JP2000089624A - Image forming device - Google Patents

Image forming device

Info

Publication number
JP2000089624A
JP2000089624A JP10255671A JP25567198A JP2000089624A JP 2000089624 A JP2000089624 A JP 2000089624A JP 10255671 A JP10255671 A JP 10255671A JP 25567198 A JP25567198 A JP 25567198A JP 2000089624 A JP2000089624 A JP 2000089624A
Authority
JP
Japan
Prior art keywords
current
thickness
voltage
charging
image carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10255671A
Other languages
Japanese (ja)
Inventor
Takeshi Fujino
猛 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10255671A priority Critical patent/JP2000089624A/en
Publication of JP2000089624A publication Critical patent/JP2000089624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably and accurately detect the thickness of a photosensitive layer on an image carrier with respect to the image forming device capable of charging the image carrier by non-contact type charging means in a state of being held in non-contact therewith. SOLUTION: This image forming device accurately and stably detects the thickness of the photosensitive layer on a photoreceptor 1 by simple device/ circuit structure by detecting the current value conducted from the scolo thoron type corona charger 2 to the photoreceptor 1, and a voltage applied from a power source 9 to the scolo thoron type corona charger 2 by the layer thickness detecting circuit 10, when applying charge bias from a power source 9 to the scolo thoron type corona charger 2, and predetermining the thickness of the photosensitive layer on the photoreceptor 1 by the controlling device 11 based on the detection information of the above current value and the voltage detected by the layer thickness detecting circuit 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真方式を利
用した複写機、プリンタ等の画像形成装置に係り、特に
被帯電体である像担持体(電子写真感光体、静電記録誘
導体など)の表面を非接触で帯電処理する非接触式帯電
部材を備えた画像形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus such as a copying machine or a printer using an electrophotographic system, and more particularly to an image carrier (electrophotographic photosensitive member, electrostatic recording derivative, etc.) which is a member to be charged. The present invention relates to an image forming apparatus provided with a non-contact type charging member for charging a surface of the image forming apparatus in a non-contact manner.

【0002】[0002]

【従来の技術】電子写真装置、静電記録装置等の画像形
成装置においては、電子写真感光体、静電記録誘電体等
の被帯電体としての像担持体を帯電処理(除電処理も含
む)する帯電手段として、従来より非接触式のコロナ帯
電器や、接触式のローラ帯電器やブレード帯電器が用い
られてきた。
2. Description of the Related Art In an image forming apparatus such as an electrophotographic apparatus or an electrostatic recording apparatus, an image carrier as an object to be charged such as an electrophotographic photosensitive member or an electrostatic recording dielectric is subjected to a charging process (including a charge removing process). Conventionally, a non-contact corona charger, a contact roller charger, and a blade charger have been used as the charging means.

【0003】上記接触式の帯電手段としては、ローラ形
(帯電ローラ)やブレード形(帯電ブレード)等の帯電
部材(導電性部材)を被帯電体である像担持体(電子写
真感光体、静電記録誘導体など)の表面に接触させて像
担持体表面を所定の極性、電位に帯電させる接触(直
接)式の帯電装置(例えば、特開昭63−167380
号公報等)が実用化されている。
As the contact type charging means, a charging member (conductive member) such as a roller type (charging roller) or a blade type (charging blade) is used as an image bearing member (electrophotographic photosensitive member, electrostatic member). (For example, JP-A-63-167380).
Has been put to practical use.

【0004】また、被帯電体である像担持体(電子写真
感光体、静電記録誘導体など)を繰り返して使用する転
写方式の画像形成装置においては、帯電処理および耐久
通紙等により像担持体表面がしだいに削れていき、像担
持体表面の厚み(膜厚)が逐次減少していく。この膜厚
の減少により、像担持体の帯電安定性が損なわれるが、
その理由は以下のような原理による。
Further, in a transfer type image forming apparatus in which an image bearing member (electrophotographic photosensitive member, electrostatic recording derivative, etc.) as a member to be charged is repeatedly used, the image bearing member is subjected to a charging process and a durable paper passing. The surface is gradually scraped, and the thickness (film thickness) of the surface of the image carrier gradually decreases. Due to this decrease in film thickness, the charging stability of the image carrier is impaired,
The reason is based on the following principle.

【0005】像担持体を一定電位Vdに帯電するために
必要な電荷量Qは、該像担持体の静電容量Cによって決
定され、この電荷量は像担持体の誘電体層の静電容量C
によって決定され、この電荷量は誘電体層の厚みdに対
して反比例する。
The amount of charge Q required to charge the image carrier to a constant potential Vd is determined by the capacitance C of the image carrier, and the amount of charge is the capacitance of the dielectric layer of the image carrier. C
The charge amount is inversely proportional to the thickness d of the dielectric layer.

【0006】従って、表面が削れた像担持体を一定電位
Vdにまで帯電するためには初期より多い電荷(像担持
体方向電流)が必要になる。即ち、一定の像担持体方向
電流Idが像担持体に流れている状態では、像担持体の
誘電体層の厚みの減少に応じて徐々に電位が変化し、そ
の結果、濃度が薄く、もしくは濃くなったり、カブリが
生じるなどの問題が生じ、適正な画像が得られなくな
る。
Therefore, in order to charge the image carrier whose surface has been shaved to a constant potential Vd, more charge (current in the direction of the image carrier) is required than in the initial stage. That is, in a state where a constant image carrier direction current Id is flowing through the image carrier, the potential gradually changes in accordance with the decrease in the thickness of the dielectric layer of the image carrier, and as a result, the density is low, or Problems such as darkening and fogging occur, and an appropriate image cannot be obtained.

【0007】この現象に関しては、帯電方式が接触式、
非接触式を問わずに発生する。この問題を解決するため
には、像担持体の表面電位を電位センサーなどで測定
し、電位制御を行う必要がある。この場合、電位センサ
ーを用いればそれだけ装置の初期コストが増大し、ま
た、カートリッジタイプの複写機やプリンターでは、電
位センサーを装置内に装着するスペースがないなどの理
由から、比較的安価な複写機やプリンターでは像担持体
の膜厚の変動に対応する方法がなかった。
[0007] Regarding this phenomenon, the charging method is a contact type,
Occurs regardless of the non-contact type. In order to solve this problem, it is necessary to measure the surface potential of the image carrier with a potential sensor or the like and control the potential. In this case, the use of a potential sensor increases the initial cost of the apparatus, and a cartridge-type copying machine or printer has a relatively inexpensive copying machine because there is no space for mounting the potential sensor in the apparatus. And printers have no method to cope with fluctuations in the thickness of the image carrier.

【0008】ところで、このような膜厚の変化に対し
て、電位センサーなどの像担持体の表面電位測定手段を
持たずに一定の帯電安定性を維持するため、接触帯電方
式においては、像担持体の膜厚を検知する手段(例えば
特開平5−223513号公報等)などが存在する。
In order to maintain a constant charge stability against such a change in film thickness without having a means for measuring the surface potential of the image bearing member such as a potential sensor, the contact charging method employs an image bearing member. There are means for detecting the thickness of the body (for example, JP-A-5-223513).

【0009】この接触帯電方式における像担持体の膜厚
の検知手段の原理を簡単に説明すると、被帯電体である
像担持体の誘電体層の膜厚dの減少による静電容量Cの
変化を、帯電部材から像担持体に流れる像担持体方向電
流Idで検知し、同時に帯電部材への印加電圧(像担持
体の表面電位と放電開始電圧の和)と、予め設定された
像担持体の誘電体層の厚みに関するV−I特性の傾きデ
ータとを照合することにより達成されている。
The principle of the means for detecting the thickness of the image carrier in this contact charging system will be briefly described. The change in the capacitance C due to the decrease in the thickness d of the dielectric layer of the image carrier as the object to be charged is described. Is detected by an image carrier direction current Id flowing from the charging member to the image carrier, and at the same time, a voltage applied to the charging member (the sum of the surface potential of the image carrier and the discharge starting voltage) and a preset image carrier This is achieved by collating with the slope data of the VI characteristic regarding the thickness of the dielectric layer.

