JP7225970B2 - image forming device - Google Patents

image forming device Download PDF

Info

Publication number
JP7225970B2
JP7225970B2 JP2019050261A JP2019050261A JP7225970B2 JP 7225970 B2 JP7225970 B2 JP 7225970B2 JP 2019050261 A JP2019050261 A JP 2019050261A JP 2019050261 A JP2019050261 A JP 2019050261A JP 7225970 B2 JP7225970 B2 JP 7225970B2
Authority
JP
Japan
Prior art keywords
charging
static elimination
current
bias
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019050261A
Other languages
Japanese (ja)
Other versions
JP2020154039A (en
Inventor
侑祐 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2019050261A priority Critical patent/JP7225970B2/en
Publication of JP2020154039A publication Critical patent/JP2020154039A/en
Application granted granted Critical
Publication of JP7225970B2 publication Critical patent/JP7225970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

本発明は、画像形成装置に関する。 The present invention relates to an image forming apparatus.

電子写真方式の画像形成装置では、感光体の帯電前(または、帯電後)表面電位を測定し、測定結果に応じて除電光を照射する箇所を変えることで、除電を適正化する技術が知られている。 In an electrophotographic image forming apparatus, there is known a technique for optimizing static elimination by measuring the surface potential of the photoreceptor before (or after) charging, and changing the location where the static elimination light is irradiated according to the measurement result. It is

この種の技術として、例えば特許文献1には、感光体の膜厚が薄い状態であっても感光体表面電位を均一化することで画質を安定させる目的で、感光体膜厚の薄い範囲には除電光を照射せず除電を行う構成が開示されている。 As a technique of this kind, for example, Japanese Patent Laid-Open No. 2002-100003 discloses a technique for stabilizing image quality by uniformizing the surface potential of a photoreceptor even when the film thickness of the photoreceptor is thin. discloses a configuration in which static elimination is performed without irradiating static elimination light.

しかし、今までの除電方法では、感光体の表面電位や膜厚を測定するためのセンサ類(表面電位センサなど)を感光体の近傍に設置する必要があり、コストアップやマシンサイズアップにつながってしまうという問題があった。 However, conventional static elimination methods require sensors (surface potential sensors, etc.) to be installed near the photoreceptor to measure the surface potential and film thickness of the photoreceptor, leading to increased costs and increased machine size. I had a problem with it.

本発明は、安価かつ省スペースで除電後の感光体表面電位を推定可能とすることを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to make it possible to estimate the surface potential of a photoreceptor after static elimination at low cost and in a small space.

上述した課題を解決するために、本発明の一観点に係る画像形成装置は、静電潜像を担持する像担持体と、前記像担持体を帯電させる帯電部材と、前記帯電部材に電圧を印加する電源と、前記電源を制御する制御部と、を備え、前記電源は、印刷動作時は帯電ACバイアスと帯電DCバイアスとを重畳して前記帯電部材に印加して前記像担持体を帯電させ、印刷動作終了時は前記帯電ACバイアスのみを前記帯電部材に印加して前記像担持体の表面を除電し、前記電源は、前記電源から前記像担持体へ流れる電流のうちのDC成分である帯電DC電流を検出して前記制御部へ出力し、前記制御部は、前記電源から受け取った前記帯電DC電流の情報に基づき前記像担持体の帯電電荷量を算出し、算出した前記帯電電荷量に基づき除電後の前記像担持体の表面電位を推定し、前記制御部は、前記帯電DCバイアス起動時と、前記帯電DCバイアス停止時に、それぞれ前記像担持体の一周分の前記帯電DC電流を積分し、起動時の積分結果を帯電時の電荷量として算出し停止時の積分結果を除電時の電荷量として算出し、前記帯電時の電荷量と前記除電時の電荷量とを比較して、前記除電時の電荷量が、前記帯電時の電荷量の一定の割合を下回った場合、除電しきれていないと判断し、除電シーケンスを延長する。
In order to solve the above-described problems, an image forming apparatus according to an aspect of the present invention includes an image carrier that carries an electrostatic latent image, a charging member that charges the image carrier, and a voltage applied to the charging member. and a control section for controlling the power supply, wherein the power supply superimposes a charging AC bias and a charging DC bias and applies them to the charging member to charge the image carrier during a printing operation. and when the printing operation is completed, only the charging AC bias is applied to the charging member to neutralize the surface of the image carrier, and the power source is the DC component of the current flowing from the power source to the image carrier. A certain charging DC current is detected and output to the control section, and the control section calculates the charging charge amount of the image carrier based on the information of the charging DC current received from the power supply, and the calculated charging charge. Based on the amount, the surface potential of the image carrier after static elimination is estimated, and the control unit controls the charging DC current for one round of the image carrier when the charging DC bias is started and when the charging DC bias is stopped. is calculated as the amount of charge during charging from the result of integration at start-up, and the amount of charge at the time of static elimination is calculated from the result of integration at the time of stop, and the amount of charge during charging and the amount of charge during static elimination are compared. When the amount of charge during static elimination falls below a certain percentage of the amount of charge during charging, it is determined that the static elimination has not been completed, and the static elimination sequence is extended.

