JP2007033835A - Electrostatic charge controller and electrostatic charge control method - Google Patents

Electrostatic charge controller and electrostatic charge control method Download PDF

Info

Publication number
JP2007033835A
JP2007033835A JP2005216550A JP2005216550A JP2007033835A JP 2007033835 A JP2007033835 A JP 2007033835A JP 2005216550 A JP2005216550 A JP 2005216550A JP 2005216550 A JP2005216550 A JP 2005216550A JP 2007033835 A JP2007033835 A JP 2007033835A
Authority
JP
Japan
Prior art keywords
charging
charged
potential
film thickness
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005216550A
Other languages
Japanese (ja)
Inventor
Masao Omori
雅夫 大森
Chikao Ikeda
周穂 池田
Hideki Moriya
秀樹 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005216550A priority Critical patent/JP2007033835A/en
Publication of JP2007033835A publication Critical patent/JP2007033835A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charge controller without generating image quality defect even when the film thickness of a body to be charged varies. <P>SOLUTION: The electrostatic charge controller includes a first charge roll 3 for charging a photoreceptor 2 to target potential, a second charge roll 4 for previously charging the photoreceptor 2 to reverse polarity to the target potential, and a control part 14 for controlling charge potential charged to the reverse polarity on the second charge roll 4 so that direct current made to flow in the first charge roll 3 is a prescribed value or more when being charged by the first charge roll 3. Thus, even when the film thickness of the photoreceptor 2 varies, discharge current is sufficiently secured not to generate the image quality defect. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放電を帯電原理とする接触又は近接帯電方式で、DC電圧を印加して感光体を帯電させる帯電制御装置及び帯電制御方法に関する。   The present invention relates to a charge control device and a charge control method for charging a photosensitive member by applying a DC voltage by a contact or proximity charging method using discharge as a charging principle.

従来、電子写真方式の画像形成装置においては、低オゾン、低電力などの利点を有することから、接触帯電装置、即ち、被帯電体に当接させた帯電部材に電圧を印加して被帯電体の帯電を行う方式の装置が実用化されている。   2. Description of the Related Art Conventionally, an electrophotographic image forming apparatus has advantages such as low ozone and low power. Therefore, a voltage is applied to a contact charging device, that is, a charging member in contact with a charged body, to be charged. An apparatus using a method of charging is in practical use.

接触帯電装置では、帯電部材として導電性の帯電ロールを被帯電体に加圧当接させ、これに電圧を印加することにより被帯電体を帯電処理する。具体的には、帯電部材から被帯電体への放電によって帯電が行われる。よって、帯電部材と被帯電体の間で放電が発生し始めるある閾値電圧以上の電圧を帯電部材に印加することにより帯電が開始される。それ以降は、印加電圧に対して傾き1の線形に感光体表面電位が増加する。この閾値電圧を、帯電開始電圧Vthと定義する。   In a contact charging device, a conductive charging roll as a charging member is brought into pressure contact with a member to be charged, and a voltage is applied thereto to charge the member to be charged. Specifically, charging is performed by discharging from the charging member to the member to be charged. Therefore, charging is started by applying a voltage equal to or higher than a certain threshold voltage at which discharge starts to occur between the charging member and the member to be charged to the charging member. Thereafter, the photoreceptor surface potential increases linearly with a slope of 1 with respect to the applied voltage. This threshold voltage is defined as the charging start voltage Vth.

つまり、電子写真に必要とされる感光体表面電位Vdを得るためには、Vd+VthなるDC電圧を帯電部材に印加することが必要である。このように、DC電圧のみを接触帯電部材に印加して被帯電体の帯電を行う接触帯電方式を、DC接触帯電方式と称する。   That is, in order to obtain the photoreceptor surface potential Vd required for electrophotography, it is necessary to apply a DC voltage of Vd + Vth to the charging member. A contact charging method in which only the DC voltage is applied to the contact charging member to charge the object to be charged is referred to as a DC contact charging method.

