては、計
算された傾きが1.6×10-3μA/Vを上回ったとき
が感光体の膜厚が寿命である15μmであるとみなし、
警告を与えることとする。
From the above results, in this embodiment, when the calculated slope exceeds 1.6 × 10 −3 μA / V, it is considered that the film thickness of the photoconductor is 15 μm, which is the lifetime, and
A warning shall be given.

【0121】実際に、H/H環境で12000枚通紙を
行ったところ、傾きが1.6×10-3μmA/Vを超え
たため、警告表示がなされ、プリンタの作動禁止がなさ
れた。この時の感光体膜厚を測定したところ15μmで
あり、本方法が妥当である事が立証された。
Actually, when 12,000 sheets were passed in the H / H environment, the inclination exceeded 1.6 × 10 −3 μmA / V, so a warning was displayed and the operation of the printer was prohibited. When the film thickness of the photoreceptor at this time was measured, it was 15 μm, which proved that the present method was appropriate.

【0122】このように、本実施例においては、専用の
感光体膜厚測定用の接触電極部材13・14を設ける事
によって、画像形成中においても感光体膜厚を検知する
事が可能になり、また、一次帯電部材としての帯電ロー
ラ1に感光体膜厚検知用の電極部材を兼用させる機能を
持たせた第1の実施例のように2段階の電圧を別に印加
するような制御を行う必要がなくなった。
As described above, in this embodiment, the provision of the dedicated contact electrode members 13 and 14 for measuring the thickness of the photosensitive member makes it possible to detect the thickness of the photosensitive member even during image formation. Further, as in the first embodiment in which the charging roller 1 serving as the primary charging member has a function of also using the electrode member for detecting the thickness of the photosensitive member, control is performed such that two-stage voltages are separately applied. No longer needed.

【0123】<第3の実施例>(図9〜図12) (1)画像形成装置の構成 画像形成装置としてのプリンタ構成は前述の第1の実施
例のプリンタ(図1)と同様である。
Third Embodiment (FIGS. 9 to 12) (1) Configuration of Image Forming Apparatus The configuration of a printer as an image forming apparatus is the same as that of the printer of the first embodiment (FIG. 1). .

【0124】ただし、本実施例の場合は感光体2aの帯
電処理をAC帯電で行なう。
However, in the case of this embodiment, the charging of the photosensitive member 2a is performed by AC charging.

【0125】本実施例ではAC帯電を行うため、帯電ロ
ーラ1にDCオフセット電圧にAC電圧を重畳した振動
電圧を印加する。DC電圧としては、所望する感光体の
暗部電位に相当するV2=−700Vを用いる。AC電
圧としては、電位の収束化のためには放電開始電圧Vth
の2倍以上のピーク間電圧が必要であるため、本実施例
では、1800Vの定電圧を用いた。この電圧について
は、帯電部材である帯電ローラ1のインピーダンス変化
による影響を除去するためにAC定電流制御を行う事も
可能である。
In this embodiment, in order to perform AC charging, an oscillating voltage obtained by superimposing an AC voltage on a DC offset voltage is applied to the charging roller 1. As the DC voltage, V2 = −700 V corresponding to a desired dark portion potential of the photoconductor is used. As the AC voltage, the discharge starting voltage V th
In this example, a constant voltage of 1800 V was used because a peak-to-peak voltage that is twice or more than that required was used. Regarding this voltage, it is also possible to perform AC constant current control in order to remove the influence of the change in the impedance of the charging roller 1 as the charging member.

【0126】(2)感光体2aの厚み検知 電子写真プロセスでは、画像形成を行う前処理として、
感光体の電位的な履歴を除去するために前回転時に除電
を行う事が一般的である。この除電手段としは、前露光
を行う事も可能であるが、感光体2aの帯電を接触AC
帯電で行う装置では、電位の収束性を利用し、DC電圧
をV1=0としてAC電圧を重畳する事によって、感光
体の電位を0Vにする事が可能である。
(2) Detection of Thickness of Photoreceptor 2a In the electrophotographic process, as a pretreatment for forming an image,
In order to remove the potential history of the photoreceptor, it is general to perform charge elimination during pre-rotation. As the charge removing means, pre-exposure can be performed.
In a device that performs charging, it is possible to make the potential of the photoconductor 0 V by superimposing an AC voltage with a DC voltage of V1 = 0 by utilizing the convergence of the potential.

【0127】次に画像形成のため、図9のシーケンスに
示すようにDCオフセット電圧を本実施例ではV2=−
700として帯電を行うわけであるが、この時、図10
に示すように感光体表面電位をVcontrast上昇させるた
めに必要なDC電流が感光ドラム1周分の間流れる。−
700Vに一旦帯電された後は、感光体表面電位の変化
が無い限り(画像露光を行わず、暗減衰等を無視する
と)、帯電DC電流は流れない。
Next, in order to form an image, the DC offset voltage is set to V2 = − in this embodiment as shown in the sequence of FIG.
The charging is performed as 700. At this time, FIG.
As shown in (1), a DC current required to raise the surface potential of the photosensitive member by Vcontrast flows for one rotation of the photosensitive drum. −
Once charged to 700 V, no charging DC current flows unless there is a change in the photoconductor surface potential (image exposure is not performed and dark decay is ignored).

【0128】この時流れる帯電DC電流を、理論的に計
算すると以下のようになる。
The charging DC current flowing at this time is theoretically calculated as follows.

【0129】感光体2aの厚みをd、比誘電率をε、真
空中の誘電率をε0、接触帯電ローラ1の有効帯電幅を
L、プロセススピードをVp、感光体表面電位を0→V
dに上昇させると、ここから感光体2aの静電容量Cは
計算され、以下の関係式が導かれる。
The thickness of the photosensitive member 2a is d, the relative dielectric constant is ε, the dielectric constant in vacuum is ε0, the effective charging width of the contact charging roller 1 is L, the process speed is Vp, and the photosensitive member surface potential is 0 → V.
When it is increased to d, the capacitance C of the photoconductor 2a is calculated from this, and the following relational expression is derived.

【0130】 帯電電化量:Q=∫I・dt=C・Vcontrast →帯電電流:I=d/dt(C・Vcontrast) dC/dt=ε・ε0・L・Vp/d,VcontrastはV
dであるので 帯電電流:I=ε・ε0・L・Vp・Vd/d ・・・ (5) ε,ε0,L,Vp,d,Vdは定数とみなすことがで
きるため、0→Vdに帯電させるための帯電電流Iはd
に反比例することがわかる。
Charge amount: Q = ∫I · dt = C · Vcontrast → Charging current: I = d / dt (C · Vcontrast) dC / dt = ε · ε0 · L · Vp / d, and Vcontrast is V
Since d is the charging current: I = ε ・ ε0 ・ L ・ Vp ・ Vd / d (5) Since ε, 00, L, Vp, d, and Vd can be regarded as constants, 0 → Vd The charging current I for charging is d
Is inversely proportional to.

【0131】本実施例では、ε=3,ε0=8.85×
10-12 [F/m],L=230mm,Vp=95mm
/sec,Vd=700[V],であるため、d=25
μmの時、I=16μAとなる。
In this embodiment, ε = 3, ε0 = 8.85 ×
10 -12 [F / m], L = 230 mm, Vp = 95 mm
/ Sec, Vd = 700 [V], so that d = 25
At μm, I = 16 μA.

【0132】実際に、感光体2aの膜厚dが異なる感光
体ドラム2を用いて、H/H環境、N/N環境、L/L
環境でd−Iの関係を測定した結果を図11に示す。こ
れを見ても、理論通りd−Iの関係は環境に依存しない
ことが判る。
Actually, using the photosensitive drums 2 having different thicknesses d of the photosensitive members 2a, the H / H environment, the N / N environment, the L / L
FIG. 11 shows the result of measuring the d-I relationship in the environment. It can be seen from this that the d-I relationship does not depend on the environment, as theoretically.

【0133】この結果に基づき、感光体2aの寿命と考
えられる15μmのCT膜厚に対応する電流量を超えた
場合に感光体ドラム寿命を警告する手段を設ける。
Based on the result, a means is provided for warning the life of the photosensitive drum when the current amount corresponding to the CT film thickness of 15 μm, which is considered to be the life of the photosensitive body 2a, is exceeded.

【0134】図11に於いて、各環境共に15μmの膜
厚時に帯電に必要な電流量Iは27μAであるため、図
12のDC電流検知回路100(厚み検知回路)に示す
ように、Iによって10kΩの抵抗16の両端に発生す
る電圧Vが27μAに相当する0.27Vを越えたとき
に、これに連動したプリンタ本体前面の警告表示灯20
を点灯することとする。
In FIG. 11, since the amount of current I required for charging is 27 μA when the film thickness is 15 μm in each environment, as shown in the DC current detection circuit 100 (thickness detection circuit) in FIG. When the voltage V generated at both ends of the 10 kΩ resistor 16 exceeds 0.27 V corresponding to 27 μA, a warning indicator light 20 on the front of the printer main body linked to this.
Is turned on.

【0135】具体的には、電源8の10kΩの保護抵抗
16の両端の電圧Vを基準電圧17のVref=0.2
7Vと比較し、コンパレータ18の出力があった時にD
Cコントローラ19に感光体ドラム寿命の信号を送り警
告表示灯20を点灯させる。なお、本実施例ではVはプ
リンタ本体のシーケンスに同期させて、DCオフセット
電圧を0からVdに上げた後のドラム一回転分の信号の
平均化をした値を用いている(図9参照)実際に耐久試
験を行ったところ、Vは耐久通紙によって上昇し、各環
境ともに10,000枚通紙して、CT層が10μm削
れ、残り15μmとなったときに警告を発し、過剰な削
れによる画像不良の発生を未然に防止することが可能に
なった。
Specifically, the voltage V across the 10 kΩ protection resistor 16 of the power supply 8 is set to Vref = 0.2 of the reference voltage 17.
7V, and when there is an output of the comparator 18, D
A signal indicating the life of the photosensitive drum is sent to the C controller 19 to turn on the warning indicator lamp 20. In this embodiment, V is a value obtained by averaging the signal for one rotation of the drum after the DC offset voltage is increased from 0 to Vd in synchronization with the sequence of the printer body (see FIG. 9). When an endurance test was actually performed, V was increased by endurance paper passing, 10,000 sheets were passed in each environment, and a warning was issued when the CT layer was cut by 10 μm and the remaining layer became 15 μm, and excessive cutting was performed. It is possible to prevent the occurrence of image defects due to the above.

【0136】<第4の実施例>(図13〜図15) 本実施例は、感光体2aの帯電ローラ1によるAC帯電
前に前露光やACコロナ帯電器等の除電手段によって感
光体表面電位を降下させ、これを接触帯電ローラ1でA
C帯電により一定電位Vdにまで帯電させるときに流れ
る電流を検知することを特徴とする。
<Fourth Embodiment> (FIGS. 13 to 15) In this embodiment, before the AC charging of the photosensitive member 2a by the charging roller 1, the surface potential of the photosensitive member is removed by a pre-exposure or a discharging means such as an AC corona charger. And the contact charging roller 1
It is characterized by detecting a current flowing when charged to a constant potential Vd by C charging.