安価かつ省スペースで除電後の感光体表面電位を推定することができる。 It is possible to estimate the photoreceptor surface potential after static elimination at low cost and in a small space.

画像形成装置の電子写真プロセスの全体構成を示す図FIG. 1 is a diagram showing the overall configuration of an electrophotographic process of an image forming apparatus; 実施形態に係る画像形成装置の要部構成図Principal part configuration diagram of an image forming apparatus according to an embodiment 制御基板のハードウェア構成図Hardware configuration diagram of the control board 実施形態における帯電バイアス、帯電電流、感光体表面電位の時間推移を示す図FIG. 4 is a diagram showing temporal transitions of charging bias, charging current, and photoreceptor surface potential in the embodiment; 帯電前後の感光体表面電位を説明する図A diagram for explaining the photoreceptor surface potential before and after charging. 除電性能が劣化した状態における帯電バイアス、帯電電流、感光体表面電位の時間推移を示す図Graph showing time transition of charging bias, charging current, and photoreceptor surface potential when static elimination performance is degraded

以下、添付図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Embodiments will be described below with reference to the accompanying drawings. In order to facilitate understanding of the description, the same constituent elements in each drawing are denoted by the same reference numerals as much as possible, and overlapping descriptions are omitted.

図1は、画像形成装置1の電子写真プロセスの全体構成を示す図である。図1には、一般的な間接転写における電子写真プロセスが示される。 FIG. 1 is a diagram showing the overall configuration of an electrophotographic process of an image forming apparatus 1. As shown in FIG. FIG. 1 shows the electrophotographic process in general indirect transfer.

図1に示すように、画像形成装置1の電子写真プロセスでは、まず高圧電源10により生成された高電圧を帯電ローラ3(帯電部材)に印加し、感光体2(像担持体)を一様に帯電する。その後に露光部4により画像信号に応じた露光がなされ、感光体2に静電潜像が形成される。そして、現像器5によってトナー像が現像され、感光体2上のトナー像は高圧電源11により生成された高電圧を1次転写ローラ6に印加することで中間ベルト7に転写される。中間転写ベルト7に転写されたトナー像は2次転写部によって記録材に転写され、その後に定着手段によって定着されることにより画像を得る。また、除電器8がある場合には、除電器8により感光体2表面の電荷を除去した後に帯電処理をおこなう。カラー印刷の場合、同様の構成が4つあり、色毎に中間転写ベルト7にトナー像を転写し、その後に2次転写部、定着手段に至る。 As shown in FIG. 1, in the electrophotographic process of the image forming apparatus 1, first, a high voltage generated by a high-voltage power supply 10 is applied to the charging roller 3 (charging member) to uniformly spread the photosensitive member 2 (image carrier). charged to After that, exposure is performed by the exposure unit 4 according to the image signal, and an electrostatic latent image is formed on the photosensitive member 2 . A toner image is developed by the developing device 5 , and the toner image on the photosensitive member 2 is transferred to the intermediate belt 7 by applying a high voltage generated by the high voltage power supply 11 to the primary transfer roller 6 . The toner image transferred to the intermediate transfer belt 7 is transferred to a recording material by a secondary transfer section, and then fixed by a fixing means to obtain an image. In addition, when the static eliminator 8 is provided, the static eliminator 8 removes the charge on the surface of the photoreceptor 2, and then the charging process is performed. In the case of color printing, there are four similar configurations, each of which transfers a toner image onto the intermediate transfer belt 7 for each color, and then reaches the secondary transfer section and fixing means.

図2は、実施形態に係る画像形成装置1の要部構成図である。 FIG. 2 is a configuration diagram of the main parts of the image forming apparatus 1 according to the embodiment.

高圧電源10(電源)は、帯電ローラ3に印加する高電圧を生成する装置である。高圧電源10は、帯電ACバイアス生成部12と帯電DCバイアス生成部13を有しており、帯電ACバイアスに帯電DCバイアスを重畳した高電圧を生成する。制御基板9から送られてくる制御信号であるPWM(Pulse Width Modulation)信号により、帯電ACバイアス生成部12及び帯電DCバイアス生成部13の出力の大きさとタイミングが決定される。帯電ACバイアスと帯電DCバイアスは各々制御信号により制御可能である。 A high-voltage power supply 10 (power supply) is a device that generates a high voltage to be applied to the charging roller 3 . The high-voltage power supply 10 has a charging AC bias generator 12 and a charging DC bias generator 13, and generates a high voltage by superimposing a charging DC bias on a charging AC bias. A PWM (Pulse Width Modulation) signal, which is a control signal sent from the control board 9, determines the output magnitude and timing of the charging AC bias generator 12 and the charging DC bias generator 13. FIG. The charging AC bias and the charging DC bias are each controllable by control signals.

また、高圧電源10は、帯電DC電流検知部14を有しており、帯電ローラ3から感光体2へ流れる電流のうちDC成分(帯電DC電流)を検出し信号に変換する。帯電DC電流検知部14は、検出した帯電DC電流の値を帯電電流FB信号として制御基板9に出力する。 The high-voltage power supply 10 also has a charging DC current detection unit 14, which detects a DC component (charging DC current) of the current flowing from the charging roller 3 to the photosensitive member 2 and converts it into a signal. The charging DC current detection unit 14 outputs the value of the detected charging DC current to the control board 9 as a charging current FB signal.