【0010】このように、接触帯電装置はコロナ帯電器
に比べて、像担持体の膜厚を検知することができるとい
う大きな利点の他に、電源の低圧化が図れる、オゾン等
のコロナ放電生成物の発生が少ない等の利点を有してい
る。
As described above, the contact charging device has a great advantage of being able to detect the film thickness of the image carrier as compared with the corona charger, and also has a corona discharge generation such as ozone which can lower the power supply voltage. It has advantages such as less generation of objects.

【0011】しかしながら、その一方で、接触部近傍の
狭域放電により像担持体の表層の削れ量が大きい、接触
式であるために帯電部材の表層が汚れて画像異常が生じ
易い。
However, on the other hand, the surface layer of the image bearing member is largely scraped by the narrow-area discharge in the vicinity of the contact portion, and since the contact type is used, the surface layer of the charging member is soiled and image abnormalities are likely to occur.

【0012】また、帯電部材が導電性樹脂やゴムで構成
されているため、放電による材質の劣化や抵抗の変動に
より帯電部材自体の寿命がコロナ帯電器に比べて短いな
どの欠点も有している。
Further, since the charging member is made of a conductive resin or rubber, there is a disadvantage that the life of the charging member itself is shorter than that of the corona charger due to deterioration of the material due to discharge and fluctuation of resistance. I have.

【0013】特に近年、カートリッジ廃棄によって発生
するゴミなどの環境問題や、コストダウン等に対する強
い要望に応えるため、必然的に像担持体である感光体の
寿命を延ばすことが必要となり、感光体の削れ量が少な
いコロナ帯電器が再度見直されている。
In particular, in recent years, in order to respond to environmental problems such as dust generated by discarding a cartridge and to a strong demand for cost reduction, it is necessary to extend the life of the photosensitive member as an image bearing member. The corona charger with a small amount of shaving has been reviewed again.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、電位セ
ンサーを持たない像担持体の帯電手段としてコロナ帯電
器を備えた電子写真装置においては、前述のような像担
持体の膜厚検知手段が使用できない。
However, in an electrophotographic apparatus provided with a corona charger as a means for charging an image carrier having no potential sensor, the above-described film thickness detecting means for the image carrier cannot be used. .

【0015】その理由は、像担持体の膜厚検知を行うた
めには、像担持体に流れる電流とその時の印加電圧の関
係であるV−I特性が分かっていなければならないが、
スコロトロン式コロナ帯電器は、放電ワイヤの他にシー
ルドやグリッドと言われる電流安定化部材で構成されて
いる。このため、放電ワイヤより流れる電流は、像担持
体だけではなく前述のシールドやグリッドといった導電
部材に流れるため、帯電部材に流れる電流とその時の印
加電圧は、像担持体に流れる電流と像担持体の表面電位
(印加電圧から放電開始電圧を差し引いた値)と一致し
ない。よって、像担持体の静電容量を導くことができ
ず、像担持体の膜厚を算出することができない。
The reason is that, in order to detect the film thickness of the image carrier, it is necessary to know the VI characteristic which is the relationship between the current flowing through the image carrier and the applied voltage at that time.
The scorotron type corona charger includes a current stabilizing member called a shield or a grid in addition to a discharge wire. For this reason, the current flowing from the discharge wire flows not only to the image carrier, but also to the conductive member such as the above-mentioned shield or grid, so that the current flowing to the charging member and the applied voltage at that time are determined by the current flowing in the image carrier and the image carrier. (The value obtained by subtracting the firing voltage from the applied voltage). Therefore, the capacitance of the image carrier cannot be derived, and the thickness of the image carrier cannot be calculated.

【0016】また、感光体を帯電処理する前に行う表面
電位を下げるために行う除電工程(一般にヒューズラン
プやLEDなどの露光照射による除電)において、感光
体の除電後の表面電位Vsl(Voltage sup
er light)が0Vまで落ちなかった場合、図5
に示すように、感光体の表面電位と感光体に流れた電流
との比(表面電位/電流)は、感光体の除電後の表面電
位(除電後電位)Vslの分だけずれてしまう。
Further, in a static elimination step (generally, static elimination by exposure irradiation of a fuse lamp, an LED, or the like) performed before charging the photosensitive member to lower the surface potential, a surface potential Vsl (Voltage supply) of the photosensitive member after the static elimination is applied.
er light) does not drop to 0V, FIG.
As shown in (2), the ratio (surface potential / current) between the surface potential of the photoconductor and the current flowing through the photoconductor shifts by the surface potential (potential after static elimination) Vsl of the photoconductor after static elimination.

【0017】この除電後電位Vslは、感光体の耐久状
態や使用時間に応じて徐々に上昇していくため、感光体
の表面電位と電流との比がずれていき、結果として検知
される感光体の膜厚も実際の値に対してずれていくこと
になる。
The potential Vsl after static elimination gradually increases in accordance with the endurance state and use time of the photoreceptor, so that the ratio between the surface potential of the photoreceptor and the current shifts, and as a result, the photosensitive The body thickness will also deviate from the actual value.

【0018】そのため、コロナ帯電器を帯電手段として
備えた電子写真装置においては、一般に感光体の膜厚検
知の手段として、通紙耐久枚数や感光体の通算回転数等
をカウントすることで間接的に感光体の削れ量、すなわ
ち感光体の寿命を算出する方法などが用いられている。
しかしながら、この方法も使用環境やクリーニング装置
の状態等で感光体の削れ量が変動するため、感光体の厚
みを精度よく安定して検知することができなかった。
For this reason, in an electrophotographic apparatus provided with a corona charger as a charging means, in general, the means for detecting the thickness of the photoreceptor is indirect by counting the number of durable sheets passed or the total number of rotations of the photoreceptor. For example, a method of calculating the shaving amount of the photoconductor, that is, the life of the photoconductor is used.
However, in this method as well, the thickness of the photoreceptor fluctuates depending on the use environment, the state of the cleaning device, and the like, so that the thickness of the photoreceptor cannot be accurately and stably detected.

【0019】そこで本発明は、非接触式の帯電手段を用
いる画像形成装置において、像担持体の厚みを精度良く
安定して検知することができる画像形成装置を提供する
ことを目的とする。
Accordingly, an object of the present invention is to provide an image forming apparatus using a non-contact type charging means, which can accurately and stably detect the thickness of an image carrier.

【0020】[0020]

【課題を解決するための手段】上記目的を達成するため
に本発明は、表面に感光層を有する像担持体と、該像担
持体の表面に近接して設けられ前記像担持体を帯電する
非接触帯電手段と、該非接触帯電手段に電圧を印加する
電源とを備えた画像形成装置において、前記電源から前
記非接触帯電手段に電圧を印加した際に、前記非接触帯
電手段から前記像担持体に流れる電流値と、前記電源か
ら前記非接触帯電手段に印加される電圧値とを検知する
電流・電圧検知手段と、該電流・電圧検知手段により検
知される前記電流値と電圧値の検知情報を入力し、入力
される前記電流値と電圧値の検知情報に基づいて前記感
光層の厚みを算出する算出手段と、を有することを特徴
としている。
In order to achieve the above object, the present invention provides an image carrier having a photosensitive layer on its surface, and an image carrier provided close to the surface of the image carrier to charge the image carrier. In an image forming apparatus provided with a non-contact charging unit and a power supply for applying a voltage to the non-contact charging unit, when a voltage is applied from the power supply to the non-contact charging unit, the non-contact charging unit switches the image bearing device from the non-contact charging unit. Current / voltage detecting means for detecting a current value flowing through the body and a voltage value applied to the non-contact charging means from the power supply; and detecting the current value and the voltage value detected by the current / voltage detecting means. Calculating means for inputting information and calculating the thickness of the photosensitive layer based on the input detection information of the current value and the voltage value.