しかしながら、被帯電体としての感光体の表面は、画像形成枚数が増加するにつれてクリーニングブレードや現像剤などにより削れられる。そのため、感光体の厚み(膜厚)が減少してしまう。感光体とこれに接触する帯電部材とは、容量と等価な機能を有している。感光体の膜厚が変わると、同じ電圧を印加しても感光体の表面電位が同じとはならない。   However, the surface of the photosensitive member as a member to be charged is scraped by a cleaning blade, a developer, or the like as the number of image formations increases. Therefore, the thickness (film thickness) of the photoreceptor is reduced. The photosensitive member and the charging member in contact therewith have a function equivalent to a capacity. When the film thickness of the photoconductor changes, the surface potential of the photoconductor does not become the same even when the same voltage is applied.

特許文献1では、感光体に接触又は近接させた帯電ロールに直流電圧Vdcを印加し、このとき帯電ロールに流れる直流電流量から感光体の膜厚の減少を検知している。そして、感光体の膜厚が減少しても、常にほぼ一定の感光体表面電位が確保されるように、直流電流量の増加と共に直流電圧を低下させるように補正している。   In Patent Document 1, a DC voltage Vdc is applied to a charging roll brought into contact with or close to the photoconductor, and a decrease in the film thickness of the photoconductor is detected from the amount of DC current flowing through the charging roll at this time. Then, even if the film thickness of the photoconductor is reduced, correction is performed so that the DC voltage is decreased as the DC current amount is increased so that a substantially constant surface potential of the photoconductor is always secured.

特許3397339号公報Japanese Patent No. 3397339

しかしながら、感光体の表面電位が一定になるように制御しても、帯電不良(帯電不均一)が原因の白点が発生してしまい、安定した均一な画像を得ることができない。感光体の長寿命化をねらって感光体膜厚を厚膜化すると、特に低温低湿の環境下では、白点の発生が顕著になる。これについて、図1を参照しながら説明する。なお、図1(A)には、感光体の膜厚が20μmと30μmの時の感光体表面電位と、帯電ロールに印加する直流電圧(DC電圧)との関係が示されている。また図1(B)には、感光体の膜厚が20μmと30μmの時の、帯電ロールに流れる直流電流(DC電流)と、帯電ロールに印加する直流電圧(DC電圧)の関係が示されている。   However, even if the surface potential of the photosensitive member is controlled to be constant, white spots are generated due to poor charging (non-uniform charging), and a stable and uniform image cannot be obtained. When the film thickness of the photoconductor is increased in order to extend the life of the photoconductor, the generation of white spots becomes noticeable particularly in a low temperature and low humidity environment. This will be described with reference to FIG. FIG. 1A shows the relationship between the surface potential of the photoconductor when the film thickness of the photoconductor is 20 μm and 30 μm and the DC voltage (DC voltage) applied to the charging roll. Also, FIG. 1B shows the relationship between the direct current (DC current) flowing through the charging roll and the direct current voltage (DC voltage) applied to the charging roll when the film thickness of the photoconductor is 20 μm and 30 μm. ing.

感光体の膜厚が、通常20μmである所を、厚膜化によって30μmにしたとする。図1(A)に示すように膜厚が20μmのときに目標電位にするために印加するVdcは、Vaであり、膜厚が30μmのときに目標電位にするために印加するVdcは、Vbである。また、図1(A)に示すようにVa<Vbである。これは厚膜化により感光体の容量値が減少したのに伴い、帯電開始電圧が増大したことによる。   It is assumed that the place where the film thickness of the photoreceptor is usually 20 μm is made 30 μm by increasing the film thickness. As shown in FIG. 1A, Vdc applied to set the target potential when the film thickness is 20 μm is Va, and Vdc applied to set the target potential when the film thickness is 30 μm is Vb. It is. Further, Va <Vb as shown in FIG. This is because the charging start voltage increases as the capacitance value of the photoreceptor decreases due to the increase in thickness.

また図1(B)に示すように印加電圧VdcがVaのときに、帯電ロールから供給される電流は、Iaであり、印加電圧VdcがVbのときに、帯電ロールから供給される電流は、Ibであるとする。図1(B)に示すようにIa>Ibである。図1(B)から明らかなように、感光体の膜厚が厚くなると、帯電ロールから供給される直流電流、すなわち放電電流が減少する。すると感光体表面の帯電状態が不均一になり白点が発生する。   As shown in FIG. 1B, when the applied voltage Vdc is Va, the current supplied from the charging roll is Ia, and when the applied voltage Vdc is Vb, the current supplied from the charging roll is Let Ib. As shown in FIG. 1B, Ia> Ib. As is clear from FIG. 1B, the DC current supplied from the charging roll, that is, the discharge current decreases as the thickness of the photosensitive member increases. As a result, the charged state on the surface of the photoreceptor becomes non-uniform and white spots are generated.