制御基板9(制御部)は、高圧電源10を制御する装置であり、制御信号であるPWM信号を高圧電源10に出力する。また、制御基板9は、高圧電源10内の帯電DC電流検知部14からの帯電電流FB信号を演算、処理する。 The control board 9 (control unit) is a device that controls the high voltage power supply 10 and outputs a PWM signal, which is a control signal, to the high voltage power supply 10 . The control board 9 also calculates and processes the charging current FB signal from the charging DC current detection section 14 in the high voltage power supply 10 .

図2に示すように、制御基板9は、帯電電荷量演算部15と、表面電位推定部16と、帯電制御部17と、感光体膜厚推定部18と、感光体寿命判定部19とを有する。 As shown in FIG. 2, the control board 9 includes a charge amount calculator 15, a surface potential estimator 16, a charge controller 17, a photoreceptor film thickness estimator 18, and a photoreceptor life determiner 19. have.

帯電電荷量演算部15は、高圧電源10の帯電DC電流検知部14から受信する帯電電流FB信号(帯電DC電流)に基づき、感光体2の帯電電荷量を算出する。 The charge amount calculation unit 15 calculates the charge amount of the photoreceptor 2 based on the charge current FB signal (charge DC current) received from the charge DC current detection unit 14 of the high voltage power supply 10 .

表面電位推定部16は、帯電DC電流検知部14から受信する帯電電流FB信号に基づき、除電後の感光体2の表面電位を推定する。 The surface potential estimator 16 estimates the surface potential of the photoreceptor 2 after static elimination based on the charging current FB signal received from the charging DC current detector 14 .

帯電制御部17は、表面電位推定部16による除電後の感光体2の表面電位の推定結果に基づき、高圧電源10に出力する制御信号を調整する。また、帯電制御部17は、帯電電荷量演算部15により算出された感光体2の帯電電荷量の情報に基づき、高圧電源10に出力する制御信号を調整する。具体的には、帯電制御部17は、除電時の帯電DC電流の情報に基づき算出した除電時の電荷量が、帯電時の帯電DC電流の情報に基づき算出した帯電時の電荷量の一定の割合を下回った場合、除電しきれていないと判断し、除電シーケンスを延長する(帯電ACバイアスの停止タイミングを遅らせる)。また、帯電制御部17は、除電シーケンスの継続時間が所定の閾値を超えた場合には除電シーケンスを停止させる構成でもよい。また、帯電制御部17は、感光体膜厚推定部18により推定した膜厚に応じて、帯電DCバイアスの出力を変更する構成でもよい。 The charging control unit 17 adjusts the control signal to be output to the high-voltage power supply 10 based on the estimation result of the surface potential of the photoreceptor 2 after static elimination by the surface potential estimation unit 16 . Also, the charging control unit 17 adjusts the control signal to be output to the high-voltage power supply 10 based on information on the charge amount of the photoreceptor 2 calculated by the charge amount calculation unit 15 . Specifically, the charging control unit 17 sets the charge amount during static elimination calculated based on the information on the charging DC current during static elimination to a constant amount of the charge amount during charging computed based on the information on the charging DC current during static elimination. If it falls below the ratio, it is determined that the charge has not been completely removed, and the charge removal sequence is extended (delaying the stop timing of the charging AC bias). Further, the charging control unit 17 may be configured to stop the static elimination sequence when the duration of the static elimination sequence exceeds a predetermined threshold value. Further, the charging control section 17 may be configured to change the output of the charging DC bias in accordance with the film thickness estimated by the photoreceptor film thickness estimating section 18 .

感光体膜厚推定部18は、帯電DC電流検知部14から受信する帯電電流FB信号(帯電DC電流)に基づき感光体2の膜厚を推定する。 The photoreceptor film thickness estimation unit 18 estimates the film thickness of the photoreceptor 2 based on the charging current FB signal (charging DC current) received from the charging DC current detection unit 14 .

感光体寿命判定部19は、感光体膜厚推定部18により推定された感光体2の膜厚に応じて、感光体2の寿命を判定する。 The photoreceptor life determining unit 19 determines the life of the photoreceptor 2 according to the film thickness of the photoreceptor 2 estimated by the photoreceptor film thickness estimating unit 18 .

図3は、制御基板9のハードウェア構成図である。図3に示すように、制御基板9は、物理的には、CPU(Central Processing Unit)101、RAM(Random Access Memory)102、ROM(Read Only Memory)103、HDD(Hard Disk Drive)104及びI/F105がバス106を介して接続されるコンピュータシステムとして構成することができる。また、I/F105にはLCD(Liquid Crystal Display)107や操作入力部108が接続されてもよい。 FIG. 3 is a hardware configuration diagram of the control board 9. As shown in FIG. As shown in FIG. 3, the control board 9 physically includes a CPU (Central Processing Unit) 101, a RAM (Random Access Memory) 102, a ROM (Read Only Memory) 103, a HDD (Hard Disk Drive) 104 and an I /F 105 can be configured as a computer system connected via a bus 106 . Also, an LCD (Liquid Crystal Display) 107 and an operation input unit 108 may be connected to the I/F 105 .