【0021】また、前記非接触式帯電手段は、シールド
内に放電ワイヤとグリッドを有するスコロトロン式コロ
ナ帯電器であり、前記電流・電圧検知手段は、前記電源
から前記スコロトロン式コロナ帯電器に印加される電圧
値と、前記電源から前記放電ワイヤ、シールド、グリッ
ドに流れる各電流値とを検知し、更に前記電流・電圧検
知手段は、検知した前記各電流値により前記スコロトロ
ン式コロナ帯電器から前記像担持体へ流れる帯電電流値
を検知し、前記算出手段は、前記電流・電圧検知手段か
ら入力される前記電圧値と帯電電流値の検知情報に基づ
いて前記感光層の厚みを算出することを特徴としてい
る。
Further, the non-contact type charging means is a scorotron type corona charger having a discharge wire and a grid in a shield, and the current / voltage detecting means is applied from the power source to the scorotron type corona charger. And a current value flowing from the power supply to the discharge wire, the shield, and the grid, and the current / voltage detecting means further detects the image from the scorotron-type corona charger based on the detected current values. A charging current value flowing to the carrier is detected, and the calculation unit calculates the thickness of the photosensitive layer based on the detection information of the voltage value and the charging current value input from the current / voltage detection unit. And

【0022】また、前記非接触式帯電手段は、シールド
内に放電針とグリッドを有するコロナ帯電器であり、前
記電流・電圧検知手段は、前記電源から前記コロナ帯電
器に印加される電圧値と、前記電源から前記放電針、シ
ールド、グリッドに流れる各電流値とを検知し、更に前
記電流・電圧検知手段は、検知した前記各電流値により
前記コロナ帯電器から前記像担持体へ流れる帯電電流値
を検知し、前記算出手段は、前記電流・電圧検知手段か
ら入力される前記電圧値と帯電電流値の検知情報に基づ
いて前記感光層の厚みを算出することを特徴としてい
る。
Further, the non-contact type charging means is a corona charger having a discharge needle and a grid in a shield, and the current / voltage detecting means is provided with a voltage value applied from the power supply to the corona charger. Detecting the respective current values flowing from the power supply to the discharge needle, the shield, and the grid, and furthermore, the current / voltage detecting means detects the charging current flowing from the corona charger to the image carrier according to the detected current values. The value is detected, and the calculating means calculates the thickness of the photosensitive layer based on the detection information of the voltage value and the charging current value input from the current / voltage detecting means.

【0023】また、前記感光層の厚みに応じた前記像担
持体の表面電位と帯電電流との特性値を格納した記憶手
段を有し、前記算出手段は、前記記憶手段から入力され
る前記像担持体の表面電位と帯電電流との特性値情報
と、前記電流・電圧検知手段から入力される前記電流値
と電圧値の検知情報から前記感光層の厚みを算出するこ
とを特徴としている。
[0023] The image processing apparatus further includes storage means for storing characteristic values of a surface potential and a charging current of the image carrier in accordance with the thickness of the photosensitive layer. It is characterized in that the thickness of the photosensitive layer is calculated from characteristic value information of the surface potential of the carrier and charging current and detection information of the current value and the voltage value input from the current / voltage detection means.

【0024】また、前記像担持体の表面電荷を除電する
除電手段と、該除電手段による前記像担持体の表面電荷
の除電後における前記感光層の厚みに応じた前記像担持
体の表面電位と帯電電流との特性値を格納した記憶手段
を有し、前記算出手段は、前記記憶手段から入力される
前記像担持体の表面電位と帯電電流との特性値情報と、
前記電流・電圧検知手段から入力される前記電流値と電
圧値の検知情報から前記感光層の厚みを算出することを
特徴としている。
A charge removing means for removing charge from the surface of the image bearing member; and a surface potential of the image bearing member corresponding to the thickness of the photosensitive layer after removing the charge on the surface of the image bearing member by the charge removing means. A storage unit storing a characteristic value of the charging current; and the calculating unit, characteristic value information of a surface potential and a charging current of the image carrier input from the storage unit,
The thickness of the photosensitive layer is calculated from the detection information of the current value and the voltage value input from the current / voltage detection means.

【0025】また、前記算出手段で検知された前記感光
層の厚みが予め設定した値、またはそれ以下の場合に
は、前記感光層の厚みが下限厚みに達したことを表示手
段に報知する、または画像形成動作を停止するようにし
たことを特徴としている。
If the thickness of the photosensitive layer detected by the calculating means is equal to or less than a preset value, the display means is notified that the thickness of the photosensitive layer has reached the lower limit thickness. Alternatively, the image forming operation is stopped.

【0026】(作用)本発明の構成によれば、非接触帯
電手段から像担持体に流れる電流値と、電源から非接触
式帯電手段に印加される電圧値に基づいて、算出手段で
像担持体の感光層の厚みを精度よく安定して検知するこ
とができる。
(Operation) According to the structure of the present invention, the image carrying means is calculated by the calculating means based on the current value flowing from the non-contact charging means to the image carrier and the voltage value applied from the power supply to the non-contact charging means. The thickness of the photosensitive layer of the body can be accurately and stably detected.

【0027】[0027]

【発明の実施の形態】〈実施の形態1〉図1は、本実施
の形態に係る画像形成装置(本実施の形態では転写式電
子写真プロセス利用の複写機)の要部を示す概略構成図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 1 is a schematic configuration diagram showing a main part of an image forming apparatus (a copying machine using a transfer type electrophotographic process in this embodiment) according to the present embodiment. It is.

【0028】この画像形成装置は、像担持体である回転
ドラム型の電子写真感光体(以下、感光体という)1
と、感光体1の周囲に非接触式の帯電部材(一次帯電
器)としてのスコロトロン式コロナ帯電器2、現像装置
3、転写ローラ5、クリーニング装置6、及び除電装置
8を備えている。
This image forming apparatus includes a rotating drum type electrophotographic photosensitive member (hereinafter, referred to as a photosensitive member) 1 serving as an image carrier.
And a scorotron type corona charger 2 as a non-contact type charging member (primary charger), a developing device 3, a transfer roller 5, a cleaning device 6, and a static eliminator 8 around the photoreceptor 1.

【0029】感光体1は、本実施の形態では負帯電の有
機感光体で、直径30mmのアルミニウムドラム(導電
性ドラム基体)上に表層である不図示のOPC感光体層
(誘電体層)が塗工形成されており、所定のプロセスス
ピード(例えば150mm/secの回転周速度)で矢
印R1方向に回転駆動される。
The photoconductor 1 is a negatively charged organic photoconductor in the present embodiment. An OPC photoconductor layer (dielectric layer) (not shown) as a surface layer is formed on an aluminum drum (conductive drum substrate) having a diameter of 30 mm. It is formed by coating, and is rotationally driven in a direction of an arrow R1 at a predetermined process speed (for example, a rotational peripheral speed of 150 mm / sec).