放電電流、すなわち帯電ロールから供給される直流電流量を増加させるために、帯電ロールの印加電圧Vdcを大きく設定しても(例えば、図1(A)のVc)、感光体の表面電位自体が上がってしまい(図1(A)のVh)、目標電位に制御することができずに画質劣化の原因となる。   Even if the voltage Vdc applied to the charging roll is set large (for example, Vc in FIG. 1A) in order to increase the discharge current, that is, the amount of direct current supplied from the charging roll, the surface potential itself of the photoreceptor increases. As a result (Vh in FIG. 1A), it cannot be controlled to the target potential, causing image quality degradation.

本発明は上記事情に鑑みてなされたものであり、被帯電体の膜厚が変動しても画質欠陥の生じない帯電制御装置及び帯電制御方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a charge control device and a charge control method in which image quality defects do not occur even when the film thickness of a charged body varies.

かかる目的を達成するために本発明の帯電制御装置は、被帯電体を目標電位に帯電させる第1帯電部材と、前記被帯電体を目標電位とは逆極性に事前帯電する第2帯電部材と、前記第1帯電部材による帯電時に、前記第1帯電部材に流れる直流電流が所定値以上となるように、前記第2帯電部材で逆極性に帯電させる帯電電位を制御する制御手段とを有する構成としている。従って、被帯電体の膜厚が変動しても放電電流を充分に確保して画質欠陥を生じさせることがない。   In order to achieve such an object, the charging control device of the present invention includes a first charging member that charges a member to be charged to a target potential, a second charging member that precharges the member to be charged to a polarity opposite to the target potential, And a control means for controlling a charging potential to be charged with a reverse polarity by the second charging member so that a direct current flowing through the first charging member becomes a predetermined value or more when charged by the first charging member. It is said. Therefore, even if the film thickness of the charged body fluctuates, a sufficient discharge current is ensured and image quality defects do not occur.

上記構成の帯電制御装置において、前記制御手段は、前記第2帯電部材で逆極性に帯電させる帯電電位を、前記被帯電体の膜厚に応じて変更するとよい。   In the charging control device having the above-described configuration, the control unit may change a charging potential to be charged with a reverse polarity by the second charging member according to a film thickness of the object to be charged.

上記構成の帯電制御装置において、前記所定値は、画質欠陥が生じない範囲の最低電流値であるとよい。   In the charging control device having the above configuration, the predetermined value may be a minimum current value in a range in which no image quality defect occurs.

上記構成の帯電制御装置において、前記第2帯電部材は、転写部材を兼ねるとよい。   In the charging control device having the above configuration, the second charging member may also serve as a transfer member.

本発明の帯電制御方法は、第1帯電部材によって被帯電体を目標電位に帯電させる時に、前記第1帯電部材に流れる直流電流が所定値以上となるように、第2帯電部材で逆極性に帯電させる帯電電位を決定するステップと、前記決定した帯電電位となるように前記被帯電体を目標電位とは逆極性に事前帯電するステップと、前記被帯電体を目標電位に帯電させるステップとを有している。   In the charging control method of the present invention, when the object to be charged is charged to the target potential by the first charging member, the second charging member has a reverse polarity so that the direct current flowing through the first charging member becomes a predetermined value or more. Determining a charging potential to be charged, precharging the object to be charged to a polarity opposite to the target potential so as to be the determined charging potential, and charging the object to be charged to a target potential. Have.

本発明は、被帯電体の膜厚が変動しても画質欠陥の生じさせない。   The present invention does not cause image quality defects even when the film thickness of the member to be charged varies.

添付図面を参照しながら本発明の好適な実施例を説明する。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings.

まず、図2を参照しながら本実施例の構成を説明する。像担持体としての感光体2は、円筒状OPC感光体であり、紙面に垂直方向の中心軸線を中心に矢示の時計方向に所定のプロセススピード(周速度)で回転駆動される。   First, the configuration of the present embodiment will be described with reference to FIG. The photoconductor 2 as an image carrier is a cylindrical OPC photoconductor, and is driven to rotate at a predetermined process speed (circumferential speed) in the clockwise direction indicated by an arrow about a central axis perpendicular to the paper surface.

感光体2の周囲には、帯電部材としての第1帯電ロール3と、第2帯電ロール4とが感光体2に接するように配置されている。第1帯電ロール3は、感光体2の回転に従動して回転し、第1DC電源12から所定の電圧が印加されて、回転する感光体2の周面が所定の極性・電位に一様に帯電(負帯電)される。また第2帯電ロール4は、感光体2の回転に従動して回転し、第2DC電源13から所定の電圧が印加されて、感光体2の周面を第1DC電源12とは逆極性に一様に事前帯電する(正帯電する)。   Around the photosensitive member 2, a first charging roll 3 and a second charging roll 4 as charging members are disposed so as to be in contact with the photosensitive member 2. The first charging roll 3 rotates following the rotation of the photosensitive member 2, and a predetermined voltage is applied from the first DC power source 12, so that the peripheral surface of the rotating photosensitive member 2 is uniformly set to a predetermined polarity and potential. Charged (negatively charged). Further, the second charging roll 4 rotates following the rotation of the photosensitive member 2, and a predetermined voltage is applied from the second DC power source 13, so that the peripheral surface of the photosensitive member 2 has a polarity opposite to that of the first DC power source 12. In the same way, pre-charge (positive charge).

次いで回転感光体2の帯電処理面に、ROS(Raster Optical Scanner)5から出力される、画像変調されたレーザビームが照射(走査露光)され、露光部分の電位が減衰して静電潜像が形成される。   Next, an image-modulated laser beam output from a ROS (Raster Optical Scanner) 5 is irradiated (scanning exposure) to the charged surface of the rotating photoconductor 2, and the potential of the exposed portion is attenuated to form an electrostatic latent image. It is formed.

感光体2の回転にともなって該潜像が現像器6に対向する現像部位に到来すると、現像器6から負帯電されたトナーが供給されて反転現像によってトナー像が形成される。   When the latent image arrives at the development site facing the developing device 6 as the photoconductor 2 rotates, a negatively charged toner is supplied from the developing device 6 and a toner image is formed by reversal development.

感光体2の回転方向に見て現像器6の下流側には導電性の転写ロール7が感光体2に圧接配置してあって、感光体2と転写ロール7とのニップ部が転写部位を形成している。   A conductive transfer roll 7 is disposed in pressure contact with the photoconductor 2 on the downstream side of the developing device 6 when viewed in the rotation direction of the photoconductor 2, and a nip portion between the photoconductor 2 and the transfer roll 7 serves as a transfer site. Forming.

感光体2の表面に形成されたトナー像が感光体2の回転につれて上記転写部位に到達すると、これとタイミングをあわせて、用紙が転写位置に供給され、これとともに所定の電圧が転写ロール7に印加されて、トナー像が感光体2の表面から用紙に転写される。   When the toner image formed on the surface of the photoconductor 2 reaches the transfer site as the photoconductor 2 rotates, the paper is supplied to the transfer position at the same time, and a predetermined voltage is applied to the transfer roll 7 at the same time. As a result, the toner image is transferred from the surface of the photoreceptor 2 to the paper.

転写位置でトナー像転写を受けた用紙は定着器8へ搬送されてトナー像の定着を受け機外へ排出される。   The sheet that has received the toner image transfer at the transfer position is conveyed to the fixing device 8 where the toner image is fixed and discharged outside the apparatus.

一方、感光体2の表面に残った転写残りトナーはクリーニングブレード9によってかき落されることで、感光体2はその表面が清掃されて、次の画像形成に備える。   On the other hand, the untransferred toner remaining on the surface of the photoreceptor 2 is scraped off by the cleaning blade 9 so that the surface of the photoreceptor 2 is cleaned to prepare for the next image formation.