【0137】第3の実施例で示したように、帯電電流を
流すのに必要な2つの電位V1,V2を決定する方法と
して、AC帯電のDC電圧をV1からV2に変化させる
ことは電位収束性の面からは有利であるが、DC電圧を
変化させる手段を持たない装置構成の場合はこれは不可
能であるし、また帯電ローラ1の他に除電手段をもつ場
合、前記のようにあえてDC電圧可変の構成を取る必要
はない。
As shown in the third embodiment, as a method of determining the two potentials V1 and V2 necessary for flowing the charging current, changing the DC voltage of the AC charging from V1 to V2 is equivalent to the potential convergence. Although it is advantageous from the viewpoint of performance, this is not possible in the case of an apparatus configuration having no means for changing the DC voltage. It is not necessary to take a DC voltage variable configuration.

【0138】つまり、このような系に於いては、除電帯
電器や前露光手段によってV1を与えることが可能であ
る。
That is, in such a system, V1 can be given by a static eliminator or pre-exposure means.

【0139】具体的には、除電手段としてACコロナ帯
電器を用いた場合には感光体表面電位は約0Vに収束さ
せることが可能であるため、第3の実施例と同様、 V1=0、 V2=−700 として、700V帯電させるために流れる電流Iを測定
することによって感光体膜厚dを検知することが可能で
あり、本実施例では、図13にように帯電ローラ1の感
光体ドラム回転方向上流側に除電手段としてのACコロ
ナ除電器21を設けたもので、この除電器21をつける
だけで第1の実施例と同じ効果を得ることが可能であ
る。
More specifically, when an AC corona charger is used as the charge removing means, the surface potential of the photosensitive member can be converged to about 0 V, so that V1 = 0, as in the third embodiment. Assuming that V2 = −700, it is possible to detect the photoconductor thickness d by measuring the current I flowing for charging at 700 V. In the present embodiment, the photoconductor drum of the charging roller 1 can be detected as shown in FIG. An AC corona neutralizer 21 serving as a neutralizing means is provided on the upstream side in the rotation direction, and the same effect as in the first embodiment can be obtained only by attaching the neutralizer 21.

【0140】図14は上記のACコロナ除電器21にか
えて前露光器22を用いたものである。前露光によって
除電を行う系を考えると、帯電前に露光を与えることに
よって常に帯電前電位を所定の値V1に収束させること
が可能である。この時、感光体2aには残留電位があ
り、V1=0とする事は難しいため、前露光の露光量は
V1がある程度飽和して環境や使用状況であまり変動し
ないような値を用いることが必要である。
FIG. 14 shows an example in which a pre-exposure device 22 is used in place of the AC corona neutralizer 21 described above. Considering a system in which static elimination is performed by pre-exposure, it is possible to always converge the pre-charge potential to a predetermined value V1 by giving exposure before charging. At this time, there is a residual potential on the photoreceptor 2a, and it is difficult to set V1 = 0. is necessary.

【0141】本実施例では、露光量として0.5μJ/
cm2 を用い、この時の残留電位V1=−100で使用
したため、帯電ローラ1は常にV1→V2に帯電するた
めの電流が流れることになる。この場合Vcontrast=6
00Vとなるため、感光体2aの膜厚dと帯電DC電流
Iの関係は第3の実施例の場合と変わり、図15のよう
になる。本実施例では膜厚15μmに対応する23μA
より電流が大きくなったときに感光体ドラム寿命の警告
を発するような設定にした。
In this embodiment, the exposure amount is 0.5 μJ /
cm 2 and the residual potential V1 = −100 at this time, a current for charging the charging roller 1 from V1 to V2 always flows. In this case, Vcontrast = 6
Since the voltage is 00 V, the relationship between the film thickness d of the photoconductor 2a and the charging DC current I is different from that of the third embodiment and is as shown in FIG. In this embodiment, 23 μA corresponding to a film thickness of 15 μm is used.
The setting is such that a warning about the life of the photosensitive drum is issued when the current becomes larger.

【0142】この装置構成で実際に耐久通紙を行ったと
ころ、環境を問わず10,000枚通紙後に警告を発す
ることが確認された。
When the durable paper passing was actually performed with this apparatus configuration, it was confirmed that a warning was issued after passing 10,000 sheets regardless of the environment.

【0143】<第5の実施例>(図16〜図18) 本実施例では、前記第3の実施例と同様に感光体2aの
帯電をAC帯電で行い、DC電圧を切り換えることによ
って流れる電流Iを測定し、感光体2aの膜厚dを検知
することとするが、第3の実施例と異なり、 V1=−700、 V2=0 として除電の際に流れるDC電流を検知して膜厚検知を
行う。
<Fifth Embodiment> (FIGS. 16 to 18) In this embodiment, similarly to the third embodiment, the charging of the photosensitive member 2a is performed by AC charging, and the current flowing by switching the DC voltage is changed. I is measured to detect the film thickness d of the photoreceptor 2a. However, unlike the third embodiment, V1 = −700, V2 = 0, and the DC current flowing during static elimination is detected to detect the film thickness d. Perform detection.

【0144】原理的には、0→Vdへの帯電時と、Vd
→0の除電時に流れる電流は等しいはずであるが、感光
体2a上にピンホール等の低耐圧欠陥部23(図16)
が生じている場合、本実施例を用いることによって大幅
に誤測定を減少させることが可能になる。
In principle, when charging from 0 to Vd, Vd
Although the currents flowing during the zero charge removal should be equal, a low breakdown voltage defect 23 such as a pinhole on the photoreceptor 2a (FIG. 16)
In this case, erroneous measurement can be significantly reduced by using this embodiment.

【0145】第3の実施例のように帯電時に電流を測定
した場合は、感光体2a上にピンホール23が存在する
と、この部分23に実際に帯電に寄与しないリーク電流
Leakが過大に流れ込み(図16の(a))、誤測定を
引き起こす。これを防止するために、第3の実施例で
は、電流が流れる帯電開始後の感光ドラム一周分の平均
値を測定している。
When the current is measured during charging as in the third embodiment, if a pinhole 23 exists on the photosensitive member 2a, the leak current I Leak not actually contributing to charging flows into this portion 23 excessively. ((A) of FIG. 16) causes an erroneous measurement. In order to prevent this, in the third embodiment, the average value of one round of the photosensitive drum after the start of charging in which a current flows is measured.

【0146】しかし、本実施例のように、Vd→0の除
電時に流れる電流を測定すれば、ピンホール部23の電
位は感光体支持基板2bと同じ0[V]であり、除電時
には帯電ローラ1の電位と同じになり、ピンホール部2
3へDC電流が流れ込むことはなく(図16の
(b))、平均値を測定しなくとも最大値の測定で代用
することが可能になる。
However, when the current flowing at the time of static elimination of Vd → 0 is measured as in the present embodiment, the potential of the pinhole portion 23 is 0 [V], which is the same as that of the photoconductor supporting substrate 2b. 1 and the pinhole 2
No DC current flows into 3 (FIG. 16 (b)), and it is possible to substitute the measurement of the maximum value without measuring the average value.

【0147】具体的には図17のように、画像形成が終
了し電位履歴を消去するためにドラム電位を0Vにする
ための後回転でのドラム一周分に流れる電流を測定す
る。この時、上述のようにピンホール部23によるノイ
ズ電流を考慮する必要がないため平均化回路は必要な
く、測定回路は一方向の電流の最大値(本実施例では除
電時電流のためマイナス方向)をVrefと比較する回
路を設けるだけでよくなりコストダウンが可能になる。
More specifically, as shown in FIG. 17, the current flowing in one rotation of the drum in the post-rotation in the post-rotation for setting the drum potential to 0 V in order to erase the potential history after the image formation is completed is measured. At this time, as described above, there is no need to consider the noise current due to the pinhole section 23, so that the averaging circuit is not necessary. ) Only needs to be provided with a circuit for comparing Vref with Vref, and the cost can be reduced.

【0148】実際に画像出力を行った例を示す。本実施
例の構成を用いて、感光体2aにピンホール部23のあ
る感光体ドラム1で測定を行ったところ前回転時の帯電
開始時にはピンホール部23に電流が流れ込むため、図
18のようにDC電流波形にはノイズが乗り、最大値測
定では誤測定を含んでしまった。しかし、後回転時の除
電の際のDC電流波形は、ピンホールに電流が流れ込ま
ないため、ノイズが発生せず、最大値測定でも十分な精
度で測定することが可能となった。
An example in which image output is actually performed will be described. Using the configuration of this embodiment, measurement was performed on the photoconductor drum 1 having the pinhole 23 on the photoconductor 2a. As a result, a current flows into the pinhole 23 at the start of charging during pre-rotation. In addition, the DC current waveform is noisy, and the maximum value measurement includes an erroneous measurement. However, in the DC current waveform at the time of static elimination during post-rotation, no current flows into the pinhole, so that no noise is generated and the maximum value can be measured with sufficient accuracy.

【0149】第3〜第5の実施例においては、感光体2
aの帯電をAC帯電で行い、感光体2aの帯電電位を一
定量Vcontrast帯電または除電するときに流れるDC電
流を測定することによって感光体2aの膜厚dを測定
し、この膜厚がある値以下になったときに警告を与える
ことによって、電子写真における画像不良の発生を未然
に防ぐことが可能になった。
In the third to fifth embodiments, the photosensitive member 2
a is charged by AC charging, and a constant amount of charge potential of the photoconductor 2a is Vcontrast. A DC current flowing when charging or discharging is measured to measure a thickness d of the photoconductor 2a. By giving a warning when the following occurs, it is possible to prevent the occurrence of image defects in electrophotography.

【0150】これは、従来のように膜厚を測定するため
の特別な手段を設けること無しに、DC電流の測定だけ
で高精度の膜厚検知を実現することが可能なため、低コ
ストで、信頼性の高い効果を得ることが可能である。
This is because high-precision film thickness detection can be realized only by measuring the DC current without providing a special means for measuring the film thickness as in the prior art, so that the cost can be reduced. It is possible to obtain a highly reliable effect.

【0151】<第6の実施例>(図19〜図21) 本実施例も、第5の実施例と同様に被帯電体としての感
光体2aにピンホール等の低耐圧欠陥部23が存在する
場合における感光体膜厚検知精度の低下を防止するよう
にしたものである。
<Sixth Embodiment> (FIGS. 19 to 21) In this embodiment, similarly to the fifth embodiment, a low breakdown voltage defect portion 23 such as a pinhole exists in the photosensitive member 2a as a member to be charged. In this case, it is possible to prevent a decrease in the accuracy of detecting the thickness of the photosensitive member in the case of performing the operation.

【0152】本実施例では帯電バイアス印加電源8(図
19)により帯電ローラ1に DC電圧:−700V AC電圧:2000VPP・550Hz・正弦波 の重畳振動電圧を印加して回転感光体ドラム2の感光体
2aをAC帯電にてVd=−700に一次帯電処理す
る。
In this embodiment, a DC bias: -700 V AC voltage: 2000 V PP , 550 Hz, a sine wave superimposed vibration voltage is applied to the charging roller 1 by the charging bias applying power source 8 (FIG. 19) to The photoreceptor 2a is subjected to primary charging by AC charging to Vd = -700.