【0030】感光体1のOPC感光体層(以下、誘電体
層という)の厚みは初期状態においてd=25μmであ
る。また、OPC感光体層を形成する不図示の電荷輸送
層(Carriere Transfer Laye
r)のバインダーとしてポリカーボネート樹脂を用いて
おり、耐久通紙によって該電荷輸送層層は徐々に削れて
厚みが減少していく。
The thickness of the OPC photosensitive layer (hereinafter referred to as dielectric layer) of the photosensitive member 1 is d = 25 μm in the initial state. In addition, a charge transport layer (not shown) for forming an OPC photoreceptor layer (Carrier Transfer Layer)
As the binder of r), a polycarbonate resin is used, and the charge transport layer is gradually scraped by durable paper passing to reduce the thickness.

【0031】スコロトロン式コロナ帯電器2は、放電ワ
イヤ2aと、放電ワイヤ2aの側部外周を覆う導電性板
であるシールド2bと、感光体1に近接対向し感光体1
の表面電位を制御するグリッド2cを備えている。
The scorotron-type corona charger 2 includes a discharge wire 2a, a shield 2b which is a conductive plate for covering the outer periphery of the side of the discharge wire 2a,
Is provided with a grid 2c for controlling the surface potential.

【0032】放電ワイヤ2aとシールド2b間には電源
9が接続されており、放電ワイヤ2aには、電源9によ
り該放電ワイヤ2aの片側端部において不図示の電極を
介して帯電バイアスが印加される。
A power supply 9 is connected between the discharge wire 2a and the shield 2b, and a charging bias is applied to the discharge wire 2a at one end of the discharge wire 2a via an electrode (not shown). You.

【0033】電源9からスコロトロン式コロナ帯電器2
に印加される電流と電圧の値は、膜厚検知回路10にお
いて検知される。膜厚検知回路10で検知される前記電
流と電圧の値は制御装置11に入力され、制御装置11
は前記電流と電圧の値の入力情報に基づいて感光体1の
誘電体層の厚みを算出する(詳細は後述する)。
A power supply 9 supplies a scorotron type corona charger 2
The values of the current and the voltage applied to are detected by the film thickness detection circuit 10. The values of the current and the voltage detected by the film thickness detection circuit 10 are input to the control device 11,
Calculates the thickness of the dielectric layer of the photoconductor 1 based on the input information of the current and voltage values (details will be described later).

【0034】また、シールド2bとグリッド2cは、不
図示の端部電極によって導通されており、不図示の電極
を介して放電ワイヤ2aと同様に電源9から帯電バイア
スが印加される。従って、シールド2bとグリッド2c
は帯電処理時には同電位、同電流となる。
The shield 2b and the grid 2c are electrically connected by an end electrode (not shown), and a charging bias is applied from the power supply 9 via the electrode (not shown), similarly to the discharge wire 2a. Therefore, the shield 2b and the grid 2c
Have the same potential and the same current during the charging process.

【0035】現像装置3は、本実施の形態では一成分ジ
ャンピング現像装置であり、回転自在な現像スリーブ4
内に固定配置されたマグネットローラ(不図示)を有し
ている。
In the present embodiment, the developing device 3 is a one-component jumping developing device, and a rotatable developing sleeve 4.
It has a magnet roller (not shown) fixedly arranged inside.

【0036】次に、上記した画像形成装置の画像形成動
作について説明する。
Next, an image forming operation of the above-described image forming apparatus will be described.

【0037】画像形成時には、感光体1は駆動手段(不
図示)により矢印R1方向に所定のプロセススピード
(例えば150mm/sec)で回転駆動される。この
とき、電源9からスコロトロン式コロナ帯電器2に帯電
バイアスを印加して感光体1の表面を負極性に帯電す
る。
During image formation, the photosensitive member 1 is driven to rotate at a predetermined process speed (for example, 150 mm / sec) in the direction of arrow R1 by a driving means (not shown). At this time, a charging bias is applied from the power supply 9 to the scorotron corona charger 2 to charge the surface of the photoconductor 1 to a negative polarity.

【0038】そして、スコロトロン式コロナ帯電器2に
より帯電処理を施された感光体1は、露光装置(不図
示)から出力されるレーザー光L(目的の画像情報の時
系列電気デジタル画素信号に応じて照射されたレーザー
光)による走査露光がなされることにより、感光体1の
露光部分が除電されて感光体1表面に画像情報の静電潜
像が形成されていく。
The photoreceptor 1 charged by the scorotron corona charger 2 receives a laser beam L output from an exposure device (not shown) according to a time-series electric digital pixel signal of target image information. The exposed portion of the photoreceptor 1 is subjected to scanning exposure by the laser beam irradiated by the laser beam irradiation, thereby forming an electrostatic latent image of image information on the surface of the photoreceptor 1.

【0039】そして、その静電潜像がジャンピング現像
方式の現像装置3により一成分磁性トナーによって反転
現像され、感光体1表面の露光された部分がトナーの付
着でトナー像として可視化される。
Then, the electrostatic latent image is reversely developed by a one-component magnetic toner by a developing device 3 of a jumping development system, and the exposed portion of the surface of the photoconductor 1 is visualized as a toner image by the adhesion of the toner.

【0040】そして、感光体1表面に形成されたトナー
像が転写ローラ4と感光体1との間の転写ニップ部に到
達すると、このタイミングに合わせて不図示の給紙機構
から用紙などの転写材Pがこの転写ニップ部に搬送され
る。そして、転写バイアス(例えば約3KV)が印加さ
れた転写ローラ5により転写材Pの裏側にトナーと逆極
性の電荷が付与されて、その表面側に感光体1表面のト
ナー像が転写される。トナー像が転写された転写材Pは
定着装置(不図示)に搬送され、定着装置(不図示)に
よる加熱加圧処理により転写トナー像が転写材P表面に
永久固着画像として定着されて出力される。
When the toner image formed on the surface of the photosensitive member 1 reaches the transfer nip portion between the transfer roller 4 and the photosensitive member 1, transfer of a sheet or the like from a paper feeding mechanism (not shown) is performed in accordance with this timing. The material P is transported to the transfer nip. Then, the transfer roller 5 to which a transfer bias (for example, about 3 KV) is applied gives a charge having a polarity opposite to that of the toner to the back side of the transfer material P, and the toner image on the surface of the photoconductor 1 is transferred to the front side. The transfer material P on which the toner image has been transferred is conveyed to a fixing device (not shown), and the transferred toner image is fixed as a permanently fixed image on the surface of the transfer material P by heating and pressing by a fixing device (not shown) and output. You.

【0041】また、トナー像転写後の感光体1表面は、
クリーニング装置6のクリーニングブレード(ウレタン
ゴム製のカウンターブレード)7により転写残トナーや
紙粉等の付着汚染物の掻き落とし除去を受けて清浄面化
され、さらに除電装置8により除電されて初期化され、
繰り返して作像に供される。
The surface of the photoconductor 1 after the transfer of the toner image is
The cleaning blade (counter blade made of urethane rubber) 7 of the cleaning device 6 scrapes and removes adhered contaminants such as transfer residual toner and paper dust to make the surface clean, and further, the charge is removed and initialized by the charge removing device 8. ,
It is repeatedly provided for image formation.

【0042】次に、感光体1の誘電体層の厚みの検知に
ついて説明する。
Next, detection of the thickness of the dielectric layer of the photosensitive member 1 will be described.