CPU101は演算手段であり、制御基板9の全体の動作を制御する。RAM102は、情報の高速な読み書きが可能な揮発性の記憶媒体であり、CPU101が情報を処理する際の作業領域として用いられる。 ROM103は、読み出し専用の不揮発性記憶媒体であり、ファームウェア等のプログラムが格納されている。HDD104は、情報の読み書きが可能な不揮発性の記憶媒体であり、OS(Operating System)や各種の制御プログラム、アプリケーション・プログラム等が格納されている。I/F105は、バス106と各種のハードウェアやネットワーク等を接続し制御する。LCD107は、ユーザが状態を確認するための視覚的ユーザインタフェースである。操作入力部108は、キーボードやマウス等、ユーザが情報を入力するためのユーザインタフェースである。 The CPU 101 is computing means and controls the overall operation of the control board 9 . The RAM 102 is a volatile storage medium from which information can be read and written at high speed, and is used as a working area when the CPU 101 processes information. The ROM 103 is a read-only non-volatile storage medium and stores programs such as firmware. The HDD 104 is a non-volatile storage medium from which information can be read and written, and stores an OS (Operating System), various control programs, application programs, and the like. The I/F 105 connects and controls the bus 106 and various hardware and networks. LCD 107 is a visual user interface for the user to check the status. The operation input unit 108 is a user interface such as a keyboard and a mouse for the user to input information.

図2に示す制御基板9の各要素の機能は、CPU101、RAM102等のハードウェア上に所定のコンピュータソフトウェアを読み込ませることにより、CPU101の制御のもとで、RAM102やHDD104におけるデータの読み出し及び書き込みを行うと共に、I/F105を介してLCD107や操作入力部108、外部機器を動作させることで実現される。 The function of each element of the control board 9 shown in FIG. and operate the LCD 107 , the operation input unit 108 , and the external device via the I/F 105 .

図4~図6を参照して、本実施形態において帯電ローラ3に印加する帯電ACバイアスと帯電DCバイアス、帯電DC電流、感光体表面電位の関係について説明する。図4は、実施形態における帯電バイアス、帯電電流、感光体表面電位の時間推移を示す図である。図4の横軸は時間を表す。図4に示す例は、感光体2の除電性能が劣化していない状態の各パラメータの時間推移を示している。 4 to 6, the relationship between the charging AC bias and the charging DC bias applied to the charging roller 3, the charging DC current, and the photosensitive member surface potential in this embodiment will be described. FIG. 4 is a diagram showing temporal transitions of charging bias, charging current, and photoreceptor surface potential in the embodiment. The horizontal axis in FIG. 4 represents time. The example shown in FIG. 4 shows the temporal transition of each parameter in a state in which the static elimination performance of the photoreceptor 2 has not deteriorated.

感光体2の表面電位は、帯電DCバイアスに追従するように帯電する。感光体2が帯電するとき、高圧電源10から帯電DC電流が流れ、その関係は以下の(1)式で表せる。 The surface potential of the photoreceptor 2 is charged so as to follow the charging DC bias. When the photoreceptor 2 is charged, a charging DC current flows from the high voltage power supply 10, and the relationship can be expressed by the following equation (1).

Figure 0007225970000001
ここで、Idcは帯電DC電流、εは感光体2の誘電率、λはプロセス速度、Lは感光体2の帯電領域長手方向長さ、dは感光体2の膜厚、Vは帯電後の感光体2の表面電位、Vd0は帯電前の感光体2の表面電位である。
Figure 0007225970000001
Here, Idc is the charging DC current, ε is the dielectric constant of the photoreceptor 2, λ is the process speed, L is the longitudinal length of the charged area of the photoreceptor 2, d is the film thickness of the photoreceptor 2, and Vd is the charging The surface potential of the photoreceptor 2 afterward, Vd0 , is the surface potential of the photoreceptor 2 before charging.

図5は、帯電前後の感光体表面電位を説明する図である。図5に示すように、感光体2の回転方向において、帯電ローラ3との接触位置より上流側の表面電位が、帯電前感光体表面電位Vd0であり、帯電ローラ3との接触位置より下流側の表面電位が、帯電後感光体表面電位Vである。帯電前感光体表面電位Vd0は、除電後の感光体表面電位でもある。 FIG. 5 is a diagram for explaining the photoreceptor surface potential before and after charging. As shown in FIG. 5, the surface potential on the upstream side of the contact position with the charging roller 3 in the rotation direction of the photoreceptor 2 is the pre-charged photoreceptor surface potential Vd0 , and the surface potential on the downstream side of the contact position with the charging roller 3 is Vd0. The surface potential on the side is the post-charging photoreceptor surface potential Vd . The photoreceptor surface potential Vd0 before charging is also the photoreceptor surface potential after static elimination.