【0153】感光体2aの膜厚dと帯電電流Iとの関係
は次の式により導かれる。感光体の厚みをd、比誘電率
をε、真空中の誘電率をε0、接触帯電部材の有効帯電
幅をL、プロセススピードをVpとすると、ここから感
光体の静電容量Cは計算され以下の関係式が導かれる。
The relationship between the thickness d of the photosensitive member 2a and the charging current I is derived from the following equation. Assuming that the thickness of the photoconductor is d, the relative dielectric constant is ε, the dielectric constant in a vacuum is ε0, the effective charging width of the contact charging member is L, and the process speed is Vp, the capacitance C of the photoconductor is calculated from this. The following relational expression is derived.

【0154】帯電電化量:Q=∫I・dt=C・Vd
(Vdは電位変化量) これにより、 帯電電流:I=d(C・Vd)/dt dc/dt=ε・ε0・L・Vp/d,Vd=Cons
t.であるので、 帯電電流:I=ε・ε0・L・Vp・Vd/d ・・・(6) となる。
Charge amount: Q = 帯 電 I · dt = C · Vd
(Vd is the amount of change in potential) By this, charging current: I = d (C · Vd) / dt dc / dt = ε · ε0 · L · Vp / d, Vd = Cons
t. Therefore, charging current: I = εεε0 ・ L ・ Vp ・ Vd / d (6)

【0155】(6)式において、ε,ε0,L,Vp,
dは定数であり、Vd=ΔVであるので、 ΔI=ε・ε0・L・Vp・Vd/d ・・・ (7) と導かれ、ε・ε0・L・Vp・Vd/dはV−Iグラ
フの直線の傾きになることがわかる。
In the equation (6), ε, ε0, L, Vp,
Since d is a constant and Vd = ΔV, ΔI = ε · ε0 · L · Vp · Vd / d (7) is derived, and ε · ε0 · L · Vp · Vd / d is V− It can be seen that the slope of the straight line of the I graph is obtained.

【0156】従って帯電部材としての帯電ローラ1への
印加DC電圧Vと、その時に流れる帯電電流Iを2点で
測定し、この関係からV−I特性の直線の傾きを算出し
て感光体2aの厚みdを検知することができる。
Therefore, the DC voltage V applied to the charging roller 1 as a charging member and the charging current I flowing at that time are measured at two points, and the slope of the straight line of the VI characteristic is calculated from this relationship to obtain the photosensitive member 2a. Can be detected.

【0157】このような感光体膜厚dの検知においては
帯電電流Iの測定が必要であるが、感光体2a上にピン
ホール23が開いていたりすると第5の実施例で説明し
たように接触帯電であるためにそのピンホール23へ電
流が集中し、実際の帯電電流とは異なる過剰電流が流れ
てしまい、膜厚dの検知が正しく行われなくなる。
In such detection of the photoconductor thickness d, it is necessary to measure the charging current I. However, if the pinhole 23 is opened on the photoconductor 2a, the contact current is measured as described in the fifth embodiment. Due to the charging, current concentrates on the pinhole 23, and an excess current different from the actual charging current flows, and the film thickness d cannot be detected correctly.

【0158】そこで本実施例は、今までこの膜厚検知回
路100のための帯電電流測定で、上記の突入電流のた
めに電流の最大値を使うことができなかった測定回路に
周波数フィルタを有することによって突入電流をおさ
え、帯電電流の最大値を測定して正しく膜厚を検知する
ようにしている。
Therefore, the present embodiment has a frequency filter in the measuring circuit which could not use the maximum value of the current due to the rush current in the charging current measurement for the film thickness detecting circuit 100 until now. This suppresses the inrush current, measures the maximum value of the charging current, and detects the film thickness correctly.

【0159】実際の回路構成は図19のローパスフィル
タ(LPR)101のようになる。
The actual circuit configuration is like the low-pass filter (LPR) 101 in FIG.

【0160】膜厚検知のための電流を測定する時間はノ
イズの影響等を除去するために感光体ドラム1回転分と
しているので π×ドラム直径/Vp=π×30/95=1sec となる。この間の電流が理想的には矩形波であるので周
波数は図20の(a)のようになり、0.5Hzであ
る。また、例えば直径1mmのピンホールが感光体2a
上に開いていた場合は、同図(b)のようになり、この
時の周波数は47.5Hzとなる。したがってこの場合
は、少なくとも47.5Hzをカットして0.5Hzを
通過させる周波数フィルターを用いればよい。実際には
より大きなピンホールが開いている場合もあるので、マ
ージンをとり、図19のLPF101は10Hz以上を
カットするフィルタとして設計されている。
The time for measuring the current for detecting the film thickness is set to π × drum diameter / Vp = π × 30/95 = 1 sec because one rotation of the photosensitive drum is used to eliminate the influence of noise and the like. Since the current during this period is ideally a rectangular wave, the frequency is as shown in FIG. 20A and is 0.5 Hz. Further, for example, a pinhole having a diameter of 1 mm is
If it is opened upward, it will be as shown in FIG. 3B, and the frequency at this time will be 47.5 Hz. Therefore, in this case, a frequency filter that cuts at least 47.5 Hz and passes 0.5 Hz may be used. Actually, since a larger pinhole may be opened, the LPF 101 in FIG. 19 is designed as a filter that cuts 10 Hz or more with a margin.

【0161】本実施例ではLPF101を用いたが、こ
れはBPF(バンドパスフィルタ)を用いても同様の効
果を得ることが可能であり、本発明の主旨を限定するも
のではない。また、LPF101を有する電流測定回路
は高圧の負荷、帯電への影響および帯電電流以外の電流
の混入を避けるため、帯電ローラ1に帯電バイアス電圧
を印加する電源8のアース側に挿入した。
In this embodiment, the LPF 101 is used. However, the same effect can be obtained by using a BPF (Band Pass Filter), and this does not limit the gist of the present invention. The current measuring circuit having the LPF 101 was inserted on the ground side of the power supply 8 for applying a charging bias voltage to the charging roller 1 in order to avoid a high-voltage load, influence on charging and mixing of current other than charging current.

【0162】実際に帯電電流を測定したところ、膜厚2
5μmの感光体で0Vから700Vに帯電する時にI=
16μAであった。また図21の(a)に示す様にピン
ホールが開いている所で約40〜60μAの電流値を検
知していたものが本実施例の回路を使用することで同図
(b)のようになり測定されなくなった。
When the charging current was actually measured, the film thickness 2
When charging from 0 V to 700 V with a 5 μm photoconductor, I =
It was 16 μA. Also, as shown in FIG. 21A, a current value of about 40 to 60 μA was detected where the pinhole was opened, but as shown in FIG. And no longer measured.

【0163】これにより、膜厚検知のための帯電電流を
測定する際にピンホールなどによる突入電流の影響を消
し去ることができるようになった。
As a result, when measuring the charging current for detecting the film thickness, it is possible to eliminate the influence of the rush current due to the pinhole or the like.

【0164】<第7の実施例>本実施例は第6の実施例
のプリンタ(図19)において、帯電ローラ1による感
光体の一次帯電処理をDC帯電で行なう。
<Seventh Embodiment> In this embodiment, the primary charging process of the photosensitive member by the charging roller 1 is performed by DC charging in the printer (FIG. 19) of the sixth embodiment.

【0165】DC帯電においては前記したとおり、感光
体表面電位Vdを得るために帯電ローラ1にはVd+V
thの電圧を印加しなければならない。こんためピンホー
ルに流れる直流電流は第6の実施例のAC帯電の時より
も大きくなり、膜厚検知時の誤差がより大きくなってし
まう。つまりフィルタ回路の挿入がより必要となる。
In the DC charging, as described above, the charging roller 1 is charged with Vd + V in order to obtain the photosensitive member surface potential Vd.
th voltage must be applied. Therefore, the DC current flowing through the pinhole becomes larger than that in the case of the AC charging of the sixth embodiment, and the error in detecting the film thickness becomes larger. That is, it is necessary to insert a filter circuit.

【0166】DC帯電での帯電電流Iと膜厚dの関係
は、Vth以上の領域に関してはΔV=ΔVdであること
がわかっているので第6の実施例中の(7)式で代表さ
れる。すなわちDC帯電でもVth以上の領域ではε・ε
0・L・Vp/dはV−Iグラフの直線の傾きになる。
The relationship between the charging current I and the film thickness d in DC charging is known from the equation (7) in the sixth embodiment since it is known that ΔV = ΔVd in the region above Vth. You. In other words, in the even V th or more regions DC charging ε · ε
0 · L · Vp / d is the slope of the straight line in the VI graph.

【0167】従って、このVth以上の領域で帯電ローラ
1への印加電圧Vとその時に流れる帯電電流Iを2点で
測定し、この関係からV−I特性の直線の傾きを算出し
て感光体2aの厚みdを検知することができる。
Therefore, the voltage V applied to the charging roller 1 and the charging current I flowing at that time are measured at two points in the region equal to or higher than V th, and the slope of the straight line of the VI characteristic is calculated from this relationship. The thickness d of the body 2a can be detected.

【0168】また、帯電電流を測定する時間やピンホー
ルによる突入電流の周波数は変わらないので本実施例で
使用するフィルタは第6の実施例で示したものと同様の
ものでよい。
Since the time for measuring the charging current and the frequency of the rush current due to the pinhole do not change, the filter used in this embodiment may be the same as that shown in the sixth embodiment.

【0169】実際に帯電電流を測定したところ膜厚25
μmの感光体で、感光体表面電位Vdを0Vから700
Vまで上げるのに流れた電流は、第6の実施例と同じく
16μAであった。これは帯電前に除電帯電器によって
感光体表面を0Vにし、帯電ローラ1に Vth+vd=640+700=1340V 印加した時の値である。
When the charging current was actually measured,
μm photoreceptor, the photoreceptor surface potential Vd is changed from 0 V to 700
Current flowing to raise up to V were also 16μA with the sixth embodiment. This is a value when the surface of the photosensitive member is set to 0 V by the charge removing device before charging, and Vth + vd = 640 + 700 = 1340 V is applied to the charging roller 1.

【0170】この時ピンホールに流れる突入電流は約1
20μA測定されたが、本実施例の回路を使用すること
でこの突入電流は測定されなくなった。
At this time, the inrush current flowing through the pinhole is about 1
20 μA was measured, but the inrush current was not measured by using the circuit of this embodiment.

【0171】これにより、従来ピンホールなどの突入電
流による影響が大きかったDC帯電での感光体膜厚検知
を正しく行なうことができるよになった。
As a result, the photosensitive member film thickness can be correctly detected by DC charging, which has been greatly affected by the rush current such as a pinhole.

【0172】以上のように第6及び第7の実施例におい
ては、フィルタ101を用いることによって感光体膜厚
検知のための直流電流検知回路に流れる突入電流を防ぐ
ことが可能になった。これは帯電電流を利用した膜厚検
知回路の誤動作を防止し、高い信頼性を得ることを可能
としている。
As described above, in the sixth and seventh embodiments, the use of the filter 101 makes it possible to prevent an inrush current flowing in the DC current detecting circuit for detecting the thickness of the photosensitive member. This prevents a malfunction of the film thickness detecting circuit using the charging current, and makes it possible to obtain high reliability.