【0043】感光体1の誘電体層の厚みd(μm)は、
スコロトロン式コロナ帯電器2の帯電処理による感光体
1の表面電位の上昇分をVp(V)、感光体1に流れる
感光体電流をId(μA)、感光体1の誘電体層の比誘
電率をε、真空中の誘電率をε0、スコロトロン式コロ
ナ帯電器2の有効帯電幅をL(mm)、プロセススピー
ドをPS(mm/sec)とした場合に、これらから感
光体1の静電容量Cが計算され、以下の関係式が導かれ
る。
The thickness d (μm) of the dielectric layer of the photosensitive member 1 is
The increase in the surface potential of the photoconductor 1 due to the charging process of the scorotron type corona charger 2 is Vp (V), the photoconductor current flowing through the photoconductor 1 is Id (μA), and the relative permittivity of the dielectric layer of the photoconductor 1 Is ε, the dielectric constant in vacuum is ε0, the effective charging width of the scorotron corona charger 2 is L (mm), and the process speed is PS (mm / sec). C is calculated, and the following relational expression is derived.

【0044】 帯電電荷量Q=∫Id・dt=C・Vp …(1) (1)式より、帯電電流Id=d/dt(C・Vp) …(2) が得られる。ここで、dC/dt=ε・ε0・L・PS/dであることより、 帯電電流Id=ε・ε0・L・PS・Vp/d …(3) (3)式より、誘電体層の厚みd=ε・ε0・L・PS・Vp/d …(4) が得られる。Charged charge amount Q = ∫Id · dt = C · Vp (1) From equation (1), charging current Id = d / dt (C · Vp) (2) is obtained. Here, since dC / dt = ε · ε0 · L · PS / d, the charging current Id = ε · ε0 · L · PS · Vp / d (3) From equation (3), The thickness d = ε ・ ε0 ・ L ・ PS ・ Vp / d (4) is obtained.

【0045】(4)式において、ε、ε0、L、PS
は、画像形成装置および誘電体の特性によって決まる定
数であるため、誘電体層の厚みdは、VpおよびIdの
関数としてみることができる。つまり、上記Vpおよび
Idの関係を得ることにより、感光体1の誘電体層の厚
みdを検知することができる。
In the equation (4), ε, ε0, L, PS
Is a constant determined by the characteristics of the image forming apparatus and the dielectric, so that the thickness d of the dielectric layer can be seen as a function of Vp and Id. That is, by obtaining the relationship between Vp and Id, the thickness d of the dielectric layer of the photoconductor 1 can be detected.

【0046】ここで、スコロトロン式コロナ帯電器2か
ら感光体1へ流れる帯電電流Idを求めるには、電源9
から放電ワイヤ2aへ流れる放電ワイヤ電流Iprと、
グリッド2c及びシールド2bヘ流れる電流Igsを膜
厚検知回路10で検知し、放電ワイヤ電流Iprからグ
リッド・シールド電流Igsを差し引いたものが感光体
電流Idとなる。すなわち、 Id=Ipr−Igs …(5) である。
Here, in order to determine the charging current Id flowing from the scorotron type corona charger 2 to the photosensitive member 1, the power supply 9
A discharge wire current Ipr flowing from the discharge wire 2a to the discharge wire 2a;
The current Igs flowing to the grid 2c and the shield 2b is detected by the film thickness detecting circuit 10, and the photoreceptor current Id is obtained by subtracting the grid shield current Igs from the discharge wire current Ipr. That is, Id = Ipr-Igs (5).

【0047】ここで、グリッド2bとシールド2cに流
れるグリッド・シールド電流がIgsで表されるのは、
本実施の形態においてはグリッド2bとシールド2cが
導通しており、同一の電源9から電流を供給されている
からである。
Here, the grid shield current flowing through the grid 2b and the shield 2c is represented by Igs.
This is because, in the present embodiment, the grid 2b and the shield 2c are conductive, and the current is supplied from the same power supply 9.

【0048】また、感光体1の表面電位は、スコロトロ
ン式コロナ帯電器2の放電ワイヤ2aに流れる放電ワイ
ヤ電流Iprが感光体1に流れる帯電電流(感光体電
流)Idに対して十分に大きい(一般的には約7〜8倍
以上)であれば、グリッド・シールド電圧Vgsと等し
くなるという特性を用いて検知することができる。すな
わち、 Vd=Vp …(6) である。
The surface potential of the photoconductor 1 is sufficiently larger than the charging current (photoconductor current) Id of the discharge wire current Ipr flowing through the discharge wire 2a of the scorotron corona charger 2 (photoconductor current). (Generally about 7 to 8 times or more), it can be detected by using the characteristic that it becomes equal to the grid shield voltage Vgs. That is, Vd = Vp (6).

【0049】そこで、本実施の形態のように、感光体1
の非接触式帯電部材としてのスコロトロン式コロナ帯電
器2を用いた画像形成装置において、放電ワイヤ電流l
pとグリッド・シールド電流Igsより求まる帯電電流
Id、およびグリッド電圧Vgsより求まる表面電位V
pを用いて、感光体1の誘電体層の厚みを検知すること
ができる。
Therefore, as in the present embodiment, the photosensitive member 1
In the image forming apparatus using the scorotron type corona charger 2 as the non-contact type charging member, the discharge wire current l
charging current Id determined from p and grid shield current Igs, and surface potential V determined from grid voltage Vgs
Using p, the thickness of the dielectric layer of the photoconductor 1 can be detected.

【0050】なお、上記した感光体1の誘電体層の厚み
を検知する際の条件であるが、検知時の除電後電位Vs
lが略OV近辺でない場合、除電後電位Vslの分だけ
感光体1に流れる電荷が少なくなる。このため、感光体
1の表面電位Vと帯電電流Iとの特性であるV−I特性
が食い違って誤差の原因となるため、除電後電位Vsl
が略OV近辺となるように感光体1の除電処理を除電装
置8で行う。
The condition for detecting the thickness of the dielectric layer of the photosensitive member 1 is the potential Vs after the static elimination at the time of detection.
If l is not near OV, the charge flowing to the photoconductor 1 is reduced by the potential Vsl after static elimination. For this reason, the VI characteristic, which is the characteristic between the surface potential V of the photoconductor 1 and the charging current I, is different from each other and causes an error.
Of the photosensitive member 1 is performed by the charge removing device 8 so that the value of the photoreceptor 1 becomes approximately OV.

【0051】また、それぞれの電圧を印加する時間は、
ノイズの影響等を除去するために最低でも感光体1を1
回転分以上(本実施の形態では1回転)とし、この間に
測定された電流を平均している。更に、感光体1の誘電
体層の厚み検知は感光体1の前回転時に行っており、画
像形成に悪影響を与えないようなシーケンスになってい
る。
The time for applying each voltage is as follows:
At least one photoconductor 1 should be used to remove the effects of noise.
The rotation is equal to or more than one rotation (one rotation in this embodiment), and the current measured during this period is averaged. Further, the detection of the thickness of the dielectric layer of the photoconductor 1 is performed during the pre-rotation of the photoconductor 1, so that the sequence is such that the image formation is not adversely affected.

【0052】また、感光体1の誘電体層の厚みを検知す
るためには、予め感光体1の上記V−I特性の傾きと、
その誘電体層の膜厚(厚み)dの関係を測定する必要が
ある。そこで、感光体1の誘電体層の膜厚dがそれぞれ
15μm、18μm、21μm、25μmである感光体
1を用いて測定を行った。
In order to detect the thickness of the dielectric layer of the photoreceptor 1, the inclination of the VI characteristic of the photoreceptor 1 must be determined in advance.
It is necessary to measure the relationship of the thickness (thickness) d of the dielectric layer. Therefore, the measurement was performed using the photoconductor 1 in which the thickness d of the dielectric layer of the photoconductor 1 was 15 μm, 18 μm, 21 μm, and 25 μm, respectively.