図4に示すように、時刻t1の帯電DCバイアス起動時は、帯電前の感光体表面電位Vd0が0(V)の感光体2にバイアスを印加するため、図中の領域Aに示すように帯電DC電流が発生する。除電のない系の場合、時刻t2以降の感光体2の2周目以降は、既に帯電された感光体2が帯電ローラ3と接する(Vd0=V)ため、帯電DC電流は発生しない。 As shown in FIG. 4, when the charging DC bias is started at time t1, the bias is applied to the photoreceptor 2 whose photoreceptor surface potential Vd0 before charging is 0 (V). A charging DC current is generated at . In the case of a system without static elimination, the already charged photoreceptor 2 is in contact with the charging roller 3 (V d0 =V d ) after the second rotation of the photoreceptor 2 after time t2, so that no charging DC current is generated.

時刻t3以降の帯電DCバイアス停止後に、帯電ACバイアスのみが印加すると、Vd0=Vに帯電された感光体2が除電され(V=0)、図中の領域Bに示すように逆極性の帯電電流が流れる。本実施形態では、この逆極性の帯電電流を検知できるように、帯電DC電流検知部14は、正極性の帯電DC電流検知部と、負極性の帯電DC電流検知部とを有する。 After the charging DC bias is stopped after time t3, when only the charging AC bias is applied, the photoreceptor 2 charged to V d0 =V d is neutralized (V d =0), and as shown in region B in the figure, the charge is reversed. A charging current of polarity flows. In this embodiment, the charging DC current detection section 14 has a positive charging DC current detection section and a negative charging DC current detection section so that the charging current of opposite polarity can be detected.

時刻t1の帯電DCバイアス起動時と、時刻t3の帯電DCバイアス停止時に、それぞれ感光体2の一周分の帯電DC電流を積分し、起動時の積分結果A(帯電時の電荷量)と、停止時の積分結果B(除電時の電荷量)とを比較する。除電が充分にできていれば、図4に示すように、除電時の電荷量Bは帯電時の電荷量Aと等しくなるため(A=B)、両者の比較によって、印刷動作後に感光体2を除電しきれていることが検知可能となる。 When charging DC bias is started at time t1 and when charging DC bias is stopped at time t3, the charging DC current for one round of the photosensitive member 2 is integrated, and the integration result A (charge amount at the time of charging) at start and stop It compares with the integration result B (charge amount at the time of static elimination). If the charge is sufficiently removed, as shown in FIG. 4, the amount of charge B at the time of charge removal is equal to the charge amount A at the time of charge (A=B). can be detected.

図6は、除電性能が劣化した状態における帯電バイアス、帯電電流、感光体表面電位の時間推移を示す図である。図6の仕様は図4と同様である。 FIG. 6 is a graph showing temporal transitions of the charging bias, charging current, and photoreceptor surface potential in a state where the static elimination performance is deteriorated. The specifications of FIG. 6 are the same as those of FIG.

除電性能が充分であれば、図4を参照して説明したように、感光体一周分の除電時の電荷量Bは帯電時の電荷量Aと同一(A=B)となるが、経時劣化や環境変動により除電性能が落ちると、図6に示すように、除電時の電荷量Bは帯電時の電荷量Aより小さくなる(A>B)。この場合、除電時の電荷量の総量B´が感光体一周分の帯電時の電荷量Aと同一(A=B´)となるまで、除電シーケンス(除電時間)を延長することで、除電後の感光体表面電位を安定させることができる。 If the static elimination performance is sufficient, as described with reference to FIG. 4, the charge amount B during static elimination for one rotation of the photosensitive member is the same as the charge amount A during charging (A=B), but deterioration over time occurs. If the static elimination performance deteriorates due to environmental fluctuations, the charge amount B during static elimination becomes smaller than the charge amount A during charging (A>B), as shown in FIG. In this case, the static elimination sequence (static elimination time) is extended until the total amount B' of the charge amount during static elimination becomes the same as the charge amount A during charging for one rotation of the photosensitive member (A=B'). can stabilize the surface potential of the photoreceptor.

図6の例では、時刻t3~t4に感光体2の一周分の除電を行った後に、さらに時刻t4~t5にもう一周分の除電シーケンスを追加される(すなわち帯電ACバイアスの停止タイミングが時刻t4から時刻t5まで延ばされる)。この除電時間延長分の電荷量をCとする。除電時間延長分の負極性の帯電DC電流によって、除電時の電荷量B´の総量がBからB+Cに増加し、A=B´の関係となって、時刻t5において感光体2の除電が完了している。 In the example of FIG. 6, after the charge removal for one round of the photoreceptor 2 is performed from time t3 to t4, another charge removal sequence is added at time t4 to t5 (that is, the charging AC bias stop timing is set at time t4 to t5). extended from t4 to time t5). Let C be the amount of charge corresponding to the extension of the static elimination time. Due to the negative charging DC current for the extension of the static elimination time, the total charge amount B' during static elimination increases from B to B+C, and the relationship of A=B' is established, and the static elimination of the photoreceptor 2 is completed at time t5. are doing.