【0173】<第8の実施例>(図22〜図24) (1)画像形成装置 図22は本実施例の画像形成装置の概略構成図である。
本実施例の画像形成装置は前述第1の実施例のレーザー
ビームプリンタ(図1)と同様の構成のものである。
<Eighth Embodiment> (FIGS. 22 to 24) (1) Image Forming Apparatus FIG. 22 is a schematic configuration diagram of an image forming apparatus of the present embodiment.
The image forming apparatus of this embodiment has the same configuration as the laser beam printer (FIG. 1) of the first embodiment.

【0174】ただし、本実施例装置では、感光体2aの
帯電ローラ1による一次帯電をAC帯電で行なう。また
転写ローラ5に対する転写バイアス印加電源10は、D
C電源10AとAC電源10Bと、帯電ローラ1に対し
て該両電源10A・10Bを選択的に切換えるスイッチ
ング回路10Cとで構成してある。
However, in this embodiment, the primary charging of the photosensitive member 2a by the charging roller 1 is performed by AC charging. The transfer bias application power source 10 for the transfer roller 5 is D
It comprises a C power supply 10A, an AC power supply 10B, and a switching circuit 10C for selectively switching between the power supplies 10A and 10B with respect to the charging roller 1.

【0175】感光体2aのAC帯電は電源8から帯電ロ
ーラ1に対して、所望する感光体の暗部電位に相当する
2 =−700VのDC電圧に、電位の収束化のために
放電開始電圧Vthの2倍以上のピーク間電圧としての1
800Vの定電圧AC電圧を重畳した振動電圧を印加し
て行なわせた。帯電ローラ1のインピーダンス変化によ
る影響を除去するためにAC定電流制御方式で帯電ロー
ラに対する電圧印加を行なうことも可能である。
The AC charging of the photoreceptor 2a is applied to the charging roller 1 from the power supply 8 to a DC voltage of V 2 = −700 V corresponding to a desired dark portion potential of the photoreceptor. 1 as a peak-to-peak voltage of twice or more of V th
The oscillation was performed by applying an oscillating voltage on which a constant voltage AC voltage of 800 V was superimposed. In order to eliminate the influence of the change in the impedance of the charging roller 1, it is possible to apply a voltage to the charging roller by an AC constant current control method.

【0176】転写バイアス印加電源10のスイッチング
回路10Cは、転写時はDC電源10A側に切換えられ
ていて転写ローラ5に対してこのDC電源10Aから3
kVの転写DC電圧が印加されることで転写が実行され
る。またスイッチング回路10CがAC電源10B側に
切換えられたときは転写ローラ5に対してAC電源10
Bから2000VPPのAC電圧が印加されて転写ローラ
5が除電部材として機能して回転感光体ドラム2の感光
層2aがV1 =0Vに除電される。
The switching circuit 10C of the transfer bias application power supply 10 is switched to the DC power supply 10A side during transfer, and the DC power supply 10A
The transfer is performed by applying a transfer DC voltage of kV. When the switching circuit 10C is switched to the AC power supply 10B, the AC power supply 10
When an AC voltage of 2000 V PP is applied from B, the transfer roller 5 functions as a charge removing member, and the photosensitive layer 2 a of the rotating photosensitive drum 2 is discharged to V 1 = 0 V.

【0177】他の構成、作像プロセスは前述図1のもの
と同様である。
The other structure and the image forming process are the same as those in FIG.

【0178】(2)感光体2aの厚み検知 図23に感光体2aの厚み検知のタイミングチャートを
示した。
(2) Detection of Thickness of Photoconductor 2a FIG. 23 shows a timing chart of thickness detection of the photoconductor 2a.

【0179】まず、転写バイアス印加電源10のスイッ
チング回路10CがAC電源10B側に切換えられて転
写ローラ5により回転感光体ドラム2の感光体2aを除
電される(V1=OV)。そして、除電された感光体2
aが帯電ローラ2によりV2=−700Vに帯電され
る。この時、帯電ローラ1には感光体表面電位を0Vか
ら−700Vへ上昇させるために必要なDC電流が流れ
ることになる(図20中の斜線部分)。これ以外は感光
体表面電位の変化がない限り帯電DC電流は流れない。
この時流れる帯電DC電流の理論的な計算関係式は前述
第3の実施例で述べた式(5)と同様である。
First, the switching circuit 10C of the transfer bias applying power source 10 is switched to the AC power source 10B side, and the photosensitive member 2a of the rotating photosensitive drum 2 is discharged by the transfer roller 5 (V1 = OV). Then, the photoreceptor 2 having been neutralized
a is charged to V2 = −700 V by the charging roller 2. At this time, a DC current required to raise the photoconductor surface potential from 0 V to -700 V flows through the charging roller 1 (hatched portion in FIG. 20). Otherwise, the charging DC current does not flow unless there is a change in the photoconductor surface potential.
The theoretical calculation formula of the charging DC current flowing at this time is the same as the formula (5) described in the third embodiment.

【0180】即ち、感光体の厚みをd、比誘電率をε、
真空中の誘電率をε0、接触帯電ローラ1の有効帯電幅
をL、プロセススピードをVp、感光体表面電位を0→
Vdに上昇させると、ここから感光体の静電容量Cは計
算され、以下の関係式が導かれる。
That is, the thickness of the photosensitive member is d, the relative permittivity is ε,
Dielectric constant in vacuum ε0, effective charging width of contact charging roller 1 is L, process speed is Vp, photoconductor surface potential is 0 →
When the voltage is increased to Vd, the electrostatic capacity C of the photoconductor is calculated from this, and the following relational expression is derived.

【0181】 帯電電荷量:Q=∫I・dt=C・Vcontrast →帯電電流:I=d/dt(C・Vcontrast) dC/dt=ε・ε0・L・Vp/d、VcontrastはV
dであるので、 帯電電流:I=ε・ε0・L・Vp・Vd/d ・・・ (5) ε,ε0,L,Vp,d,Vdは定数とみなすことがで
きるため、0→Vdに帯電させるための帯電電流Iはd
に反比例することがわかる。
Charge amount: Q = ∫I · dt = C · Vcontrast → Charging current: I = d / dt (C · Vcontrast) dC / dt = ε · ε0 · L · Vp / d, and Vcontrast is V
d, charging current: I = εεε0 ・ LLVp ・ Vd / d (5) Since ε, 00, L, Vp, d, and Vd can be regarded as constants, 0 → Vd The charging current I for charging
Is inversely proportional to.

【0182】本実施例では、ε=3,ε0=8.85×
10-12 [F/m],L=230mm,Vp=95mm
/sec,Vd=700[V]であるため、d=25μ
mの時、I=16μAとなる。
In this embodiment, ε = 3, ε0 = 8.85 ×
10 -12 [F / m], L = 230 mm, Vp = 95 mm
/ Sec, Vd = 700 [V], so that d = 25 μ
At m, I = 16 μA.

【0183】実際に、感光体2aの膜厚dが異なる感光
体ドラム2を用いて、H/H環境、N/N環境、L/L
環境でd−Iの関係を測定した結果は前述図11と同様
となり、理論通りd−Iの関係は環境に依存しないこと
が判る。
Actually, using the photosensitive drums 2 having different thicknesses d of the photosensitive members 2a, the H / H environment, the N / N environment, the L / L
The result of the measurement of the d-I relationship in the environment is the same as that of FIG. 11, and it can be seen that the d-I relationship does not depend on the environment as theoretically.

【0184】この結果に基づき、感光体2aの寿命と考
えられる15μmのCT膜厚に対応する電流量を超ええ
た場合に感光体ドラム寿命を警告する手段を設ける。
Based on the result, a means is provided for warning the life of the photosensitive drum when the current amount corresponding to the CT film thickness of 15 μm, which is considered to be the life of the photosensitive body 2a, can be exceeded.

【0185】前述図11に於いて、各環境共に15μm
の膜厚時に帯電に必要な電流量Iは27μAであるた
め、前述図12の検知回路100と同様に、Iによって
10kΩの抵抗16の両端に発生する電圧Vが27μA
に相当する0.27Vを越えたときに、これに連動した
プリンタ本体前面の警告灯20を点灯することとする。
In FIG. 11, each environment is 15 μm
Since the amount of current I required for charging when the film thickness is 27 μA is 27 μA, the voltage V generated across the 10 kΩ resistor 16 by I is 27 μA as in the detection circuit 100 of FIG.
When the voltage exceeds 0.27 V, the warning light 20 on the front of the printer body is turned on.

【0186】即ち、具体的には、電源8の10kΩの保
護抵抗16の両端の電圧Vを基準電圧17のVref=
0.27Vと比較し、コンパレータ18の出力があった
時にDCコントローラ19に感光体ドラム寿命の信号を
送り、警告灯20を点灯させる。
That is, specifically, the voltage V across the protection resistor 16 of 10 kΩ of the power supply 8 is changed to the voltage Vref of the reference voltage 17.
Compared with 0.27 V, when the output of the comparator 18 is received, a signal of the photosensitive drum life is sent to the DC controller 19, and the warning lamp 20 is turned on.

【0187】上記のDC電流の検知は、図23に示すよ
うに、帯電DC電流が流れている斜線部分に相当する時
間行なった。
As shown in FIG. 23, the detection of the DC current was performed for a time corresponding to a hatched portion where the charging DC current was flowing.

【0188】本実施例では感光体ドラム1回転分を帯電
ローラ1による帯電時間として実施し、DC電流検知は
この間の検知信号の平均化をした値を用いた。
In this embodiment, one rotation of the photosensitive drum is used as the charging time by the charging roller 1, and the DC current detection uses a value obtained by averaging detection signals during this period.

【0189】実際に耐久試験を行なったところ、Vは耐
久通紙によって上昇し、各環境ともに10,000枚通
紙して、CT層が10μm削れ、残り15μmとなった
ときに警告を発し、過剰な削れによる画像不良の発生を
未然に防止することが可能になった。
When an endurance test was actually performed, V was increased by endurance passing, a warning was issued when the CT layer was cut by 10 μm and the remaining 15 μm was reached after passing 10,000 sheets in each environment, and It has become possible to prevent the occurrence of image defects due to excessive shaving.

【0190】上述したシーケンスは画像形成装置のスイ
ッチ−オン後、画像形成プロセスの前処理、後処理等に
設定できる。
The above-described sequence can be set for pre-processing, post-processing, etc. of the image forming process after the image forming apparatus is turned on.

【0191】また以上のシーケンスは図24で示すよう
に、転写ローラ5による除電された感光体2aの部位が
帯電ローラ1による帯電位置に来るまでの時間とT0
すると、帯電ローラ1の帯電オン/オフのタイミングを
転写ローラ5による除電オン/オフのタイミングからT
0 シフトしたタイミングまで拡張できることを示してい
る。当然ながら、帯電ローラ1に流れる電流検知も同様
に拡張できる。
In the above sequence, as shown in FIG. 24, assuming that the time until the portion of the photosensitive member 2a from which the charge is removed by the transfer roller 5 reaches the charging position by the charging roller 1 is T 0 , the charging of the charging roller 1 is performed. The on / off timing is set to T from the charge removal on / off timing by the transfer roller 5.
This indicates that the operation can be extended to the timing shifted by 0 . Naturally, the detection of the current flowing through the charging roller 1 can be similarly extended.