【0053】図2は、感光体1の誘電体層の膜厚dが1
5μm、21μm、25μmの場合の各V−I特性を示
す図であり、横軸は表面電位V(KV)、縦軸は帯電電
流Iである。この図に示すV−I特性から明らかなよう
に、V−I特性の切片であるε、ε0、L、PS/d
が、感光体1の誘電体層の膜厚dに依存することが実験
的にも立証された。
FIG. 2 shows that the thickness d of the dielectric layer of the photosensitive member 1 is 1
It is a figure which shows each VI characteristic in case of 5 micrometers, 21 micrometers, and 25 micrometers, and a horizontal axis | shaft is surface potential V (KV) and a vertical axis | shaft is charging current I. FIG. As is clear from the VI characteristics shown in this figure, ε, ε0, L, PS / d, which are the intercepts of the VI characteristics.
However, it has been experimentally proved that this depends on the thickness d of the dielectric layer of the photoreceptor 1.

【0054】上記15〜25μmでのV−I特性の関係
に基づいて、図3に示すような、感光体1の誘電体層の
膜厚(μm)dとV−I特性の傾き(V/I)の相関を
得ることができる。ここで、V−I特性の傾き(V/
I)とは、帯電電流Idを表面電位(電圧)Vpで割っ
た値である。また、本実施の形態では、帯電電流Idは
36μA、グリッド、シールド電圧Vgsは700Vと
した。
Based on the relationship between the VI characteristics at 15 to 25 μm, as shown in FIG. 3, the thickness (μm) d of the dielectric layer of the photosensitive member 1 and the gradient (V / The correlation of I) can be obtained. Here, the slope of the VI characteristic (V /
I) is a value obtained by dividing the charging current Id by the surface potential (voltage) Vp. In the present embodiment, the charging current Id was 36 μA, and the grid and shield voltage Vgs were 700 V.

【0055】そして、本実施の形態では、上記した図3
に示した感光体1の誘電体層の膜厚dとV−I特性の傾
き(V/I)の関係を、制御装置11内のROM12に
予め記憶させておき、膜厚検知回路10から入力される
表面電位Vpと帯電電流Idから感光体1の誘電体層の
膜厚dを算出することができる。
In the present embodiment, the above-described FIG.
The relationship between the thickness d of the dielectric layer of the photoreceptor 1 and the gradient (V / I) of the VI characteristic shown in FIG. The thickness d of the dielectric layer of the photoconductor 1 can be calculated from the surface potential Vp and the charging current Id.

【0056】そして、本実施の形態では、感光体1の誘
電体層の膜厚dが下限値である15μmに相当するV−
I特性の傾き(V/I)が19.5V/μAを下回った
場合には、画像形成装置の表示パネル(不図示)に設け
た警告表示灯(不図示)を点灯させたり、感光体1の誘
電体層の膜厚が下限厚みに達していることを表示するな
どして、使用者に報知するようにしている。また、制御
装置11は、この警告表示などと共に画像形成動作を停
止させるようにしてもよい。
In the present embodiment, the film thickness d of the dielectric layer of the photosensitive member 1 is V−V corresponding to the lower limit of 15 μm.
When the slope (V / I) of the I characteristic is lower than 19.5 V / μA, a warning indicator (not shown) provided on a display panel (not shown) of the image forming apparatus is turned on or the photosensitive member 1 is turned on. The user is notified by, for example, displaying that the thickness of the dielectric layer has reached the lower limit thickness. Further, the control device 11 may stop the image forming operation together with the warning display or the like.

【0057】これにより、使用者は感光体1の誘電体層
の膜厚が寿命に達したことを認識して感光体1の交換を
行うことができるので、感光体1が使用限界に達してい
るにも拘らず使用されることによる帯電不良や画像不良
の発生を防止することができる。
As a result, the user can recognize that the thickness of the dielectric layer of the photosensitive member 1 has reached the end of its service life and can replace the photosensitive member 1, so that the photosensitive member 1 reaches the limit of use. Despite this, it is possible to prevent the occurrence of charging failure and image failure due to use.

【0058】また、上記した実施の形態1では、非接触
帯電手段としてスコロトロン式コロナ帯電器を用いた
が、放電針、シールド、グリッドを有するコロナ帯電器
を用いても本発明を同様に適用することができる。
In the first embodiment, the scorotron type corona charger is used as the non-contact charging means. However, the present invention is similarly applied to a corona charger having a discharge needle, a shield and a grid. be able to.

【0059】〈実施の形態2〉本実施の形態では、実施
の形態1で述べた感光体1の誘電体層の膜厚の検知に際
して、更に除電後電位VsIの変動を加味することによ
り、より正確に膜厚検知を行うようしたものである。な
お、本実施の形態においても、図1に示した実施の形態
1と同様の構成の画像形成装置を用い、図1に示した画
像形成装置を用いて説明する。
<Embodiment 2> In the present embodiment, when detecting the film thickness of the dielectric layer of the photosensitive member 1 described in the first embodiment, the fluctuation of the potential VsI after static elimination is further taken into consideration. This is to accurately detect the film thickness. Note that, also in the present embodiment, an explanation will be given using an image forming apparatus having the same configuration as that of Embodiment 1 shown in FIG. 1 and using the image forming apparatus shown in FIG.

【0060】実施の形態1のように、感光体1の除電後
電位が略0V近辺にならない場合、感光体1の表面電位
Vpは実際には除電後電位Vslを含んでいるため、感
光体1に流れる帯電電流Idは除電後電位Vsl分の電
荷量だけ少なくなる。このため、図5に示したように、
表面電位Vと電流Iの比V/Iは実際の値よりも低くな
り、膜厚の誤検知の原因となる。
As in the first embodiment, when the potential of the photosensitive member 1 after the charge elimination does not become about 0 V, the surface potential Vp of the photosensitive member 1 actually includes the potential Vsl after the charge elimination. Is reduced by the amount of charge corresponding to the potential Vsl after static elimination. For this reason, as shown in FIG.
The ratio V / I of the surface potential V to the current I becomes lower than the actual value, which causes erroneous detection of the film thickness.

【0061】つまり、帯電処理後の感光体1の表面電位
をVd(V)、除電後の感光体1の表面電位をVsl
(V)とすると、帯電処理による感光体1の表面電位の
上昇分Vp(V)は、 Vp=Vd−Vsl …(7) となる。
That is, the surface potential of the photosensitive member 1 after the charging process is Vd (V), and the surface potential of the photosensitive member 1 after the charge is removed is Vsl.
Assuming that (V), the rise Vp (V) of the surface potential of the photoconductor 1 due to the charging process is as follows: Vp = Vd−Vsl (7)

【0062】ここで、上述したように、除電後電位Vs
lは感光体1の耐久通紙によって変動する。本実施の形
態では、感光体1の耐久通紙枚数の積算値Nと除電後電
位Vslを、図1に示した画像形成装置を用いて予め実
際の耐久通紙によって求め、その通紙積算値N(枚)と
除電後電位Vslの関係を除電後電位テーブルとして制
御装置11内のROM12に記憶しておき、この除電後
電位テーブルを用いて帯電処理後の感光体1の表面電位
Vpを算出するようにした。
Here, as described above, the potential Vs after static elimination is used.
1 varies depending on the durability of the photoconductor 1. In the present embodiment, the integrated value N of the number of durable sheets passed through the photoconductor 1 and the potential Vsl after static elimination are obtained in advance by actual durable sheet passing using the image forming apparatus shown in FIG. The relationship between N (sheets) and the potential Vsl after static elimination is stored in the ROM 12 in the controller 11 as a potential table after static elimination, and the surface potential Vp of the photoconductor 1 after the charging process is calculated using the potential table after static elimination. I did it.

【0063】図4は、室温25℃で湿度60%RHの通
常環境(N/N環境)における、耐久通紙枚数と除電後
電位Vslの関係を示した図である。
FIG. 4 is a graph showing the relationship between the number of durable sheets and the potential Vsl after static elimination in a normal environment (N / N environment) at a room temperature of 25 ° C. and a humidity of 60% RH.

【0064】なお、除電後電位Vslは、通紙耐久5千
枚毎に図1の画像形成装置の現像装置3を取り外し、現
像装置3と感光体1とが対向する位置に電位センサーを
とりつけて測定した。
The potential Vsl after static elimination is obtained by removing the developing device 3 of the image forming apparatus of FIG. 1 and mounting a potential sensor at a position where the developing device 3 and the photosensitive member 1 are opposed to each other every 5,000 sheets of paper passing durability. It was measured.

【0065】このように本実施の形態では、図5に示し
たように予め測定した通紙積算値Nと感光体1の除電後
電位Vslとの関係を、制御装置11内のROM12に
記憶させておき、制御装置11内のカウンター(不図
示)においてスタックされている通紙積算値Nより膜厚
検知時の除電後電位Vslを導き、実質の表面電位の上
昇分であるVpを求めることにより、Vslの変動に依
存せずにより正確に膜厚dを検知することができる。
As described above, in the present embodiment, as shown in FIG. 5, the relationship between the integrated sheet passing value N measured in advance and the potential Vsl after static elimination of the photosensitive member 1 is stored in the ROM 12 in the control device 11. In advance, a potential Vsl after static elimination at the time of film thickness detection is derived from the integrated sheet passing value N stacked in a counter (not shown) in the controller 11 to obtain Vp, which is a substantial rise in surface potential. , Vsl can be detected more accurately without depending on the variation of Vsl.

【0066】[0066]

【発明の効果】以上のように本発明によれば、電源から
非接触帯電手段に帯電バイアスを印加した際に、非接触
帯電手段から像担持体に印加される電流値と電圧値に基
づいて像担持体の感光層の厚みを検知することができる
ので、電位測定装置などの特別な装置を用いずに、簡単
な装置・回路構成で像担持体の感光層の厚みを精度よく
安定に検知することができる。
As described above, according to the present invention, when the charging bias is applied to the non-contact charging means from the power supply, the current and voltage values applied to the image carrier from the non-contact charging means are determined. Since the thickness of the photosensitive layer of the image carrier can be detected, the thickness of the photosensitive layer of the image carrier can be accurately and stably detected with a simple device and circuit configuration without using a special device such as a potential measuring device. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1に係る画像形成装置を示
す概略構成図。
FIG. 1 is a schematic configuration diagram illustrating an image forming apparatus according to a first embodiment of the present invention.

【図2】感光体の膜厚を変化させた場合の感光体の帯電
電流と表面電位との関係を示す図。
FIG. 2 is a diagram illustrating a relationship between a charging current and a surface potential of the photoconductor when the thickness of the photoconductor is changed.

【図3】感光体の膜厚とV−I特性の傾き(表面電位V
p/帯電電流Id)との関係を示す図。
FIG. 3 shows the relationship between the thickness of the photoconductor and the slope of the VI characteristic (surface potential V).
FIG. 6 is a graph showing a relationship between the charging current Id and the charging current Id.

【図4】耐久通紙を行った時の通紙枚数と感光体表面の
除電後電位との関係を示す図。
FIG. 4 is a diagram showing the relationship between the number of sheets passed when endurance sheet passing is performed and the potential after static elimination of the photoconductor surface.

【図5】感光体表面の除電後電位と感光体の表面電位と
帯電電流の比(表面電位/帯電電流)との関係を示す
図。
FIG. 5 is a diagram showing a relationship between a potential after static elimination on the surface of a photoconductor, a surface potential of the photoconductor, and a ratio of charging current (surface potential / charging current).

【符号の説明】 1 感光体(像担持体) 2 スコロトロン式コロナ帯電器(非接触帯電手
段) 2a 放電ワイヤ 2b シールド 2c グリッド 3 現像装置 5 転写ローラ 6 クリーニング装置 7 クリーニングブレード 8 除電装置 9 電源 10 膜厚検知回路(電流・電圧検知手段) 11 制御装置(算出手段) 12 ROM(記憶手段)
DESCRIPTION OF THE SYMBOLS 1 Photoconductor (image carrier) 2 Scorotron corona charger (non-contact charging means) 2a Discharge wire 2b Shield 2c Grid 3 Developing device 5 Transfer roller 6 Cleaning device 7 Cleaning blade 8 Static eliminator 9 Power supply 10 Film thickness detection circuit (current / voltage detection means) 11 Control device (calculation means) 12 ROM (storage means)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面に感光層を有する像担持体と、該像
担持体の表面に近接して設けられ前記像担持体を帯電す
る非接触帯電手段と、該非接触帯電手段に電圧を印加す
る電源とを備えた画像形成装置において、 前記電源から前記非接触帯電手段に電圧を印加した際
に、前記非接触帯電手段から前記像担持体に流れる電流
値と、前記電源から前記非接触帯電手段に印加される電
圧値とを検知する電流・電圧検知手段と、 該電流・電圧検知手段により検知される前記電流値と電
圧値の検知情報を入力し、入力される前記電流値と電圧
値の検知情報に基づいて前記感光層の厚みを算出する算
出手段と、を有する、 ことを特徴とする画像形成装置。
An image carrier having a photosensitive layer on a surface thereof; a non-contact charging means provided in proximity to the surface of the image carrier for charging the image carrier; and applying a voltage to the non-contact charging means. An image forming apparatus including a power supply, wherein when a voltage is applied from the power supply to the non-contact charging means, a current value flowing from the non-contact charging means to the image carrier, and Current / voltage detecting means for detecting a voltage value applied to the current and voltage information, and detecting information of the current value and the voltage value detected by the current / voltage detecting means, Calculating means for calculating the thickness of the photosensitive layer based on the detection information.
【請求項2】 前記非接触式帯電手段は、シールド内に
放電ワイヤとグリッドを有するスコロトロン式コロナ帯
電器であり、 前記電流・電圧検知手段は、前記電源から前記スコロト
ロン式コロナ帯電器に印加される電圧値と、前記電源か
ら前記放電ワイヤ、シールド、グリッドに流れる各電流
値とを検知し、更に前記電流・電圧検知手段は、検知し
た前記各電流値により前記スコロトロン式コロナ帯電器
から前記像担持体へ流れる帯電電流値を検知し、 前記算出手段は、前記電流・電圧検知手段から入力され
る前記電圧値と帯電電流値の検知情報に基づいて前記感
光層の厚みを算出する、 請求項1記載の画像形成装置。
2. The non-contact type charging means is a scorotron type corona charger having a discharge wire and a grid in a shield, and the current / voltage detecting means is applied from the power source to the scorotron type corona charger. And a current value flowing from the power supply to the discharge wire, the shield, and the grid, and the current / voltage detecting means further detects the image from the scorotron-type corona charger based on the detected current values. The charging current value flowing to the carrier is detected, and the calculation unit calculates the thickness of the photosensitive layer based on the detection information of the voltage value and the charging current value input from the current / voltage detection unit. 2. The image forming apparatus according to 1.
【請求項3】 前記非接触式帯電手段は、シールド内に
放電針とグリッドを有するコロナ帯電器であり、 前記電流・電圧検知手段は、前記電源から前記コロナ帯
電器に印加される電圧値と、前記電源から前記放電針、
シールド、グリッドに流れる各電流値とを検知し、更に
前記電流・電圧検知手段は、検知した前記各電流値によ
り前記コロナ帯電器から前記像担持体へ流れる帯電電流
値を検知し、 前記算出手段は、前記電流・電圧検知手段から入力され
る前記電圧値と帯電電流値の検知情報に基づいて前記感
光層の厚みを算出する、 請求項1記載の画像形成装置。
3. The non-contact type charging means is a corona charger having a discharge needle and a grid in a shield, and the current / voltage detecting means is provided with a voltage value applied to the corona charger from the power supply. The discharge needle from the power supply,
The current / voltage detecting means detects a charging current value flowing from the corona charger to the image carrier based on the detected current values; and 2. The image forming apparatus according to claim 1, wherein the thickness of the photosensitive layer is calculated based on detection information of the voltage value and the charging current value input from the current / voltage detection unit. 3.
【請求項4】 前記感光層の厚みに応じた前記像担持体
の表面電位と帯電電流との特性値を格納した記憶手段を
有し、 前記算出手段は、前記記憶手段から入力される前記像担
持体の表面電位と帯電電流との特性値情報と、前記電流
・電圧検知手段から入力される前記電流値と電圧値の検
知情報から前記感光層の厚みを算出する、 請求項1、2又は3記載の画像形成装置。
4. A storage unit for storing characteristic values of a surface potential and a charging current of the image carrier according to a thickness of the photosensitive layer, wherein the calculation unit is configured to input the image input from the storage unit. The thickness of the photosensitive layer is calculated from characteristic value information of a surface potential and a charging current of a carrier and detection information of the current value and the voltage value input from the current / voltage detection unit. 3. The image forming apparatus according to 3.
【請求項5】 前記像担持体の表面電荷を除電する除電
手段と、該除電手段による前記像担持体の表面電荷の除
電後における前記感光層の厚みに応じた前記像担持体の
表面電位と帯電電流との特性値を格納した記憶手段を有
し、 前記算出手段は、前記記憶手段から入力される前記像担
持体の表面電位と帯電電流との特性値情報と、前記電流
・電圧検知手段から入力される前記電流値と電圧値の検
知情報から前記感光層の厚みを算出する、 請求項1、2又は3記載の画像形成装置。
5. A charge removing means for removing charge on a surface of the image carrier, and a surface potential of the image carrier according to a thickness of the photosensitive layer after the charge on the surface of the image carrier is removed by the charge removing means. A storage unit for storing a characteristic value of a charging current; a calculating unit configured to store characteristic value information of a surface potential of the image carrier and a charging current input from the storage unit; 4. The image forming apparatus according to claim 1, wherein the thickness of the photosensitive layer is calculated based on the detection information of the current value and the voltage value input from a computer.
【請求項6】 前記算出手段で検知された前記感光層の
厚みが予め設定した値、またはそれ以下の場合には、前
記感光層の厚みが下限厚みに達したことを表示手段に報
知する、または画像形成動作を停止するようにした、 請求項1、2、3、4又は5記載の画像形成装置。
6. When the thickness of the photosensitive layer detected by the calculation means is a predetermined value or less, the display means is notified to the effect that the thickness of the photosensitive layer has reached the lower limit thickness. 6. The image forming apparatus according to claim 1, wherein the image forming operation is stopped.
JP10255671A 1998-09-09 1998-09-09 Image forming device Pending JP2000089624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10255671A JP2000089624A (en) 1998-09-09 1998-09-09 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10255671A JP2000089624A (en) 1998-09-09 1998-09-09 Image forming device

Publications (1)

Publication Number Publication Date
JP2000089624A true JP2000089624A (en) 2000-03-31

Family

ID=17282008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10255671A Pending JP2000089624A (en) 1998-09-09 1998-09-09 Image forming device

Country Status (1)

Country Link
JP (1) JP2000089624A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033493A (en) * 2005-07-22 2007-02-08 Fuji Xerox Co Ltd Image forming apparatus
JP2007171768A (en) * 2005-12-26 2007-07-05 Fuji Xerox Co Ltd Image forming apparatus, and method of calculating layer thickness
JP2007171462A (en) * 2005-12-21 2007-07-05 Fuji Xerox Co Ltd Image forming apparatus
KR100792643B1 (en) 2005-03-29 2008-01-09 후지제롯쿠스 가부시끼가이샤 Image forming apparatus
JP2009109834A (en) * 2007-10-31 2009-05-21 Konica Minolta Business Technologies Inc Image forming apparatus and image forming method
JP2011138129A (en) * 2009-12-28 2011-07-14 Xerox Corp Apparatus and method for determining photoreceptor charge transport layer thickness of apparatus using scorotron charge device
US20110246107A1 (en) * 2010-03-30 2011-10-06 Xerox Corporation Imaging apparatus and method of predicting the photoreceptor replacement interval
JP2021162777A (en) * 2020-04-01 2021-10-11 コニカミノルタ株式会社 Image forming apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792643B1 (en) 2005-03-29 2008-01-09 후지제롯쿠스 가부시끼가이샤 Image forming apparatus
JP2007033493A (en) * 2005-07-22 2007-02-08 Fuji Xerox Co Ltd Image forming apparatus
JP4720337B2 (en) * 2005-07-22 2011-07-13 富士ゼロックス株式会社 Image forming apparatus
JP2007171462A (en) * 2005-12-21 2007-07-05 Fuji Xerox Co Ltd Image forming apparatus
JP2007171768A (en) * 2005-12-26 2007-07-05 Fuji Xerox Co Ltd Image forming apparatus, and method of calculating layer thickness
JP2009109834A (en) * 2007-10-31 2009-05-21 Konica Minolta Business Technologies Inc Image forming apparatus and image forming method
JP2011138129A (en) * 2009-12-28 2011-07-14 Xerox Corp Apparatus and method for determining photoreceptor charge transport layer thickness of apparatus using scorotron charge device
US7983575B1 (en) * 2009-12-28 2011-07-19 Xerox Corporation Apparatus and method for determining photoreceptor charge transport layer thickness of apparatus using a scorotron charge device
US20110246107A1 (en) * 2010-03-30 2011-10-06 Xerox Corporation Imaging apparatus and method of predicting the photoreceptor replacement interval
US8559832B2 (en) * 2010-03-30 2013-10-15 Xerox Corporation Imaging apparatus and method of predicting the photoreceptor replacement interval
JP2021162777A (en) * 2020-04-01 2021-10-11 コニカミノルタ株式会社 Image forming apparatus

Similar Documents

Publication Publication Date Title
EP0555102B1 (en) Image forming apparatus having charging member contactable to image bearing member
JP3064643B2 (en) Apparatus for detecting thickness of charged object and image forming apparatus
US6615002B2 (en) Image forming apparatus and process cartridge for applying an alternating current to a charging member or charging means for charging an image bearing member
US8180236B2 (en) Image forming apparatus
US8965226B2 (en) Image forming apparatus
US9268282B2 (en) Image forming apparatus and image forming system
JP2006243114A (en) Image forming apparatus
JPH06194933A (en) Electrifier and image forming device
US9086667B2 (en) Image forming apparatus having current detection
US9298120B2 (en) Image forming apparatus
US7907854B2 (en) Image forming apparatus and image forming method
JP2000089624A (en) Image forming device
US10359728B2 (en) Image forming apparatus
JP3239441B2 (en) Image forming device
JPH08220888A (en) Electrostatic recording control method and electrostatic recorder
US10228648B2 (en) Image forming apparatus that determines lifetime of photosensitive member
JPH09237018A (en) Image forming device
JP3228056B2 (en) Image forming device
JPH08220950A (en) Image forming device
JPH10161487A (en) Image forming device
JPH10133456A (en) Process cartridge, and electrophotographic image forming device using the same
JP7520650B2 (en) Image forming device
JP2986872B2 (en) Developer life detector
JP4411865B2 (en) Image forming apparatus and bias control method
JPH0713427A (en) Developing device