これらの処理を図2に例示した制御基板9の機能に当てはめると、例えば、図2に示す帯電電荷量演算部15が、帯電DC電流検知部14から入力された帯電電流FB信号を用いて帯電時の電荷量Aと除電時の電荷量Bとを算出する。帯電制御部17は、帯電電荷量演算部15により算出された帯電時の電荷量Aと除電時の電荷量Bとを比較する。そして、除電時の電荷量Bが、帯電時の電荷量Aの一定の割合を下回った場合、未だに感光体2を除電しきれていないと判断し、除電シーケンスを延長(すなわち帯電ACバイアスの停止タイミングを延長)する制御信号を帯電ACバイアス生成部12に送信する。 If these processes are applied to the functions of the control board 9 illustrated in FIG. 2, for example, the charge amount calculator 15 shown in FIG. A charge amount A at the time and a charge amount B at the time of static elimination are calculated. The charge control unit 17 compares the charge amount A during charging and the charge amount B during neutralization calculated by the charge amount calculation unit 15 . When the charge amount B during static elimination falls below a certain percentage of the charge amount A during charging, it is determined that the photosensitive member 2 has not been completely eliminated, and the static elimination sequence is extended (i.e., the charging AC bias is stopped). A control signal for extending the timing is transmitted to the charging AC bias generator 12 .

これらの構成により、除電後の感光体表面電位を安定させることができる。除電後の感光体表面電位を安定化できると、最悪条件に合わせて除電時間を決めるよりも帯電ACバイアス印加時間を縮めることができ、感光体2の静電疲労を低減し、寿命向上が見込める。 These configurations can stabilize the photoreceptor surface potential after static elimination. If the surface potential of the photoreceptor after static elimination can be stabilized, the charging AC bias application time can be shortened rather than determining the static elimination time according to the worst conditions. .

なお、帯電制御部17は、除電シーケンスの継続時間が所定の閾値を超えた場合には除電シーケンスを停止する構成としてもよい。これにより、除電時間の極端な長期化を防止でき、仮に何らかのトラブルで除電が許容範囲内とならない場合でも除電処理を強制的に終了させることができるので、印刷動作の長期化を抑制しつつ除電性能の向上を図ることができる。 The charging control unit 17 may be configured to stop the static elimination sequence when the duration of the static elimination sequence exceeds a predetermined threshold. As a result, it is possible to prevent the static elimination time from becoming extremely long, and even if the static elimination does not fall within the allowable range due to some trouble, the static elimination process can be forcibly terminated. Performance can be improved.

また、帯電DC電流Idcと除電後(帯電前)の感光体表面電位Vd0との関係は、上記(1)式で表すことができるので、帯電DC電流の情報を高圧電源10から制御基板9にフィードバックすれば、(1)式を用いて除電後の感光体表面電位を推定することができる。図2に例示した制御基板9の機能に当てはめると、例えば、図2に示す表面電位推定部16が、帯電DC電流検知部14からフィードバックされた帯電電流FB信号(帯電DC電流Idc)と、(1)式とを用いて、除電後の感光体表面電位Vd0を算出する。帯電制御部17は、表面電位推定部16により推定された除電後の感光体表面電位Vd0に応じて、例えば除電光を照射する箇所を変えるよう帯電ACバイアス生成部12及び帯電DCバイアス生成部13に送信する制御信号を調整し、これにより、感光体2の除電を適正化できるよう構成される。 Further, the relationship between the charging DC current Idc and the surface potential Vd0 of the photoreceptor after static elimination (before charging) can be expressed by the above equation (1). 9, the photoreceptor surface potential after static elimination can be estimated using equation (1). When applied to the functions of the control board 9 illustrated in FIG. 2, for example, the surface potential estimation unit 16 shown in FIG . (1) is used to calculate the photoreceptor surface potential Vd0 after static elimination. The charge control unit 17 controls the charge AC bias generation unit 12 and the charge DC bias generation unit 12 so as to change, for example, the locations irradiated with the charge-removing light, according to the photoreceptor surface potential Vd0 after charge removal estimated by the surface potential estimation unit 16. 13 to adjust the control signal to be transmitted to the photoreceptor 2, thereby optimizing the static elimination of the photoreceptor 2. FIG.

これらの構成により、感光体2の表面電位を直接測定せずに、帯電DC電流から推定することができるので、感光体2の近傍に表面電位を測定するためのセンサ類を設置する必要がなくなり、安価かつ省スペースで除電後の感光体表面電位を推定することができる。 With these configurations, the surface potential of the photoconductor 2 can be estimated from the charging DC current without directly measuring it, so there is no need to install sensors for measuring the surface potential near the photoconductor 2. , the photoreceptor surface potential after static elimination can be estimated at low cost and in a small space.

また、本実施形態では、感光体膜厚推定部18は、帯電DC電流の検知結果を用いて感光体2の膜厚を推定するのが好ましい。感光体膜厚推定部18は、例えば特許文献1に記載される感光体2の表面の電流値の計測値に基づき膜厚を算出する手法と同様に、帯電DC電流検知部14から入力された帯電電流FB信号(帯電DC電流Idc)を用いて、特許文献1と同様の計算手法によって感光体2の膜厚を推定できる。この構成により、特許文献1のように感光体2の近傍に電流計を設置しなくても、帯電DC電流を利用して、安価かつ省スペースで感光体2の膜厚を推定することができる。 Further, in the present embodiment, the photoreceptor film thickness estimator 18 preferably estimates the film thickness of the photoreceptor 2 using the detection result of the charging DC current. The photoreceptor film thickness estimating unit 18 receives the input from the charging DC current detecting unit 14 in the same manner as the method of calculating the film thickness based on the measured value of the current value on the surface of the photoreceptor 2 described in Patent Document 1, for example. Using the charging current FB signal (charging DC current I dc ), the film thickness of the photoreceptor 2 can be estimated by a calculation method similar to that of Patent Document 1. With this configuration, the film thickness of the photoreceptor 2 can be estimated inexpensively and in a small space by using the charging DC current without installing an ammeter near the photoreceptor 2 as in Patent Document 1. .