【0192】また、転写ローラ5の除電オン時間は任意
の時間設定できるのも当然である。
It is needless to say that the charge elimination ON time of the transfer roller 5 can be set arbitrarily.

【0193】<第9の実施例>(図25)本実施例は前
述第8の実施例のプリンタ(図22)における転写バイ
アス印加電源10を可変DC電源10DとAC電源10
Bの直列電源に変更したもので、他の装置構成は図22
のものと同じである。
<Ninth Embodiment> (FIG. 25) In this embodiment, the transfer bias application power supply 10 in the printer (FIG. 22) of the eighth embodiment is replaced with a variable DC power supply 10D and an AC power supply 10.
B is changed to a series power supply.
Is the same as

【0194】本実施例においては、転写時は転写ローラ
5に対して電源10から3kVのDC電圧と2000V
PPのAC電圧との重畳振動電圧が印加されて転写が実行
される。
In this embodiment, a DC voltage of 3 kV and a 2,000 V
The transfer is executed by applying the superimposed oscillation voltage with the AC voltage of PP .

【0195】非転写時は可変DC電源10Dを0Vにす
ることで転写ローラ5にはAC電源10Bの2000V
PPのAC電圧のみが印加されて転写ローラ5が除電部材
として機能して回転感光体ドラム2の感光層2aがV1
=0に除電される。
At the time of non-transfer, the variable DC power supply 10D is set to 0V so that the transfer roller 5 is supplied with 2000V of the AC power supply 10B.
When only the AC voltage of PP is applied, the transfer roller 5 functions as a charge removing member, and the photosensitive layer 2a of the rotating photosensitive drum 2 becomes V1.
= 0.

【0196】つまり本実施例においても第8の実施例で
示したように転写ローラ5によって、感光体ドラム2の
表面電位を除電(V1=0)することができ、図23に
示した感光体膜厚検知シーケンスを実現できる。
That is, also in this embodiment, as shown in the eighth embodiment, the surface potential of the photosensitive drum 2 can be eliminated (V1 = 0) by the transfer roller 5, and the photosensitive member shown in FIG. A film thickness detection sequence can be realized.

【0197】本実施例においても、帯電ローラ1による
感光体帯電電位をV2 =−700Vとして、また図12
に示した検知回路100を用いて実際に耐久通紙を行な
ったところ、10000枚通紙後に警告を発することが
確認された。
Also in this embodiment, the charging potential of the photosensitive member by the charging roller 1 is set to V 2 = −700 V, and FIG.
When the paper was actually passed using the detection circuit 100 shown in (1), it was confirmed that a warning was issued after 10,000 sheets were passed.

【0198】<第10の実施例>(図26)本実施例は
前述第8の実施例のプリンタ(図22)における転写バ
イアス印加電源10を可変DC電源10Dのみに変更し
たもので、他の装置構成は図22のものと同じである。
<Tenth Embodiment> (FIG. 26) In this embodiment, the transfer bias applying power source 10 in the printer of the eighth embodiment (FIG. 22) is changed to only the variable DC power source 10D. The device configuration is the same as that of FIG.

【0199】本実施例においては、転写時は転写ローラ
5に対して電源10から3kVの転写DC電圧が印加さ
れて転写が実行される。
In this embodiment, at the time of transfer, a transfer DC voltage of 3 kV is applied to the transfer roller 5 from the power supply 10 to execute transfer.

【0200】この転写バイアス印加電源10の可変DC
電源10Dの電圧を調整することで回転感光体ドラム2
の感光体2aの表面電位を除電することが可能である。
The variable DC of the transfer bias applying power source 10
By adjusting the voltage of the power supply 10D, the rotating photosensitive drum 2 is adjusted.
It is possible to eliminate the surface potential of the photosensitive member 2a.

【0201】ただし、第8の実施例および第9の実施例
のようにAC電源10Bを用いた場合に比べて除電の均
一性がやや損われるが、感光体2aの膜厚dを検知する
ための帯電電流に影響を与えるほどのものではない。
However, the uniformity of static elimination is slightly impaired as compared with the case where the AC power supply 10B is used as in the eighth and ninth embodiments, but the film thickness d of the photosensitive member 2a is detected. Is not enough to affect the charging current.

【0202】帯電ローラ1による感光体2aの帯電電位
をV2=−700Vとした時、転写ローラ5に1500
V印加することで、感光体表面電位をV1=0と除電す
ることができる。
When the charging potential of the photosensitive member 2a by the charging roller 1 is set to V2 = -700V, 1500 is applied to the transfer roller 5.
By applying V, the photoconductor surface potential can be eliminated as V1 = 0.

【0203】従って本実施例においても図23に示した
感光体膜厚検知シーケンスを実現できる。ただし上記し
たように除電(V1=0)が多少なめらかさを失なうこ
とで帯電ローラ1に流れるDC電流が多少ノイズを含ん
だ形となるが実使用上問題のないレベルである。
Therefore, also in this embodiment, the photosensitive member film thickness detecting sequence shown in FIG. 23 can be realized. However, as described above, the charge elimination (V1 = 0) loses some smoothness, so that the DC current flowing through the charging roller 1 includes some noise, but this is a level that does not cause any problem in practical use.

【0204】図12に示した検知回路100を用いて耐
久を行なった。ただし第8の実施例及び第9の実施例に
おいては感光体2aの膜厚検知レベルを15μm、つま
りDC電流27μAとしたが、本実施例においては上述
ノイズ成分を考慮して安全を見込み18μm相当のDC
電流23μAとした。
The endurance was performed using the detection circuit 100 shown in FIG. However, in the eighth and ninth embodiments, the film thickness detection level of the photosensitive member 2a is set to 15 μm, that is, the DC current is set to 27 μA. DC
The current was 23 μA.

【0205】結果は9000枚通紙したところで警告を
発した。耐久後、感光体膜厚を測定したところ9μm削
れて16μmであり、危険膜厚である15μmになる前
に警告を発することが確認できた。
As a result, a warning was issued when 9000 sheets were passed. After the durability test, the thickness of the photoreceptor was measured to be 9 μm, and it was 16 μm, and it was confirmed that a warning was issued before reaching the dangerous thickness of 15 μm.

【0206】<第11の実施例>(図27・図28) 本実施例は前述第8の実施例のプリンタ(図22)にお
ける転写バイアス印加電源10を転写バイアス用のプラ
ス極性のDC電源10Aと、転写バイアスとは逆極性の
マイナス極性のDC電源10Eと、この両電源10A・
10Eを転写ローラ5に対して選択的に切換え接続する
スイッチング回路10Cとで構成したものに変更したも
ので、他の構成は図22のものと同じである。
<Eleventh Embodiment> (FIGS. 27 and 28) In the present embodiment, the transfer bias applying power source 10 in the printer (FIG. 22) of the eighth embodiment is replaced by a positive polarity DC power source 10A for the transfer bias. And a DC power supply 10E having a negative polarity opposite to the transfer bias, and both power supplies 10A
10E is replaced with a switching circuit 10C for selectively switching connection to the transfer roller 5, and the other configuration is the same as that of FIG.

【0207】本実施例では、転写時はスイッチング回路
10Cがプラス極性のDC電源10A側に切換えられる
ことで転写ローラ5に対して3kVの転写DC電圧が印
加されて転写が実行される。
In the present embodiment, at the time of transfer, the switching circuit 10C is switched to the DC power supply 10A having a positive polarity, so that a transfer DC voltage of 3 kV is applied to the transfer roller 5 and transfer is performed.

【0208】電源10においてスイッチ回路10Cをマ
イナス極性のDC電源10E側に切換えることで感光体
表面電位をV1に設定できる。
By switching the switch circuit 10C in the power supply 10 to the DC power supply 10E having the negative polarity, the photosensitive member surface potential can be set to V1.

【0209】ただし、DC電圧を印加しているため感光
体の表面電位V1は帯電ローラ1の電源8のようなAC
重畳電源を用いた場合に比べ、帯電の均一性がやや損わ
れ微小部分で表面電位V1がムラとなってしまう場合が
ある。
However, since a DC voltage is applied, the surface potential V1 of the photoreceptor is not
In some cases, the charging uniformity is slightly impaired and the surface potential V1 becomes uneven in a minute portion as compared with the case where a superimposed power supply is used.

【0210】帯電ローラ1による感光体帯電電位をV2
=−700Vとして、転写ローラ5に対して電源10E
にて−900V印加して感光体表面電位をV1=−10
0Vとすることができる。
The charge potential of the photosensitive member by the charging roller 1 is set to V2
= −700 V, and the power supply 10E to the transfer roller 5
To apply a -900 V to make the surface potential of the photosensitive member V1 = -10.
It can be 0V.

【0211】従って本実施例においても第8の実施例と
同様に、図28に示した感光体膜厚検知シーケンスを実
現できる。
Therefore, in the present embodiment, similarly to the eighth embodiment, the photosensitive member film thickness detection sequence shown in FIG. 28 can be realized.

【0212】帯電ローラ1に流れるDC電流Iは、 |V2−V1|=600V となるため、感光体膜厚dとの関係は第8〜第10の実
施例の場合(図11)とは変わり、第4の実施例の場合
の図15のようになる。ただし、上述のように帯電電位
V1が多少の微小ムラを含んでいるため、帯電DC電流
Iが多少ノイズを含んだ形となるが実使用上問題のない
レベルである。
Since the DC current I flowing through the charging roller 1 is | V2−V1 | = 600 V, the relationship with the photosensitive member film thickness d is different from those of the eighth to tenth embodiments (FIG. 11). 15 in the case of the fourth embodiment. However, since the charging potential V1 includes some slight unevenness as described above, the charging DC current I includes some noise, but at a level that does not cause any problem in practical use.

【0213】図12に示す検知回路100を用いて耐久
を行なった。ただし、図15に示す関係から膜厚検知レ
ベルを15μmつまり、帯電DC電流Iを23μAとし
たかったが、上述ノイズ成分を考慮して安全を見込み1
8μm相当のDC電流19μAとした。
Endurance was performed using the detection circuit 100 shown in FIG. However, from the relationship shown in FIG. 15, the film thickness detection level was set to 15 μm, that is, the charging DC current I was set to 23 μA.
The DC current corresponding to 8 μm was 19 μA.

【0214】結果は9000枚通紙したところで警告を
発した。耐久後感光体膜厚を測定したところで警告を発
した。耐久後感光体膜厚を測定したところ、9μm削れ
て16μmであった。検知精度としては第8及び第9の
実施例より劣るが、危険膜厚である15μmになる前に
警告を発することを確認できた。
As a result, a warning was issued when 9000 sheets were passed. When the film thickness of the photoreceptor was measured after the endurance, a warning was issued. When the photoreceptor film thickness was measured after the endurance, it was cut by 9 μm and found to be 16 μm. Although the detection accuracy was inferior to those of the eighth and ninth examples, it was confirmed that a warning was issued before the critical film thickness became 15 μm.

【0215】また、本実施例においてはマイナス極性の
DC電源10Eを用いているが、これに変わりAC重畳
電源を用いてもよい。更に第9の実施例の図25に示し
た転写バイアス印加電源10(10A・10D)をプラ
ス極性のDC電源10Aの代わりに用いてもよい。要は
V1を実現するのであれば回路構成は限定されない。
Further, in this embodiment, the negative polarity DC power supply 10E is used, but an AC superimposed power supply may be used instead. Further, the transfer bias applying power supply 10 (10A, 10D) shown in FIG. 25 of the ninth embodiment may be used instead of the positive polarity DC power supply 10A. In short, the circuit configuration is not limited as long as V1 is realized.