さらに、本実施例は図2に示すように直流電流検知部11と、第1DC電源12と、第2DC電源部13と、制御部14とを有する帯電制御装置10を備えている。直流電流検知部11は、第1DC電源12から第1帯電ロール3に流れる直流電流を測定する。すなわち、第1帯電ロール3に流れ込む直流電流を測定することで、感光体2への放電電流を測定する。   Further, as shown in FIG. 2, the present embodiment includes a charging control device 10 having a direct current detection unit 11, a first DC power supply 12, a second DC power supply unit 13, and a control unit 14. The direct current detector 11 measures the direct current flowing from the first DC power source 12 to the first charging roll 3. That is, the discharge current to the photosensitive member 2 is measured by measuring the direct current flowing into the first charging roll 3.

制御部14は、第1帯電ロール3による帯電時に、第1帯電ロール3に流れる直流電流が所定値以上となるように、第2帯電ロール4で逆極性に帯電させる帯電電位を制御する。   The control unit 14 controls the charging potential to be charged with the reverse polarity by the second charging roll 4 so that the direct current flowing through the first charging roll 3 becomes a predetermined value or more during charging by the first charging roll 3.

上記構成を備える本実施例は、2つの帯電ロールを用いることで、DC帯電によって感光体表面電位を目標電圧に制御しながら、一定以上の放電電流を確保することで白点を防止する。   In this embodiment having the above configuration, by using two charging rolls, white spots are prevented by securing a discharge current of a certain level or more while controlling the surface potential of the photosensitive member to a target voltage by DC charging.

まず、第1帯電ロール3の印加電圧は、理論式「Vsur=Vdc―Vth」に基づき設定される(Vsur:目標表面電位、Vdc:印加電圧、Vth:帯電開始電圧)。   First, the applied voltage of the first charging roll 3 is set based on the theoretical formula “Vsur = Vdc−Vth” (Vsur: target surface potential, Vdc: applied voltage, Vth: charging start voltage).

感光体2の帯電時に流れる放電電流を、白点が発生しないように所定量確保するために、第2帯電ロール4で感光体2を逆極性に事前帯電しておく。これについて図3を参照しながら説明する。図3(A)には、感光体2の膜厚が20μmと30μmの時の感光体表面電位と、第1帯電ロール3に印加する直流電圧(DC電圧)との関係が示されている。また図3(B)には、感光体の膜厚が20μmと30μmの時の第1帯電ロール3に流れる直流電流(DC電流)と、第1帯電ロール3に印加する直流電圧(DC電圧)の関係が示されている。   In order to secure a predetermined amount of discharge current that flows when the photosensitive member 2 is charged so as not to generate a white spot, the photosensitive member 2 is precharged to a reverse polarity by the second charging roll 4. This will be described with reference to FIG. FIG. 3A shows the relationship between the photosensitive member surface potential when the film thickness of the photosensitive member 2 is 20 μm and 30 μm and the direct current voltage (DC voltage) applied to the first charging roll 3. FIG. 3B shows a direct current (DC current) flowing through the first charging roll 3 when the film thickness of the photoconductor is 20 μm and 30 μm, and a direct current voltage (DC voltage) applied to the first charging roll 3. The relationship is shown.

第2帯電ロール4で感光体2を逆極性に事前帯電しておくことで(図3(A)に示す−Vch2)、感光体2が帯電を開始する帯電開始電圧(図3(A)に示すVthb’)を低くすることができる。すなわち、図3(A)に示すように逆極性に帯電していない時の帯電開始電圧Vthb>逆極性に帯電させた時の帯電開始電圧Vthb’となる。これにより、感光体2を第1帯電ロール3によって目標電位に帯電させるまでに、充分な放電電流(図3(B)に示すIa)を確保することができ、白点の発生を防止して画質の劣化を防止することができる。
なお、感光体2の膜厚によって、図3(A)に示す帯電ロール3の印加電圧Vdcと、感光体表面電位との関係を示す直線と、図3(B)に示す印加電圧Vdcと、第1帯電ロール3の流す直流電流との関係を示す直線が決定される。制御部14は、感光体2の膜厚を測定すると、測定した膜厚からどの程度第2帯電ロール4で逆極性に帯電させればよいのかが判定できる。例えば、図3(B)に示す膜厚30μmの感光体に対しては、第1帯電ロール3にDC電圧Vbを印加したときに、直流電流Iaが流れるようにするために必要な逆極性の帯電電位が決定される。これらのデータは、例えば事前に測定され、制御部14内の図示しない不揮発性メモリに記録されている。あるいは、感光体を膜厚dの容量とみなして、以下のような近似式「Ia=d*(Vsur-Vch2)/k」より算出してもよい(Vsur:目標表面電位、Vch2:逆極性電圧、d:膜厚、k:定数)。
By precharging the photosensitive member 2 to the opposite polarity with the second charging roll 4 (-Vch2 shown in FIG. 3A), the charging start voltage (FIG. 3A) at which the photosensitive member 2 starts to be charged is obtained. Vthb ′) shown can be lowered. That is, as shown in FIG. 3A, the charging start voltage Vthb when not charged with a reverse polarity is greater than the charging start voltage Vthb ′ when charged with a reverse polarity. As a result, a sufficient discharge current (Ia shown in FIG. 3B) can be ensured until the photosensitive member 2 is charged to the target potential by the first charging roll 3, and the occurrence of white spots is prevented. Degradation of image quality can be prevented.
Depending on the film thickness of the photoconductor 2, a line indicating the relationship between the applied voltage Vdc of the charging roll 3 shown in FIG. 3A and the surface potential of the photoconductor, and an applied voltage Vdc shown in FIG. A straight line indicating a relationship with a direct current flowing through the first charging roll 3 is determined. When the control unit 14 measures the film thickness of the photoconductor 2, the control unit 14 can determine how much the second charging roll 4 should be charged with the opposite polarity from the measured film thickness. For example, for the photosensitive member having a film thickness of 30 μm shown in FIG. 3B, the reverse polarity necessary to allow the direct current Ia to flow when the DC voltage Vb is applied to the first charging roll 3. The charging potential is determined. These data are measured in advance, for example, and recorded in a nonvolatile memory (not shown) in the control unit 14. Alternatively, the photoconductor may be regarded as the capacity of the film thickness d, and may be calculated from the following approximate expression “Ia = d * (Vsur−Vch2) / k” (Vsur: target surface potential, Vch2: reverse polarity) Voltage, d: film thickness, k: constant).

また、感光体2の膜厚の測定方法には種々の方法があるが、一例として、事前に、感光体2の表面電圧が飽和する時に流れる飽和電流と、感光体膜との関係を示すデータを実験で求めておいて、感光体2に電圧を印加していって実際に感光体2が飽和する時の電流から感光体の膜厚を推定することができる。   In addition, there are various methods for measuring the film thickness of the photoconductor 2. As an example, data indicating the relationship between the saturation current that flows when the surface voltage of the photoconductor 2 is saturated and the photoconductor film in advance. The thickness of the photoconductor can be estimated from the current when the voltage is applied to the photoconductor 2 and the photoconductor 2 is actually saturated.

第2帯電ロール4からの逆極性印加電圧は、少なくとも白点が消滅する直流電流が流れるように設定するので、常に感表面電位を目標電位に設定しながらも、直流電流を任意の値に独立して制御し白点防止できる。   The reverse polarity applied voltage from the second charging roll 4 is set so that at least a direct current at which the white spot disappears flows, so that the direct current is independent of any value while always setting the surface sensitive potential to the target potential. To prevent white spots.

図4に示すフローチャートを参照しながら制御部14の動作手順を説明する。
制御部14は、感光体の帯電制御を開始すると、まず感光体膜厚の測定を開始する(ステップS1)。感光体膜厚の測定は、例えば上述したように感光体2の表面電位が飽和する時の電流値から、感光体の膜厚を推定することができる。
The operation procedure of the control unit 14 will be described with reference to the flowchart shown in FIG.
When starting the charging control of the photosensitive member, the control unit 14 first starts measuring the photosensitive member film thickness (step S1). In the measurement of the photoconductor film thickness, for example, as described above, the film thickness of the photoconductor can be estimated from the current value when the surface potential of the photoconductor 2 is saturated.

次に、測定した感光体膜厚に応じて、第2帯電ロール4で逆極性に帯電する電位を設定する(ステップS2)。例えば、図3(B)に示すように感光体膜厚が30μmであった場合に、目標の直流電流Iaを流すために必要な逆極性電位が設定される。制御部14は、第2DC電源13を制御して第2帯電ロール4に逆極性の電圧を印加し、感光体2の表面電位が設定した逆極性電位となるように制御する(ステップS3)。次に、制御部14は、第1DC電源12を制御して第1帯電ロール3に電圧を印加し、感光体2の表面電位が目標電位になるように制御する。すなわち、図3(B)に示す直流電圧Vbを印加することで、直流電流Iaが第1帯電ロール3に流れ、充分な放電電流を確保することができる(ステップS4)。   Next, in accordance with the measured thickness of the photosensitive member, a potential to be charged with a reverse polarity by the second charging roll 4 is set (step S2). For example, as shown in FIG. 3B, when the film thickness of the photosensitive member is 30 μm, the reverse polarity potential necessary for flowing the target direct current Ia is set. The control unit 14 controls the second DC power supply 13 to apply a voltage having a reverse polarity to the second charging roll 4 so that the surface potential of the photosensitive member 2 becomes a set reverse polarity potential (step S3). Next, the control unit 14 controls the first DC power supply 12 to apply a voltage to the first charging roll 3 so that the surface potential of the photoreceptor 2 becomes a target potential. That is, by applying the DC voltage Vb shown in FIG. 3B, the DC current Ia flows to the first charging roll 3 and a sufficient discharge current can be secured (step S4).

このようにして本実施例では、感光体の膜厚が変動しても、充分な放電電流を流すことができ、画質欠陥の生じさせない。   In this way, in this embodiment, even if the film thickness of the photoconductor varies, a sufficient discharge current can be passed and image quality defects do not occur.

上述した実施例は本発明の好適な実施例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。例えば、上述した実施例では第2帯電ロール4を別途設けて、感光体の表面電位を逆極性に帯電させていたが、転写ロール7を用いて感光体の表面電位を逆極性に帯電させてもよい。   The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the second charging roll 4 is provided separately to charge the surface potential of the photosensitive member to the reverse polarity. However, the transfer roller 7 is used to charge the surface potential of the photosensitive member to the reverse polarity. Also good.

従来の帯電制御方法について説明するための図である。It is a figure for demonstrating the conventional charge control method. 画像形成装置の構成を示す図である。1 is a diagram illustrating a configuration of an image forming apparatus. 本発明の帯電制御方法について説明するための図である。It is a figure for demonstrating the charge control method of this invention. 制御部の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of a control part.

符号の説明Explanation of symbols

1 画像形成装置 2 感光体
3 第1帯電ロール 4 第2帯電ロール
5 ROS 6 現像器
7 転写ロール 8 定着器
9 クリーニングブレード 10 帯電制御装置
11 直流電流検知部 12 第1DC電源
13 第2DC電源 14 制御部
DESCRIPTION OF SYMBOLS 1 Image forming apparatus 2 Photoconductor 3 1st charging roll 4 2nd charging roll 5 ROS 6 Developing device 7 Transfer roll 8 Fixing device 9 Cleaning blade 10 Charging control device 11 DC current detection part 12 1st DC power supply 13 2nd DC power supply 14 Control Part

Claims (5)

被帯電体を目標電位に帯電させる第1帯電部材と、
前記被帯電体を目標電位とは逆極性に事前帯電する第2帯電部材と、
前記第1帯電部材による帯電時に、前記第1帯電部材の流す直流電流が所定値以上となるように、前記第2帯電部材で逆極性に帯電させる帯電電位を制御する制御手段と、を有することを特徴とする帯電制御装置。
A first charging member that charges a member to be charged to a target potential;
A second charging member for precharging the object to be charged to a polarity opposite to the target potential;
Control means for controlling a charging potential to be charged with a reverse polarity by the second charging member so that a direct current flowing through the first charging member becomes a predetermined value or more when charged by the first charging member. A charge control device characterized by the above.
前記制御手段は、前記第2帯電部材で逆極性に帯電させる帯電電位を、前記被帯電体の膜厚に応じて変更することを特徴とする請求項1記載の帯電制御装置。   The charging control apparatus according to claim 1, wherein the control unit changes a charging potential to be charged with a reverse polarity by the second charging member in accordance with a film thickness of the object to be charged. 前記所定値は、画質欠陥が生じない範囲の最低電流値であることを特徴とする請求項1又は2記載の帯電制御装置。   3. The charging control apparatus according to claim 1, wherein the predetermined value is a minimum current value in a range where no image quality defect occurs. 前記第2帯電部材は、転写部材を兼ねることを特徴とする請求項1から3のいずれか1項記載の帯電制御装置。   The charging control apparatus according to claim 1, wherein the second charging member also serves as a transfer member. 第1帯電部材によって被帯電体を目標電位に帯電させる時に、前記第1帯電部材の流す直流電流が所定値以上となるように、第2帯電部材で逆極性に帯電させる帯電電位を決定するステップと、
前記決定した帯電電位となるように前記被帯電体を前記目標電位とは逆極性に事前帯電するステップと、
前記被帯電体を目標電位に帯電させるステップと、を有することを特徴とする帯電制御方法。
A step of determining a charging potential to be charged to a reverse polarity by the second charging member so that a direct current flowing through the first charging member becomes equal to or greater than a predetermined value when the object to be charged is charged to a target potential by the first charging member; When,
Precharging the object to be charged to a polarity opposite to the target potential so as to be the determined charging potential;
Charging the object to be charged at a target potential.
JP2005216550A 2005-07-26 2005-07-26 Electrostatic charge controller and electrostatic charge control method Pending JP2007033835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216550A JP2007033835A (en) 2005-07-26 2005-07-26 Electrostatic charge controller and electrostatic charge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216550A JP2007033835A (en) 2005-07-26 2005-07-26 Electrostatic charge controller and electrostatic charge control method

Publications (1)

Publication Number Publication Date
JP2007033835A true JP2007033835A (en) 2007-02-08

Family

ID=37793182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216550A Pending JP2007033835A (en) 2005-07-26 2005-07-26 Electrostatic charge controller and electrostatic charge control method

Country Status (1)

Country Link
JP (1) JP2007033835A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224931A (en) * 2013-05-16 2014-12-04 京セラドキュメントソリューションズ株式会社 Image forming apparatus, and measuring method of thickness of photosensitive layer
JP2014224933A (en) * 2013-05-16 2014-12-04 京セラドキュメントソリューションズ株式会社 Image forming apparatus, and measuring method of thickness of photosensitive layer
JP2017032777A (en) * 2015-07-31 2017-02-09 キヤノン株式会社 Image forming apparatus
US11092909B2 (en) 2019-09-18 2021-08-17 Fujifilm Business Innovation Corp. Charging device and image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224931A (en) * 2013-05-16 2014-12-04 京セラドキュメントソリューションズ株式会社 Image forming apparatus, and measuring method of thickness of photosensitive layer
JP2014224933A (en) * 2013-05-16 2014-12-04 京セラドキュメントソリューションズ株式会社 Image forming apparatus, and measuring method of thickness of photosensitive layer
JP2017032777A (en) * 2015-07-31 2017-02-09 キヤノン株式会社 Image forming apparatus
US11092909B2 (en) 2019-09-18 2021-08-17 Fujifilm Business Innovation Corp. Charging device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4882364B2 (en) Image forming apparatus
JP6590578B2 (en) Image forming apparatus
JP2001305837A (en) Image forming device and process cartridge
JP2006276056A (en) Image forming apparatus and electrification control method
JP4929851B2 (en) Image forming apparatus
JP2007033835A (en) Electrostatic charge controller and electrostatic charge control method
JP5150340B2 (en) Image forming apparatus
JP4692125B2 (en) Charge control device and charge control method
JP6275682B2 (en) Image forming apparatus
JP6642997B2 (en) Image forming device
JP2001265075A (en) Image forming device
JP2000305342A (en) Electrostatic charger and image forming device
JP5097602B2 (en) Image forming apparatus
JP2008015260A (en) Image forming apparatus
JP2007187930A (en) Image forming apparatus and film thickness measuring method
JP2007187933A (en) Charging controller and inflection point detecting method
JPH10221931A (en) Image forming device
JP2009008828A (en) Image forming apparatus
JP6589889B2 (en) Image forming apparatus
JP2006243357A (en) Image forming apparatus
JP2022043462A (en) Image forming apparatus
JP4872354B2 (en) Film thickness measuring device
WO2016088366A1 (en) Image formation device
JP2017151128A (en) Image forming apparatus
JP2007065293A (en) Image forming apparatus