また、本実施形態では、感光体寿命判定部19は、感光体膜厚推定部18により推定された感光体2の膜厚に応じて感光体2の寿命を判定するのが好ましい。例えば、感光体寿命判定部19は、推定膜厚が薄くなるほど、感光体の摩耗が進んでいると判断して、寿命を短く判定することできる。この構成により、安価かつ省スペースで感光体2の寿命を判定することができる。 Further, in this embodiment, it is preferable that the photoreceptor life determination unit 19 determines the life of the photoreceptor 2 according to the film thickness of the photoreceptor 2 estimated by the photoreceptor film thickness estimation unit 18 . For example, the photoreceptor life determination unit 19 can determine that the wear of the photoreceptor progresses as the estimated film thickness decreases, and the life can be determined to be short. With this configuration, the life of the photoreceptor 2 can be determined inexpensively and in a small space.

また、本実施形態では、帯電制御部17は、感光体膜厚推定部18により推定された感光体2の膜厚に応じた帯電DCバイアスを出力するのが好ましい。これにより膜厚に応じて帯電DCバイアスを調整して、膜厚消耗を抑制して感光体2の長寿命化を図ることができる。 Further, in the present embodiment, the charging control section 17 preferably outputs a charging DC bias according to the film thickness of the photoreceptor 2 estimated by the photoreceptor film thickness estimating section 18 . Accordingly, it is possible to adjust the charging DC bias in accordance with the film thickness, suppress film thickness consumption, and extend the life of the photoreceptor 2 .

以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Design modifications to these specific examples by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each specific example described above and its arrangement, conditions, shape, etc. are not limited to those illustrated and can be changed as appropriate. As long as there is no technical contradiction, the combination of the elements included in the specific examples described above can be changed as appropriate.

1 画像形成装置
2 感光体(像担持体)
3 帯電ローラ(帯電部材)
9 制御基板(制御部)
10 高圧電源(電源)
12 帯電ACバイアス生成部
13 帯電DCバイアス生成部
14 帯電DC電流検知部
15 帯電電荷量演算部
16 表面電位推定部
17 帯電制御部
18 感光体膜厚推定部
19 感光体寿命判定部
dc 帯電DC電流
1 image forming apparatus 2 photoreceptor (image carrier)
3 charging roller (charging member)
9 Control board (control unit)
10 high voltage power supply (power supply)
12 Charging AC bias generation section 13 Charging DC bias generation section 14 Charging DC current detection section 15 Charge amount calculation section 16 Surface potential estimation section 17 Charge control section 18 Photoreceptor film thickness estimation section 19 Photoreceptor life determination section I dc charging DC current

特開2015-230450号公報JP 2015-230450 A

Claims (6)

静電潜像を担持する像担持体と、
前記像担持体を帯電させる帯電部材と、
前記帯電部材に電圧を印加する電源と、
前記電源を制御する制御部と、
を備え、
前記電源は、印刷動作時は帯電ACバイアスと帯電DCバイアスとを重畳して前記帯電部材に印加して前記像担持体を帯電させ、印刷動作終了時は前記帯電ACバイアスのみを前記帯電部材に印加して前記像担持体の表面を除電し、
前記電源は、前記電源から前記像担持体へ流れる電流のうちのDC成分である帯電DC電流を検出して前記制御部へ出力し、
前記制御部は、前記電源から受け取った前記帯電DC電流の情報に基づき前記像担持体の帯電電荷量を算出し、算出した前記帯電電荷量に基づき除電後の前記像担持体の表面電位を推定し、
前記制御部は、
前記帯電DCバイアス起動時と、前記帯電DCバイアス停止時に、それぞれ前記像担持体の一周分の前記帯電DC電流を積分し、起動時の積分結果を帯電時の電荷量として算出し、停止時の積分結果を除電時の電荷量として算出し、
前記帯電時の電荷量と前記除電時の電荷量とを比較して、前記除電時の電荷量が、前記帯電時の電荷量の一定の割合を下回った場合、除電しきれていないと判断し、除電シーケンスを延長する、
画像形成装置。
an image carrier that carries an electrostatic latent image;
a charging member that charges the image carrier;
a power supply that applies a voltage to the charging member;
a control unit that controls the power supply;
with
The power source applies a superimposed charging AC bias and a charging DC bias to the charging member during a printing operation to charge the image carrier, and applies only the charging AC bias to the charging member at the end of the printing operation. to remove the charge from the surface of the image carrier by applying
the power supply detects a charging DC current, which is a DC component of the current flowing from the power supply to the image carrier, and outputs the charging DC current to the control unit;
The control unit calculates the charge amount of the image carrier based on the charging DC current information received from the power supply, and estimates the surface potential of the image carrier after charge removal based on the calculated charge amount. death,
The control unit
When the charging DC bias is started and when the charging DC bias is stopped, the charging DC current for one round of the image bearing member is integrated, and the integration result at the start is calculated as the charge amount at the time of charging. Calculate the integration result as the amount of charge during static elimination,
The charge amount during charging and the charge amount during static elimination are compared, and if the charge amount during static elimination is less than a certain ratio of the charge amount during static elimination, it is determined that static elimination has not been completed. , to extend the neutralization sequence,
Image forming device.
前記電源は、正極性の帯電DC電流検知部と、負極性の帯電DC電流検知部とを有する、
請求項1に記載の画像形成装置。
The power supply has a positive charging DC current detection unit and a negative charging DC current detection unit,
The image forming apparatus according to claim 1.
前記制御部は、前記除電シーケンスの継続時間が所定の閾値を超えた場合に前記除電シーケンスを停止する、
請求項に記載の画像形成装置。
The control unit stops the static elimination sequence when the duration of the static elimination sequence exceeds a predetermined threshold.
The image forming apparatus according to claim 1 .
前記制御部は、前記帯電DC電流の検知結果を用いて、前記像担持体の膜厚を推定する、
請求項1~のいずれか1項に記載の画像形成装置。
The control unit estimates the film thickness of the image carrier using the detection result of the charging DC current.
The image forming apparatus according to any one of claims 1 to 3 .
前記制御部は、前記推定した膜厚に応じて前記像担持体の寿命を判定する、
請求項に記載の画像形成装置。
The control unit determines the life of the image carrier according to the estimated film thickness.
The image forming apparatus according to claim 4 .
前記制御部は、前記推定した膜厚に応じた前記帯電DCバイアスを出力する、
請求項4または5に記載の画像形成装置。
The control unit outputs the charging DC bias according to the estimated film thickness.
The image forming apparatus according to claim 4 or 5 .
JP2019050261A 2019-03-18 2019-03-18 image forming device Active JP7225970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019050261A JP7225970B2 (en) 2019-03-18 2019-03-18 image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050261A JP7225970B2 (en) 2019-03-18 2019-03-18 image forming device

Publications (2)

Publication Number Publication Date
JP2020154039A JP2020154039A (en) 2020-09-24
JP7225970B2 true JP7225970B2 (en) 2023-02-21

Family

ID=72558774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050261A Active JP7225970B2 (en) 2019-03-18 2019-03-18 image forming device

Country Status (1)

Country Link
JP (1) JP7225970B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107693A (en) 2006-10-27 2008-05-08 Fuji Xerox Co Ltd Charging device, image forming apparatus and charging control program
JP2011113076A (en) 2009-11-30 2011-06-09 Canon Inc Image forming apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239441B2 (en) * 1992-04-28 2001-12-17 キヤノン株式会社 Image forming device
JP3064643B2 (en) * 1992-02-07 2000-07-12 キヤノン株式会社 Apparatus for detecting thickness of charged object and image forming apparatus
JPH06202446A (en) * 1992-12-29 1994-07-22 Canon Inc Image forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107693A (en) 2006-10-27 2008-05-08 Fuji Xerox Co Ltd Charging device, image forming apparatus and charging control program
JP2011113076A (en) 2009-11-30 2011-06-09 Canon Inc Image forming apparatus

Also Published As

Publication number Publication date
JP2020154039A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP6195149B2 (en) Image forming apparatus
US9002224B2 (en) Image formation device and image formation program
JP4665982B2 (en) Image forming apparatus
US9753395B2 (en) Image forming apparatus acquiring a duration of overcharge
US9298120B2 (en) Image forming apparatus
JP6642997B2 (en) Image forming device
US7907854B2 (en) Image forming apparatus and image forming method
US20160011539A1 (en) Image forming apparatus
JP7225970B2 (en) image forming device
US20170364010A1 (en) Image forming apparatus
JP2017068128A (en) Image formation device
CN109782555B (en) Image forming apparatus, image forming method, storage medium, and computer apparatus
JP2000305342A (en) Electrostatic charger and image forming device
KR100467599B1 (en) Image forming apparatus comprising measurement device of surface voltage and Controling method of development voltage utilizing the same
JP2007033835A (en) Electrostatic charge controller and electrostatic charge control method
JP2006349764A (en) Image forming apparatus
JP2010048881A (en) Charging device
JP2019159208A (en) Image forming apparatus and control method
JP7358905B2 (en) Image forming device
JP2007058080A (en) Process cartridge, memory medium for process cartridge and image forming apparatus
JP2009008828A (en) Image forming apparatus
JP2019028121A (en) Image formation apparatus, image formation method and program
JP2019219487A (en) Image forming device and image forming method
JP7071133B2 (en) Image forming device
JP7225951B2 (en) IMAGE FORMING APPARATUS AND ABNORMALITY DETERMINATION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R151 Written notification of patent or utility model registration

Ref document number: 7225970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151