【0216】<第12の実施例>(図29〜図31) 本実施例は図29に示したように、帯電ローラ1に対す
る帯電バイアス印加電源8を、DC電源8AとAC電源
8Bと、AC電源8Bに対してDC電源8Aとアースを
選択的に切換え接続するスイッチング回路8Cとで構成
した。
<Twelfth Embodiment> (FIGS. 29 to 31) In this embodiment, as shown in FIG. 29, the charging bias application power supply 8 for the charging roller 1 is changed to a DC power supply 8A, an AC power supply 8B, and an AC power supply 8B. The power supply 8B comprises a DC power supply 8A and a switching circuit 8C for selectively switching and connecting the ground.

【0217】転写バイアス印加電源10は第11の実施
例の電源(図27)と同様に、転写バイアス用のプラス
極性のDC電源10Aと、転写バイアスとは逆極性のマ
イナス極性のDC電源10Eと、この両電源10A・1
0Eを転写ローラ5に対して選択的に切換え接続するス
イッチング回路10Cとで構成してある。他の装置構成
は図22のものと同じである。
Similar to the power supply of the eleventh embodiment (FIG. 27), the transfer bias application power supply 10 includes a positive DC power supply 10A for the transfer bias and a negative DC power supply 10E having the opposite polarity to the transfer bias. , This power supply 10A.1
0E is selectively connected to the transfer roller 5 by a switching circuit 10C. The other device configuration is the same as that of FIG.

【0218】感光体2aの一次帯電処理時は帯電バイア
ス印加電源8のスイッチング回路8CはDC電源8A側
に切り換えられており、DC電源8AとAC電源8Bが
直列接続されて帯電ローラ1に対して、DC電圧−70
0Vと、1800VPPのAC電圧の重畳振動電圧が印加
されて回転感光体ドラム2の感光体2aがVd=−70
0VにAC帯電で帯電処理される。
At the time of the primary charging process of the photosensitive member 2a, the switching circuit 8C of the charging bias applying power source 8 is switched to the DC power source 8A side, and the DC power source 8A and the AC power source 8B are connected in series to , DC voltage -70
A superimposed oscillation voltage of 0 V and an AC voltage of 1800 V PP is applied, and the photosensitive member 2a of the rotating photosensitive drum 2 is driven to have Vd = −70.
It is charged by AC charging to 0V.

【0219】転写バイアス印加電源10は転写時はスイ
ッチング回路10Cがプラス極性のDC電源10A側に
切換えられていて転写ローラ5に対して3kvの転写バ
イアスが印加されることで転写が実行される。
In the transfer bias application power source 10, the switching circuit 10C is switched to the DC power source 10A having a positive polarity at the time of transfer, and a transfer bias of 3 kv is applied to the transfer roller 5 to perform transfer.

【0220】この転写バイアス印加電源10のスイッチ
ング回路10Cがマイナス極性のDC電源10E側に切
換えられることで感光体表面電位をV1に設定できるの
は第11の実施例のもの(図27)と同様である。
By switching the switching circuit 10C of the transfer bias applying power source 10 to the DC power source 10E having the negative polarity, the photosensitive member surface potential can be set to V1 as in the eleventh embodiment (FIG. 27). It is.

【0221】前記帯電バイアス印加電源8のスイッチン
グ回路8Cがアース側に切換えられると帯電ローラ1に
はAC電源8BのAC電圧のみが印加され感光体表面電
位がV2=0Vに除電される。
When the switching circuit 8C of the charging bias applying power source 8 is switched to the ground side, only the AC voltage of the AC power source 8B is applied to the charging roller 1, and the photosensitive member surface potential is eliminated to V2 = 0V.

【0222】本実施例では転写ローラ5による感光体帯
電電位をV1=−700Vとし、帯電ローラ1により除
電(V2=0)することができる。
In this embodiment, the charge potential of the photosensitive member by the transfer roller 5 is set to V1 = −700 V, and the charge can be removed (V2 = 0) by the charging roller 1.

【0223】従って本実施例においても第8の実施例と
同様に、図30に示した感光体膜厚検知シーケンスを実
現できる。
Therefore, in the present embodiment, similarly to the eighth embodiment, the photosensitive member film thickness detecting sequence shown in FIG. 30 can be realized.

【0224】ただし、帯電ローラ1に流れるDC電流I
はV1=−700VからV2=0Vへ電位を変化させる
ことになるので第8〜第11実施例のものとは異なる極
性の電流が流れることになる。第10の実施例と同様に
帯電電位V1が多少の微小ムラを含んでいるため、帯電
DC電流Iが多少ノイズを含んだ形となるが実使用上問
題のないレベルである。
Here, the DC current I flowing through the charging roller 1
Changes the potential from V1 = -700V to V2 = 0V, so that a current having a polarity different from that of the eighth to eleventh embodiments flows. As in the tenth embodiment, since the charging potential V1 includes some slight unevenness, the charging DC current I includes some noise, but at a level that does not pose any problem in practical use.

【0225】図31に示す検知回路100を用いて耐久
を行なった。ここに示す検出回路は図12に示した検出
回路の基準電圧17のVrefの極性をかえただけであ
る。また図11に示す関係から、膜厚検知レベルを15
μmつまりDC電流27μAとしたかったが上述ノイズ
成分を考慮して安全を見込み18μm相当のDC電流2
3μAとした。
Endurance was performed using the detection circuit 100 shown in FIG. The detection circuit shown here merely changes the polarity of Vref of the reference voltage 17 of the detection circuit shown in FIG. Further, from the relationship shown in FIG.
μm, that is, a DC current of 27 μA, but considering the above noise component, it is expected to be safe and a DC current of 18 μm is required.
3 μA.

【0226】結果は9000枚通紙したところで警告を
発した。耐久後感光体膜厚を測定したところ9μm削れ
て16μmであった。危険膜厚である15μmになる前
に警告を発することを確認できた。
As a result, a warning was issued when 9000 sheets were passed. When the film thickness of the photoreceptor was measured after the endurance, it was cut by 9 μm and found to be 16 μm. It was confirmed that a warning was issued before the critical film thickness of 15 μm was reached.

【0227】また本実施例においては帯電バイアス印加
電源8はこれに限ることなく、DCレベル可変なDC電
源等を用いてV2を設定することができるのは当然であ
る。更に転写バイアス印加電源10においてもこれに限
ることなくV1に帯電できる電源であればよい。
In the present embodiment, the charging bias application power source 8 is not limited to this, and it is natural that V2 can be set using a DC power source or the like having a variable DC level. Further, the transfer bias applying power source 10 is not limited to this, but may be any power source that can be charged to V1.

【0228】第8〜第12の実施例のように、AC接触
帯電装置1と転写装置5を利用して、転写装置5にて被
帯電体を第1の電位に帯電(除電も含む)させた後、接
触帯電装置にて被帯電体を第2の電位に帯電(除電も含
む)させる時に接触帯電部材1に流れるDC電流を測定
することにより、被帯電体の厚みを検知し、ある厚み以
下になったときに警告を与えることによって画像形成装
置における画像不良の発生を未然に防ぐことができる。
As in the eighth to twelfth embodiments, using the AC contact charging device 1 and the transfer device 5, the transfer device 5 charges the charged object to the first potential (including static elimination). After that, the thickness of the member to be charged is detected by measuring the DC current flowing through the contact charging member 1 when the member to be charged is charged to the second potential (including static elimination) by the contact charging device. By giving a warning when the following occurs, it is possible to prevent the occurrence of an image defect in the image forming apparatus.

【0229】以上の第1〜第12の実施例の装置は負極
性の感光体ドラム2を用いたものであるが、感光体ドラ
ム2は陽極性であっても、両極性であってもかまわな
い。更に転写装置として転写ローラ5を用いて説明した
が、これに限らず転写ベルト・転写コロナ等の転写装置
を適宜使いわけることができる。
Although the apparatus of the first to twelfth embodiments uses the photosensitive drum 2 having a negative polarity, the photosensitive drum 2 may have an anode polarity or a bipolar polarity. Absent. Furthermore, the transfer roller 5 has been described as a transfer device, but the transfer device is not limited to this, and a transfer device such as a transfer belt and a transfer corona can be used as appropriate.

【0230】また帯電装置としては帯電ローラ1を用い
たが、接触DC帯電・AC接触帯電を実現できる部材で
あれば良い。
Although the charging roller 1 is used as the charging device, any member that can realize contact DC charging and AC contact charging may be used.

【0231】[0231]

【発明の効果】以上のように本発明によれば、簡単な装
置・回路構成で被帯電体の厚みを環境影響少なく精度よ
く安定に検知することができる。画像形成装置において
は、被帯電体もしくは被帯電体としての像担持体の耐久
による、厚み減少状態ないしは使用限界としての下限厚
みに達したことを環境影響少なく精度よく安定に検知し
て像担持体の交換を促す警告などの適切な対策処理を講
じ得て、像担持体が使用限界に達したにも拘らず引き続
き使用されることによる帯電不良や画像不良の発生等を
未然に防ぐことが可能となり、信頼性の高い装置を構成
できる。
As described above, according to the present invention, it is possible to accurately and stably detect the thickness of a member to be charged with a simple device and circuit configuration with little influence on the environment . In an image forming apparatus, it is possible to accurately and stably detect when the thickness of a member to be charged or an image carrier as a member to be charged has reached a lower thickness or a lower limit as a service limit with little environmental influence.
It is possible to take appropriate countermeasures such as warnings to prompt the replacement of the image carrier, and prevent the occurrence of charging failure and image failure due to the continued use of the image carrier despite reaching the usage limit. This makes it possible to configure a highly reliable device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1の実施例としてのプリンタの概略構成
FIG. 1 is a schematic configuration diagram of a printer as a first embodiment.

【図2】 感光体膜厚を変化させた場合のV−I特性
FIG. 2 is a VI characteristic diagram when a photoconductor thickness is changed.

【図3】 感光体膜厚とV−I特性の傾きの相関図FIG. 3 is a correlation diagram between a photoconductor thickness and a slope of a VI characteristic.

【図4】 制御を表すV−I特性図FIG. 4 is a VI characteristic diagram showing control.

【図5】 帯電部材への印加電圧と帯電電位の関係を
表す図
FIG. 5 is a diagram showing a relationship between a voltage applied to a charging member and a charging potential.

【図6】 (a)は感光体ドラムと帯電ローラの当接
部分の拡大模型図、(b)は放電現象の等価回路図
6A is an enlarged model diagram of a contact portion between a photosensitive drum and a charging roller, and FIG. 6B is an equivalent circuit diagram of a discharge phenomenon.

【図7】 AC帯電を行なった場合の、帯電部材への
印加電圧と感光体表面電位の関係を表す図
FIG. 7 is a diagram illustrating a relationship between a voltage applied to a charging member and a photoconductor surface potential when AC charging is performed.

【図8】 (a)は第2の実施例における感光体膜厚
測定手段部分の一部切欠き上面図、(b)はその側面図
FIG. 8A is a partially cutaway top view of a photoconductor film thickness measuring unit in the second embodiment, and FIG. 8B is a side view thereof.

【図9】 第3の実施例としてのプリンタの制御シー
ケンス図
FIG. 9 is a control sequence diagram of a printer as a third embodiment.

【図10】 AC電圧・DC電圧・DC電流の関係図FIG. 10 is a diagram showing a relationship between an AC voltage, a DC voltage, and a DC current.

【図11】 感光体膜厚dとDC電流Iの関係図FIG. 11 is a diagram illustrating a relationship between a photoconductor thickness d and a DC current I.

【図12】 DC電流検知回路構成の概念図FIG. 12 is a conceptual diagram of a DC current detection circuit configuration.

【図13】 第4の実施例としてのプリンタの概略構成
FIG. 13 is a schematic configuration diagram of a printer as a fourth embodiment.

【図14】 他の構成例の要部図FIG. 14 is a main part diagram of another configuration example.

【図15】 感光体膜厚dとDC電流Iの関係図FIG. 15 is a diagram showing the relationship between the photoconductor thickness d and the DC current I.

【図16】 (a)・(b)は第5の実施例としてのプ
リンタの、ピンホールに起因するリーク電流の発生と、
その防止の説明模型図
FIGS. 16A and 16B show the occurrence of a leak current due to a pinhole in a printer as a fifth embodiment;
Explanation model diagram of the prevention

【図17】 制御シーケンス図FIG. 17 is a control sequence diagram.

【図18】 AC電圧・DC電圧・DC電流の関係図FIG. 18 is a relationship diagram of AC voltage, DC voltage, and DC current.

【図19】 第6または第7の実施例としてのプリンタ
の概略構成図
FIG. 19 is a schematic configuration diagram of a printer as a sixth or seventh embodiment.

【図20】 (a)・(b)は測定電流の時間経過及び
周期の図
FIG. 20 (a) and (b) are diagrams of the elapsed time and period of the measured current.

【図21】 (a)・(b)は周波数フィルタ使用前後
の測定電流図
21 (a) and (b) are measured current diagrams before and after using a frequency filter.

【図22】 第8の実施例としてのプリンタの概略構成
FIG. 22 is a schematic configuration diagram of a printer as an eighth embodiment.

【図23】 感光体膜厚検知シーケンス図FIG. 23 is a photoconductor film thickness detection sequence diagram.

【図24】 その拡張シーケンス図FIG. 24 is an extended sequence diagram thereof.

【図25】 第9の実施例としてのプリンタの概略構成
FIG. 25 is a schematic configuration diagram of a printer as a ninth embodiment.

【図26】 第10の実施例としてのプリンタの概略構
成図
FIG. 26 is a schematic configuration diagram of a printer as a tenth embodiment.

【図27】 第11の実施例としてのプリンタの概略構
成図
FIG. 27 is a schematic configuration diagram of a printer as an eleventh embodiment.

【図28】 感光体膜厚検知シーケンス図FIG. 28 is a photoconductor thickness detection sequence diagram.

【図29】 第12の実施例としてのプリンタの概略構
成図
FIG. 29 is a schematic configuration diagram of a printer as a twelfth embodiment.

【図30】 感光体膜厚検知シーケンス図FIG. 30 is a photoconductor film thickness detection sequence diagram.

【図31】 DC電流検知回路構成の概念図FIG. 31 is a conceptual diagram of a DC current detection circuit configuration.

【符号の説明】[Explanation of symbols]

1 帯電部材としの帯電ローラ 2・2a 被帯電体としての感光体ドラム又は感光体 3 レーザー光 4 現像装置 5 転写ローラ 6 クリーニング装置 7 定着装置 8 帯電バイアス印加電源 9 転写材 10 転写バイアス印加電源 11 プロセスカートリッジ 12・21・22 除電用の露光ランプ又はコロナ放電
器 13・14 第1及び第2の接触子(電極部材) 100 DC電流検知回路(膜厚検知回路) 101 ローパスフィルタ(周波数フィルタ回路)
DESCRIPTION OF SYMBOLS 1 Charging roller as a charging member 2.2a Photosensitive drum or photosensitive body as a charged member 3 Laser beam 4 Developing device 5 Transfer roller 6 Cleaning device 7 Fixing device 8 Charging bias application power source 9 Transfer material 10 Transfer bias application power source 11 Process cartridge 12.21.22 Exposure lamp or corona discharger for static elimination 13.14 First and second contacts (electrode members) 100 DC current detection circuit (film thickness detection circuit) 101 Low-pass filter (frequency filter circuit)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古屋 正 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 橋本 典夫 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭59−69774(JP,A) 特開 昭63−149668(JP,A) 特開 平3−163370(JP,A) 特開 昭63−208881(JP,A) 特開 平1−232371(JP,A) 特開 平4−101182(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 7/00 - 7/34 G01B 21/00 - 21/32 G03G 13/02 G03G 15/02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadashi Furuya 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Norio Hashimoto 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (56) References JP-A-59-69774 (JP, A) JP-A-63-149668 (JP, A) JP-A-3-163370 (JP, A) JP-A-63-208881 (JP, A A) JP-A-1-232371 (JP, A) JP-A-4-101182 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 7 /00-7/34 G01B 21 / 00-21/32 G03G 13/02 G03G 15/02

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被帯電体に接触する電極部材と、この
極部材に異なる複数の電圧を印加する電圧印加手段と、
電極部材に流れる電流を検知する電流検知手段とを有
し、電極部材に異なる電圧を印加して得られたV−I特
性に基づき被帯電体の厚みを検知することを特徴とする
被帯電体の厚み検知装置。
And the electrode member to 1. A contact member to be charged, and a voltage applying means for applying a different voltage to the electrostatic <br/> pole member,
Have a current detection means for detecting a current flowing through the electrode member
The VI characteristics obtained by applying different voltages to the electrode members
An apparatus for detecting the thickness of an object to be charged, wherein the thickness of the object to be charged is detected based on the property .
【請求項2】 電極部材に印加する電圧は直流電圧成分
と交流電圧成分を重畳した振動電圧であり、被帯電体を
所定の第1の電位V1から所定の第2の電位V2にまで
帯電させるときに電極部材に流れる直流電流の測定によ
り被帯電体の厚みを検知することを特徴とする請求項1
に記載の被帯電体の厚み検知装置。
2. A voltage applied to an electrode member is a DC voltage component.
And an AC voltage component superimposed on the charged object.
From a predetermined first potential V1 to a predetermined second potential V2
By measuring the DC current flowing through the electrode member when charging
And detecting the thickness of the member to be charged.
3. The apparatus for detecting a thickness of an object to be charged according to claim 1.
【請求項3】 電極部材に印加する振動電圧の直流電圧
成分は被帯電体の所望する帯電電位に相当する電圧であ
り、交流電圧成分は電極部材に直流電圧を印加したとき
の被帯電体の帯電開始電圧V th の2倍以上のピーク間電
圧をもつことを特徴とする請求項2に記載の被帯電体の
厚み検知装置。
3. A DC voltage of an oscillating voltage applied to an electrode member.
The component is a voltage corresponding to a desired charging potential of the member to be charged.
When the DC voltage is applied to the electrode member, the AC voltage component
Peak-to-peak voltage more than twice the charging start voltage V th of the member to be charged
3. The apparatus according to claim 2, wherein the apparatus has a pressure .
【請求項4】 電極部材に印加する振動電圧の直流電圧
成分を第1の電圧V1と第2の電圧V2に切り換える手
段を有することを特徴とする請求項2または同3に記載
の被帯電体の厚み検知装置。
4. A DC voltage of an oscillating voltage applied to an electrode member.
A method for switching the components between the first voltage V1 and the second voltage V2
4. The device for detecting the thickness of a member to be charged according to claim 2, wherein the device has a step.
【請求項5】 被帯電体に接触する帯電部材と、この帯
電部材に異なる複数の電圧を印加する電圧印加手段と、
帯電部材に流れる電流を検知する電流検知手段とを有
し、帯電部材に異なる電圧を印加して得られたV−I特
性に基づき被帯電体の厚みを検知することを特徴とす
帯電体の厚み検知装置。
5. A charging member in contact with a member to be charged,
Voltage applying means for applying a plurality of different voltages to the electrical member,
And a current detecting means for detecting a current flowing through the charging member.
The VI characteristics obtained by applying different voltages to the charging member
You and detecting the thickness of the member to be charged on the basis of sex
A device for detecting the thickness of an object to be charged.
【請求項6】 帯電部材に印加する電圧は直流電圧成分
と交流電圧成分を重畳した振動電圧であり、被帯電体を
所定の第1の電位V1から所定の第2の電位V2にまで
帯電させるときに帯電部材に流れる直流電流の測定によ
り被帯電体の厚みを検知することを特徴とする請求項5
記載の被帯電体の厚み検知装置。
6. A voltage applied to the charging member is a DC voltage component.
And an AC voltage component superimposed on the charged object.
From a predetermined first potential V1 to a predetermined second potential V2
Measurement of DC current flowing through charging member when charging
6. The method according to claim 5, wherein the thickness of the member to be charged is detected.
The thickness detecting apparatus of the member to be charged according to.
【請求項7】 帯電部材に印加する振動電圧の直流電圧
成分は被帯電体の所望する帯電電位に相当する電圧であ
り、交流電圧成分は帯電部材に直流電圧を印加したとき
の被帯電体の帯電開始電圧V th の2倍以上のピーク間電
圧をもつことを特徴とする請求項6に記載の被帯電体の
厚み検知装置。
7. A DC voltage of an oscillating voltage applied to a charging member.
The component is a voltage corresponding to a desired charging potential of the member to be charged.
And the AC voltage component is when a DC voltage is applied to the charging member.
Peak-to-peak voltage more than twice the charging start voltage V th of the member to be charged
7. The apparatus according to claim 6, wherein the apparatus has a pressure .
【請求項8】 帯電部材に印加する振動電圧の直流電圧
成分を第1の電圧V 1と第2の電圧V2に切り換える手
段を有することを特徴とする請求項6または同7に記載
の被帯電体の厚み検知装置。
8. A DC voltage of an oscillating voltage applied to a charging member.
A method for switching the components between the first voltage V1 and the second voltage V2
8. The device for detecting the thickness of an object to be charged according to claim 6, wherein the device has a step.
【請求項9】 像担持体と、像担持体に接触する帯電部
材と、この帯電部材に異なる複数の電圧を印加する電圧
印加手段と、帯電部材に流れる電流を検知する電流検知
手段とを有し、帯電部材に異なる電圧を印加して得られ
たV−I特性に基づき像担持体の厚みを検知することを
特徴とする画像形成装置。
9. An image bearing member, and a charging section in contact with the image bearing member.
Material and a voltage to apply a plurality of different voltages to this charging member
Application means and current detection for detecting the current flowing through the charging member
Means for applying different voltages to the charging member.
Detecting the thickness of the image carrier based on the VI characteristics
Characteristic image forming apparatus.
【請求項10】 帯電部材に印加する電圧は直流電圧成
分と交流電圧成分を重畳した振動電圧であり、像担持体
を所定の第1の電位V1から所定の第2の電位V2にま
で帯電させるときに帯電部材に流れる直流電流の測定に
より像担持体の厚みを検知することを特徴とする請求項
9に記載の画像形成装置。
10. A voltage applied to the charging member is a DC voltage component.
This is the oscillating voltage obtained by superimposing the AC voltage component on the image carrier.
From a predetermined first potential V1 to a predetermined second potential V2.
For measuring DC current flowing through charging member when charging with
The thickness of the image carrier is detected more.
10. The image forming apparatus according to 9.
【請求項11】 帯電部材に印加する振動電圧の直流電
圧成分は像担持体の所望する帯電電位に相当する電圧で
あり、交流電圧成分は帯電部材に直流電圧を印加したと
きの像担持体の帯電開始電圧V th の2倍以上のピーク間
電圧をもつことを特徴とする請求項10に記載の画像形
成装置。
11. A DC voltage of an oscillating voltage applied to a charging member.
The pressure component is a voltage corresponding to a desired charging potential of the image carrier.
Yes, the AC voltage component is when a DC voltage is applied to the charging member.
Between the peaks at least twice the charging start voltage V th of the image carrier
11. The image form according to claim 10, having a voltage.
Equipment.
【請求項12】 帯電部材に印加する振動電圧の直流電
圧成分を第1の電圧V1と第2の電圧V2に切り換える
手段を有することを特徴とする請求項10または同11
に記載の画像形成装置。
12. A DC voltage of an oscillating voltage applied to a charging member.
Switching the voltage component between the first voltage V1 and the second voltage V2
12. The method according to claim 10, further comprising:
An image forming apparatus according to claim 1.
JP4056914A 1992-02-07 1992-02-07 Apparatus for detecting thickness of charged object and image forming apparatus Expired - Fee Related JP3064643B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4056914A JP3064643B2 (en) 1992-02-07 1992-02-07 Apparatus for detecting thickness of charged object and image forming apparatus
DE69325113T DE69325113T2 (en) 1992-02-07 1993-02-08 Image forming apparatus with a charging member in contact with the image bearing member
EP93300895A EP0555102B1 (en) 1992-02-07 1993-02-08 Image forming apparatus having charging member contactable to image bearing member
US08/371,584 US5485248A (en) 1992-02-07 1995-01-12 Image forming apparatus having a contact charger for varying a charge applied to a photosensitive drum based on a resistance of the photosensitive layer
HK98112948A HK1011838A1 (en) 1992-02-07 1998-12-08 Image forming apparatus having charging member contactable to image bearing means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056914A JP3064643B2 (en) 1992-02-07 1992-02-07 Apparatus for detecting thickness of charged object and image forming apparatus

Publications (2)

Publication Number Publication Date
JPH05223513A JPH05223513A (en) 1993-08-31
JP3064643B2 true JP3064643B2 (en) 2000-07-12

Family

ID=13040744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056914A Expired - Fee Related JP3064643B2 (en) 1992-02-07 1992-02-07 Apparatus for detecting thickness of charged object and image forming apparatus

Country Status (1)

Country Link
JP (1) JP3064643B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7693433B2 (en) * 2006-01-13 2010-04-06 Fuji Xerox Co., Ltd. Image forming apparatus and layer thickness calculating method
US7831157B2 (en) 2007-06-22 2010-11-09 Fuji Xerox Co., Ltd. Total layer thickness detection apparatus, charging device, image forming apparatus, total layer thickness detection method and computer readable medium storing program for total layer thickness detection

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07175375A (en) * 1993-12-20 1995-07-14 Canon Inc Image carrier's life detecting device
JP3630752B2 (en) * 1994-02-28 2005-03-23 キヤノン株式会社 Electrophotographic photosensitive member, image forming apparatus and process unit provided with the electrophotographic photosensitive member
US5568242A (en) * 1994-02-28 1996-10-22 Canon Kabushiki Kaisha Electrophotographic photosensitive member, image forming apparatus and process unit having this electrophotographic photosensitive member
JP3319881B2 (en) * 1994-08-02 2002-09-03 株式会社リコー Image forming device
JPH08220840A (en) * 1994-10-05 1996-08-30 Ricoh Co Ltd Electrifying roller, roller electrifying device and image forming device using same
JP3444995B2 (en) * 1994-12-07 2003-09-08 キヤノン株式会社 Electrophotographic photoreceptor and electrophotographic apparatus
JPH08220935A (en) * 1995-02-20 1996-08-30 Canon Inc Method for measuring film thickness of image carrier and image forming device
JP3566468B2 (en) * 1996-07-23 2004-09-15 キヤノン株式会社 Photoconductor life detecting method, image forming apparatus, and process cartridge
JPH09190144A (en) * 1996-01-09 1997-07-22 Canon Inc Process cartridge and electrophotographic image forming device
JP3416383B2 (en) * 1996-03-05 2003-06-16 キヤノン株式会社 Image forming device
US6253038B1 (en) * 1998-08-31 2001-06-26 Canon Kabushiki Kaisha Image apparatus having an improved intermediate transfer system
JP3713992B2 (en) * 1999-01-22 2005-11-09 富士ゼロックス株式会社 Contact charging device for image forming apparatus
JP2001296724A (en) * 2000-04-11 2001-10-26 Fuji Xerox Co Ltd Potential controller and image forming device
JP3768799B2 (en) 2000-10-30 2006-04-19 キヤノン株式会社 Process for producing polyhydroxyalkanoate from substituted fatty acid ester
JP3768800B2 (en) 2000-10-31 2006-04-19 キヤノン株式会社 Image forming apparatus
JP4310965B2 (en) * 2002-06-04 2009-08-12 富士ゼロックス株式会社 Image forming apparatus
JP4307207B2 (en) * 2002-10-31 2009-08-05 キヤノン株式会社 Image forming apparatus
JP4323836B2 (en) 2003-03-07 2009-09-02 キヤノン株式会社 Image forming apparatus
JP4876588B2 (en) 2005-03-29 2012-02-15 富士ゼロックス株式会社 Image forming apparatus
JP4882364B2 (en) 2005-12-21 2012-02-22 富士ゼロックス株式会社 Image forming apparatus
JP4923561B2 (en) * 2005-12-21 2012-04-25 富士ゼロックス株式会社 Image forming apparatus
JP4876573B2 (en) 2005-12-26 2012-02-15 富士ゼロックス株式会社 Image forming apparatus and layer thickness calculation method
JP4872354B2 (en) * 2006-01-13 2012-02-08 富士ゼロックス株式会社 Film thickness measuring device
JP4929851B2 (en) 2006-06-06 2012-05-09 富士ゼロックス株式会社 Image forming apparatus
JP2008015291A (en) * 2006-07-07 2008-01-24 Fuji Xerox Co Ltd Image forming apparatus
JP2008134287A (en) * 2006-11-27 2008-06-12 Fuji Xerox Co Ltd Film thickness variation detecting device for photoreceptor, image forming unit using same, and image forming apparatus
JP5289023B2 (en) * 2008-12-11 2013-09-11 キヤノン株式会社 Image forming apparatus
JP5791350B2 (en) * 2011-04-22 2015-10-07 キヤノン株式会社 Image forming apparatus
JP5925155B2 (en) * 2013-05-16 2016-05-25 京セラドキュメントソリューションズ株式会社 Image forming apparatus and method for measuring film thickness of photosensitive layer
JP5925156B2 (en) * 2013-05-16 2016-05-25 京セラドキュメントソリューションズ株式会社 Image forming apparatus and method for measuring film thickness of photosensitive layer
JP6247929B2 (en) * 2013-12-25 2017-12-13 シャープ株式会社 Electron emission device, charging device including the electron emission device, image forming device including the charging device, and control method of the electron emission device
JP6043739B2 (en) * 2014-02-10 2016-12-14 京セラドキュメントソリューションズ株式会社 Image forming apparatus and charging voltage control method
JP6445871B2 (en) 2015-01-07 2018-12-26 キヤノン株式会社 Image forming apparatus
JP6624850B2 (en) 2015-08-25 2019-12-25 キヤノン株式会社 Image forming device
JP6628523B2 (en) * 2015-08-28 2020-01-08 キヤノン株式会社 Image forming device
JP6372468B2 (en) * 2015-10-16 2018-08-15 京セラドキュメントソリューションズ株式会社 Image forming apparatus
JP6617579B2 (en) * 2016-01-26 2019-12-11 コニカミノルタ株式会社 Image forming apparatus
JP6921492B2 (en) * 2016-09-21 2021-08-18 キヤノン株式会社 Image forming device
JP6897128B2 (en) * 2017-02-03 2021-06-30 株式会社リコー Image forming apparatus and its control method
JP6984150B2 (en) * 2017-03-22 2021-12-17 コニカミノルタ株式会社 Image forming device
JP6935714B2 (en) * 2017-09-28 2021-09-15 コニカミノルタ株式会社 Image forming device
JP7027812B2 (en) * 2017-11-01 2022-03-02 株式会社リコー Image forming device, image forming method, and program
CN109782555B (en) 2017-11-13 2021-11-02 株式会社理光 Image forming apparatus, image forming method, storage medium, and computer apparatus
JP7225970B2 (en) * 2019-03-18 2023-02-21 株式会社リコー image forming device
JP7256989B2 (en) * 2019-05-23 2023-04-13 株式会社リコー To-be-charged body surface layer thickness detection device, image forming apparatus, and to-be-charged body surface layer thickness detection method
JP7441423B2 (en) * 2019-08-09 2024-03-01 株式会社リコー image forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7693433B2 (en) * 2006-01-13 2010-04-06 Fuji Xerox Co., Ltd. Image forming apparatus and layer thickness calculating method
US7831157B2 (en) 2007-06-22 2010-11-09 Fuji Xerox Co., Ltd. Total layer thickness detection apparatus, charging device, image forming apparatus, total layer thickness detection method and computer readable medium storing program for total layer thickness detection

Also Published As

Publication number Publication date
JPH05223513A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JP3064643B2 (en) Apparatus for detecting thickness of charged object and image forming apparatus
US5485248A (en) Image forming apparatus having a contact charger for varying a charge applied to a photosensitive drum based on a resistance of the photosensitive layer
JP4876588B2 (en) Image forming apparatus
US8023840B2 (en) Image forming apparatus for detecting the distribution of electrical resistance of a transferring member
JP4882364B2 (en) Image forming apparatus
JP3214120B2 (en) Charging device and image forming device
US10394155B2 (en) Image forming apparatus
JP3239441B2 (en) Image forming device
JP2010231188A (en) Image forming apparatus
JP2897494B2 (en) Process cartridge
JP3275682B2 (en) Charging device and image forming device
JP2000089624A (en) Image forming device
JP3330760B2 (en) Charging device
JP3228056B2 (en) Image forming device
JPH06138784A (en) Image forming device
JP2009251127A (en) Image forming apparatus
JP3369338B2 (en) Charging device
JP4147047B2 (en) Charging roller evaluation method
JP2814778B2 (en) Charging device
JP2021067791A (en) Image forming apparatus
JPH08190254A (en) Charge processor
JP3366877B2 (en) Contact type charge supply device
JP2001296724A (en) Potential controller and image forming device
JP3364563B2 (en) Image forming device
JP2023133119A (en) Image forming apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees