JP2007187933A - Charging controller and inflection point detecting method - Google Patents

Charging controller and inflection point detecting method Download PDF

Info

Publication number
JP2007187933A
JP2007187933A JP2006006793A JP2006006793A JP2007187933A JP 2007187933 A JP2007187933 A JP 2007187933A JP 2006006793 A JP2006006793 A JP 2006006793A JP 2006006793 A JP2006006793 A JP 2006006793A JP 2007187933 A JP2007187933 A JP 2007187933A
Authority
JP
Japan
Prior art keywords
current
value
voltage
charged
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006006793A
Other languages
Japanese (ja)
Inventor
Chikao Ikeda
周穂 池田
Hideki Moriya
秀樹 守屋
Hidehiko Yamaguchi
英彦 山口
Masao Omori
雅夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2006006793A priority Critical patent/JP2007187933A/en
Publication of JP2007187933A publication Critical patent/JP2007187933A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging controller capable of controlling to attain an optimum AC voltage or AC current in a short time by shortening a time for detecting an inflection point where a charged body changes from an unsaturated state to a saturated state. <P>SOLUTION: The charging controller 10 that detects the inflection point where the photoreceptor 2 changes from the unsaturated state to the saturated state by supplying the DC voltage with an AC current superposed to the photoreceptor 2 and measuring a DC current flowing in the photoreceptor 2 while changing the value of the AC current includes: a charging roll 3 arranged in contact or adjacent to the photoreceptor 2, provided to charge the photoreceptor 2; a DC current detecting part 12 provided to supply the DC voltage with the AC current superposed to the charging roll 3 and measure the DC current; and a control part 13 provided to turn off erasing, to integrate the DC current flowing in a period including one rotation of the photoreceptor until the erasing-off area on the photoreceptor reaches the position in contact with or adjacent to the charging member and the DC current flowing until the photoreceptor 2 is saturated, then, to calculate the changing range of the AC current based on the integrated value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放電を帯電原理とする接触帯電方式で、DC電圧にAC電流又はAC電圧を重畳して帯電装置に供給し、被帯電体を帯電させる帯電制御装置に関する。   The present invention relates to a charging control device that charges a member to be charged by a contact charging method using discharge as a charging principle, supplying an AC current or an AC voltage to a charging device with a DC voltage superimposed thereon.

従来より帯電装置として、電圧を印加したローラやブレード等の帯電部材を感光体等の被帯電体の表面に接触させて、被帯電体面を所定の極性・電位に帯電させる接触式の帯電装置が用いられている。   Conventionally, as a charging device, there is a contact type charging device in which a charging member such as a roller or a blade to which a voltage is applied is brought into contact with the surface of a charged body such as a photoconductor to charge the surface of the charged body to a predetermined polarity and potential. It is used.

この接触式の帯電装置においては、帯電装置に、DC電圧にAC電圧又はAC電流を重畳して印加する方式が取られている。DC電圧の印加だけでは、感光体上の抵抗の低いところにだけ電流が流れるため均一に帯電することができない。また、感光体表面が局所的によごれると、その部分だけ帯電しなくなるという問題が生じる。そこで、DC電圧にAC電圧又はAC電流を重畳して印加し、感光体表面を帯電させている。
なおここでAC電圧またはAC電流といっているのは、DC電圧にAC電圧を重畳して帯電装置に印加し、そのとき流れるAC電流を一定に制御している場合を含んでいる。
In this contact-type charging device, a method in which an AC voltage or an AC current is superimposed on a DC voltage and applied is applied to the charging device. Only by applying a DC voltage, a current flows only at a low resistance on the photoconductor, so that it cannot be uniformly charged. Further, when the surface of the photosensitive member is locally soiled, there arises a problem that only that portion is not charged. Therefore, the surface of the photoreceptor is charged by applying an AC voltage or an AC current superimposed on the DC voltage.
Here, the AC voltage or AC current includes a case where the AC voltage is superimposed on the DC voltage and applied to the charging device, and the AC current flowing at that time is controlled to be constant.

しかしながら、AC電圧又はAC電流は大きくしすぎると感光体の磨耗に影響が出る。逆に小さくしすぎると、帯電の均一性が保てなくなり、プリントしたときにむらができる。そのため、AC電圧又はAC電流を必要最低限の最適値に随時補正する必要がある。   However, if the AC voltage or AC current is too large, the wear of the photoreceptor is affected. On the other hand, if it is too small, the uniformity of charging cannot be maintained, and unevenness occurs when printed. For this reason, it is necessary to correct the AC voltage or AC current to the minimum necessary optimum value as needed.

特許文献1では、図1に示すように帯電装置に印加するAC電流を順次増やしていき、そのとき帯電装置に流れ込むDC電流を測定することで感光体の飽和電位を検出し、感光体に印加するAC値を制御する技術を開示している。なお、被帯電体の飽和電位とは、図1に示すように被帯電体が不飽和から飽和に変わる変曲点でのDC電圧を示している。   In Patent Document 1, as shown in FIG. 1, the AC current applied to the charging device is sequentially increased, and the saturation potential of the photoconductor is detected by measuring the DC current flowing into the charging device at that time, and applied to the photoconductor. A technique for controlling the AC value is disclosed. The saturation potential of the member to be charged indicates a DC voltage at an inflection point at which the member to be charged changes from unsaturated to saturated as shown in FIG.

特開2004−333789号公報JP 2004-333789 A

特許文献1のように帯電装置に印加するAC電流を順次増やしていき、そのとき帯電部材に流れ込むDC電流によって感光体の飽和電位を検出する方法では、飽和電位の検出までに時間がかかってしまう。すなわち感光体の不飽和領域から飽和領域にわたって何度も測定を行わなければならず、多大な時間がかかる。   In the method in which the AC current applied to the charging device is sequentially increased as in Patent Document 1 and the saturation potential of the photosensitive member is detected by the DC current flowing into the charging member at that time, it takes time to detect the saturation potential. . That is, many measurements must be performed from the unsaturated region to the saturated region of the photoconductor, which takes a lot of time.

また、画像形成装置の起動直後のように動作環境が変動する場合、変曲点も変動するので環境変動に対応して印加するAC電流を随時更新する必要があるが、特許文献1のようにAC電流を順次印加してAC電流を設定する方法では、頻繁に制御を行なうと、制御のために感光体の磨耗が進行してしまう。   Further, when the operating environment changes immediately after the image forming apparatus is started up, the inflection point also changes, so that it is necessary to update the AC current to be applied in response to the environmental change. In the method of setting the AC current by sequentially applying the AC current, if the control is frequently performed, the wear of the photoconductor progresses due to the control.

また、被帯電体が飽和する前の不飽和領域でAC電流値をスイープすると、環境によって被帯電体の表面電位も変動する。このため感光体の表面電位が現像バイアスよりも低すぎると、トナーかぶりが発生し、トナーが飛散する。また、印加するAC電流が変曲点よりも過度に大きいと、放電生成物が感光体の表面を覆ってしまい画質劣化という問題が生じる。この放電生成物は容易には落ちないので、過度のAC電流の印加は避けなければならない。   Further, when the AC current value is swept in the unsaturated region before the charged body is saturated, the surface potential of the charged body also varies depending on the environment. For this reason, when the surface potential of the photoreceptor is too lower than the developing bias, toner fog occurs and the toner is scattered. Further, if the AC current to be applied is excessively larger than the inflection point, the discharge product covers the surface of the photoconductor, causing a problem of image quality degradation. Since this discharge product does not fall off easily, application of excessive AC current must be avoided.

図2(A)には、被帯電体に流すAC電流(Iac)の振幅を変化させていったときの被帯電体表面の電位の変化を示す。図2(B)、(C)は、同じくAC電流(Iac)の振幅を変化させていったときに被帯電体に流れたDC電流(Idc)を示す図であって、(B)は被帯電体の膜厚が薄い場合を示し、(C)は被帯電体の膜厚が厚い場合を示している。図2(A)〜図2(C)を参照すると判るように被帯電体の表面電位が変わらないにも関わらず、被帯電体に流れたDC電流(Idc)は膜厚が薄いほど大きくなる。このためDC電流(Idc)の絶対値によって最適なAC電流値を決定することはできない。   FIG. 2A shows a change in potential on the surface of the charged body when the amplitude of the AC current (Iac) passed through the charged body is changed. 2 (B) and 2 (C) are diagrams showing the DC current (Idc) that has flowed through the member to be charged when the amplitude of the AC current (Iac) is changed, and FIG. The case where the thickness of the charged body is thin is shown, and (C) shows the case where the thickness of the charged body is thick. As can be seen from FIGS. 2A to 2C, the DC current (Idc) flowing through the charged body increases as the film thickness decreases even though the surface potential of the charged body does not change. . For this reason, the optimal AC current value cannot be determined by the absolute value of the DC current (Idc).

本発明は上記事情に鑑みてなされたものであり、被帯電体が不飽和から飽和に変わる変曲点の検出時間を短縮させ、最適なAC電圧又はAC電流に短時間で制御することができる帯電制御装置及び変曲点検出方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can reduce the detection time of an inflection point at which an object to be charged changes from unsaturated to saturated, and can be controlled to an optimal AC voltage or AC current in a short time. An object is to provide a charging control device and an inflection point detection method.

かかる目的を達成するために本発明の帯電制御装置は、直流電圧に交流電流又は交流電圧を重畳して除電した後の被帯電体に供給し、前記交流電流又は交流電圧の値を変更しながら前記被帯電体に流れる直流電流を測定することで、前記被帯電体が不飽和から飽和に変わる変曲点を検出する帯電制御装置であって、前記被帯電体に接触または近接して配置され、該被帯電体を帯電する帯電部材と、前記直流電流を測定する測定部と、前記被帯電体表面電位が前記除電後の電位から飽和するまでに流れる前記直流電流を積算し、該積算値から変更する前記交流電流又は交流電圧の値の範囲を算出する制御部とを有する構成としている。
被帯電体が飽和するまでに流れる直流電流の積算値は、被帯電体の膜厚によってのみ決定されるので、環境が変わっても変曲点の近傍に交流電圧又は交流電流の範囲を設定することができる。従って、変曲点算出までの時間を短縮することができる。
さらに、変曲点の検出時に、交流電流又は交流電圧が変曲点から大きく外れていないので、トナーかぶりや、過大な交流電流・交流電圧の印加を防止することができる。
In order to achieve such an object, the charge control device of the present invention supplies an AC current or AC voltage superimposed on a DC voltage to the object to be charged, and changes the value of the AC current or AC voltage. A charging control device that detects an inflection point at which the charged body changes from unsaturated to saturated by measuring a direct current flowing through the charged body, and is disposed in contact with or close to the charged body. A charging member that charges the member to be charged, a measuring unit that measures the direct current, and the direct current that flows until the surface potential of the member to be charged is saturated from the potential after the charge removal. And a control unit for calculating a range of the value of the alternating current or the alternating voltage to be changed.
Since the integrated value of the direct current that flows until the body to be charged is saturated is determined only by the film thickness of the body to be charged, an AC voltage or AC current range is set near the inflection point even if the environment changes. be able to. Accordingly, it is possible to shorten the time until the inflection point is calculated.
Furthermore, since the AC current or the AC voltage is not greatly deviated from the inflection point when the inflection point is detected, it is possible to prevent toner fogging and application of an excessive AC current / AC voltage.

上記帯電制御装置において、前記制御部は、積算開始から前記被帯電体上で前記帯電部材が除電ランプをオフした領域にさしかかるまでを含む期間で積算を行うとよい。   In the charging control device, the control unit may perform integration during a period including from the start of integration until the charging member reaches a region where the charge-off lamp is turned off on the object to be charged.

上記帯電制御装置において、前記制御部は、除電後の前記被帯電体が一周するまでの間に流れる前記直流電流の積算値と、除電後の前記被帯電体が飽和するまでに流れる前記直流電流の積算値とを求め、前記一周分の直流電流の積算値と、前記飽和するまでの直流電流の積算値との比率が一定比率となるときの前記交流電圧又は交流電流を元に前記交流電流又は交流電圧の値の範囲を算出するとよい。   In the charging control device, the control unit includes an integrated value of the direct current that flows until the charged body after charge removal makes one round, and the direct current that flows until the charged object after discharge is saturated. And the AC current based on the AC voltage or AC current when the ratio between the DC current integrated value for one round and the DC current integrated value until saturation is a constant ratio. Alternatively, the range of AC voltage values may be calculated.

上記帯電制御装置において、前記制御部は、前記被帯電体から流れる前記直流電流を所定期間積算した積算値と、前記所定期間の積算回数とから求めた平均電流値と、前記被帯電体が飽和するまでに流れる前記直流電流の積算値と、前記飽和するまでの積算回数とから求めた飽和平均電流値とを求め、前記平均電流値と前記飽和平均電流値との比率が一定比率となるときの前記交流電圧又は交流電流を元に前記交流電流又は交流電圧の値の範囲を算出するとよい。   In the charging control device, the control unit is configured such that the DC current flowing from the object to be charged is integrated for a predetermined period, an average current value obtained from the number of integrations in the predetermined period, and the object to be charged is saturated. When the saturation average current value obtained from the integrated value of the DC current flowing until the saturation and the number of integrations until saturation is obtained, and the ratio of the average current value and the saturation average current value is a constant ratio The range of the value of the AC current or AC voltage may be calculated based on the AC voltage or AC current.

上記帯電制御装置において、前記制御部は、前記被帯電体の不飽和領域で、印加する交流電流又は交流電圧と、そのとき測定される直流電流との関係を示す直線の傾きを求め、該直線が飽和するまでに流れる前記直流電流の積算値を取るときの交流電流又は交流電圧の値を外挿によって求め、該交流電流又は交流電圧の値を元に前記交流電流又は前記交流電圧の値の範囲を算出するとよい。   In the charging control apparatus, the control unit obtains a slope of a straight line indicating a relationship between an AC current or an AC voltage to be applied and a DC current measured at that time in the unsaturated region of the charged object, The value of the alternating current or the alternating voltage when taking the integrated value of the direct current flowing until the saturation of the alternating current is obtained by extrapolation, and the value of the alternating current or the alternating voltage is calculated based on the alternating current or the alternating voltage value. The range should be calculated.

上記帯電制御装置において、前記制御部は、環境に応じて前記一定比率を変更するとよい。   In the charging control device, the control unit may change the constant ratio according to an environment.

上記帯電制御装置において、前記制御部は、前記被帯電体の帯電電圧を除電ランプで除電後に、0Vに設定された前記直流電圧に前記交流電圧又は交流電流を重畳して前記被帯電体を帯電し、得られた積算値を残留電荷量として前記比率算出の際の分母分子に加えるとよい。
従って、残留電荷量を精度よく検出することができるので、被帯電体の画質劣化を事前に検出することができる。さらに、表面電位計などを使用することなく画像制御を精度よく行うことができる。
In the charging control device, the control unit charges the charged object by superimposing the alternating voltage or the alternating current on the direct current voltage set to 0 V after discharging the charged voltage of the charged object with a static elimination lamp. Then, the obtained integrated value may be added as a residual charge amount to the denominator numerator at the time of calculating the ratio.
Accordingly, since the residual charge amount can be detected with high accuracy, it is possible to detect in advance the image quality deterioration of the charged body. Furthermore, image control can be performed with high accuracy without using a surface electrometer or the like.

上記帯電制御装置において、前記残留電荷量から除電後の残留電位を算出するとよい。   In the charging control device, it is preferable to calculate a residual potential after static elimination from the residual charge amount.

本発明の変曲点検出方法は、直流電圧に交流電流又は交流電圧を重畳して除電した後の被帯電体に供給し、前記交流電流又は交流電圧の値を変更しながら前記被帯電体に流れる直流電流を測定することで、前記被帯電体が不飽和から飽和に変わる変曲点を検出する変曲点検出方法であって、前記被帯電体表面電位が前記除電後の電位から飽和するまでに流れる前記直流電流を積算し、該積算値から変更する前記交流電流又は交流電圧の値の範囲を算出するとよい。   In the inflection point detection method of the present invention, an alternating current or an alternating voltage is superimposed on a direct current voltage and supplied to the member to be charged, and the alternating current or alternating voltage is changed while the value of the alternating current or the alternating voltage is changed. An inflection point detecting method for detecting an inflection point at which the charged body changes from unsaturated to saturated by measuring a flowing direct current, wherein the surface potential of the charged body is saturated from the potential after the charge removal. It is preferable to integrate the DC current flowing up to and calculate the range of the AC current or AC voltage value to be changed from the integrated value.

本発明によれば、被帯電体が不飽和から飽和に変わる変曲点の検出時間を短縮し、最適なAC電圧又はAC電流に短時間で制御することができる。   According to the present invention, the detection time of the inflection point where the charged body changes from unsaturated to saturated can be shortened, and the optimum AC voltage or AC current can be controlled in a short time.

添付図面を参照しながら本発明の好適な実施例を説明する。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings.

まず、図3を参照しながら本実施例の構成を説明する。像担持体としての感光体2は、円筒状OPC感光体であり、紙面に垂直方向の中心軸線を中心に矢示の時計方向に所定のプロセススピード(周速度)で回転駆動される。   First, the configuration of the present embodiment will be described with reference to FIG. The photoconductor 2 as an image carrier is a cylindrical OPC photoconductor, and is driven to rotate at a predetermined process speed (circumferential speed) in the clockwise direction indicated by an arrow about a central axis perpendicular to the paper surface.

感光体2の周囲には、感光体2に接触させた帯電ロール3、露光装置としてのROS(Raster Optical Scanner)4、現像器5、クリーニングブレード7、除電ランプ8などが配置されている。   Around the photoreceptor 2, a charging roll 3 brought into contact with the photoreceptor 2, a ROS (Raster Optical Scanner) 4 as an exposure device, a developing device 5, a cleaning blade 7, a charge removal lamp 8 and the like are disposed.

帯電ロール3は、感光体2の回転に従動して回転し、また電源部11からAC+DCの電圧又は電流が供給され、回転する感光体2の周面が所定の極性・電位に一様に帯電(本例では負帯電)される。   The charging roll 3 rotates following the rotation of the photosensitive member 2 and is supplied with an AC + DC voltage or current from the power supply unit 11 so that the peripheral surface of the rotating photosensitive member 2 is uniformly charged to a predetermined polarity and potential. (In this example, it is negatively charged).

次いで回転する感光体2の帯電処理面に、ROS4から出力される、画像変調されたレーザビームが照射(走査露光)され、露光部分の電位が減衰して静電潜像が形成される。   Next, an image-modulated laser beam output from the ROS 4 is irradiated (scanning exposure) onto the charging surface of the rotating photosensitive member 2, and the potential of the exposed portion is attenuated to form an electrostatic latent image.

感光体2の回転にともなって該潜像が現像器5に対向する現像部位に到来すると、現像器5から負帯電されたトナーが供給されて反転現像によってトナー像が形成される。   When the latent image arrives at the developing portion facing the developing device 5 as the photosensitive member 2 rotates, negatively charged toner is supplied from the developing device 5 and a toner image is formed by reversal development.

感光体2の回転方向に見て現像器5の下流側には導電性の転写ロール6が感光体2に圧接配置してあって、感光体2と転写ロール6とのニップ部が転写部位を形成している。   An electroconductive transfer roll 6 is disposed in pressure contact with the photoconductor 2 on the downstream side of the developing device 5 when viewed in the rotation direction of the photoconductor 2, and a nip portion between the photoconductor 2 and the transfer roll 6 serves as a transfer site. Forming.

感光体2表面に形成されたトナー像が感光体2の回転につれて上記転写部位に到達すると、これとタイミングをあわせて用紙が転写位置に供給され、これとともに所定の電圧が転写ロール6に印加されて、トナー像が感光体2の表面から用紙に転写される。   When the toner image formed on the surface of the photoconductor 2 reaches the transfer site as the photoconductor 2 rotates, the paper is supplied to the transfer position at the same time, and a predetermined voltage is applied to the transfer roll 6 at the same time. Thus, the toner image is transferred from the surface of the photoreceptor 2 to the sheet.

転写位置でトナー像転写を受けた用紙は定着器9へ搬送されてトナー像の定着を受けて機外へ排出される。   The sheet that has received the toner image transfer at the transfer position is conveyed to the fixing device 9 where the toner image is fixed and discharged outside the apparatus.

一方、感光体2の表面に残った転写残りトナーはクリーニングブレード7によってかき落されることで、感光体2はその表面が清掃されて、次の画像形成に備える。また、感光体2上の静電潜像は、除電ランプ8で消去される。   On the other hand, the untransferred toner remaining on the surface of the photosensitive member 2 is scraped off by the cleaning blade 7, whereby the surface of the photosensitive member 2 is cleaned and prepared for the next image formation. Further, the electrostatic latent image on the photosensitive member 2 is erased by the charge eliminating lamp 8.

さらに本実施例では、感光体2に印加するAC電流値を制御する帯電制御装置10を備えている。この帯電制御装置10には、電源部11、DC電流検知部12、制御部13が設けられている。電源部11は、DC電源15とAC電源14とを直列に接続した構成を備え、DC電圧にAC電流を重畳して帯電ロール3に供給する。DC電流検知部12は、帯電ロール3から感光体2に流れ込むDC電流を測定し、測定値を制御部13に出力する。   Furthermore, in this embodiment, a charging control device 10 that controls the AC current value applied to the photosensitive member 2 is provided. The charging control device 10 includes a power supply unit 11, a DC current detection unit 12, and a control unit 13. The power supply unit 11 has a configuration in which a DC power supply 15 and an AC power supply 14 are connected in series, and supplies the charging roll 3 with an AC current superimposed on a DC voltage. The DC current detection unit 12 measures the DC current flowing from the charging roll 3 into the photoconductor 2 and outputs the measured value to the control unit 13.

図4に制御部13の詳細な構成を示す。図4に示すように制御部13は、タイミング制御部21、加算器22、飽和DC電流値保持部23、除算器24、不飽和領域傾き検出部25、スイープ開始AC値算出・保持部26、スイープ終了AC値算出・保持部27、AC値指示部28、前回AC値保持部29、比較器30、加算器31、ステップ値保持部32を備えている。   FIG. 4 shows a detailed configuration of the control unit 13. As shown in FIG. 4, the control unit 13 includes a timing control unit 21, an adder 22, a saturated DC current value holding unit 23, a divider 24, an unsaturated region inclination detection unit 25, a sweep start AC value calculation / holding unit 26, A sweep end AC value calculating / holding unit 27, an AC value indicating unit 28, a previous AC value holding unit 29, a comparator 30, an adder 31, and a step value holding unit 32 are provided.

タイミング制御部21は、除電ランプ8、DC電流検知部12、DC電源15に接続されている。タイミング制御部21は、感光体の飽和DC電流を測定している間、除電ランプ8と転写ロール6への電流をオフにする。また、タイミング制御部21は、DC電流検知部22のオンとオフとを制御する。さらに、タイミング制御部21はDC電源15を制御して、感光体2の基材とは電位差を有する2つの電圧V1,V2を切り換える。電圧V1、V2は、画像形成のプロセスに応じて決定される電圧である。   The timing control unit 21 is connected to the static elimination lamp 8, the DC current detection unit 12, and the DC power source 15. The timing control unit 21 turns off the current to the static elimination lamp 8 and the transfer roll 6 while measuring the saturation DC current of the photoreceptor. In addition, the timing control unit 21 controls the on / off of the DC current detection unit 22. Further, the timing control unit 21 controls the DC power supply 15 to switch between two voltages V1 and V2 having a potential difference from the base material of the photoreceptor 2. The voltages V1 and V2 are voltages determined according to the image forming process.

加算器22は、DC電流検知部12で測定されたDC電流値を感光体2の複数周にわたって加算し、感光体2の飽和までの間に流れるDC電流値を求める。算出された飽和DC電流値は、飽和DC電流値保持部23に格納される。   The adder 22 adds the DC current value measured by the DC current detection unit 12 over a plurality of circumferences of the photosensitive member 2 to obtain a DC current value that flows until the photosensitive member 2 is saturated. The calculated saturation DC current value is stored in the saturation DC current value holding unit 23.

除算器24は、保持部23に保持された飽和DC電流値を所定値(例えば2)で除算して、感光体2が不飽和から飽和に変わる変曲点を検出するためのスイープ範囲を設定する。不飽和領域傾き検出部25は、感光体2に値の異なるAC電流を複数回印加して、そのとき検出されたDC電流から感光体2の不飽和領域でのIdc−Iac直線の傾きを求める。さらに感光体2が帯電を開始する帯電開始時のAC電流も求める。なお、このとき印加されるAC電流は、図1に示す感光体2の不飽和領域の値を設定する。なお、この測定でも感光体2にはAC電流だけではなく、DC電圧も印加する。   The divider 24 divides the saturation DC current value held in the holding unit 23 by a predetermined value (for example, 2) to set a sweep range for detecting an inflection point at which the photosensitive member 2 changes from unsaturated to saturated. To do. The unsaturated region inclination detection unit 25 applies AC currents having different values to the photosensitive member 2 a plurality of times, and obtains the inclination of the Idc-Iac line in the unsaturated region of the photosensitive member 2 from the detected DC current. . Further, an AC current at the start of charging when the photosensitive member 2 starts charging is also obtained. Note that the AC current applied at this time sets the value of the unsaturated region of the photoreceptor 2 shown in FIG. In this measurement, not only an AC current but also a DC voltage is applied to the photoreceptor 2.

スイープ開始AC値算出・保持部26は、AC電流のスイープを開始するスイープ開始AC値を算出して保持する。スイープ終了AC値算出・保持27は、AC電流のスイープを終了するスイープ終了AC値を算出して保持する。   The sweep start AC value calculation / holding unit 26 calculates and holds the sweep start AC value for starting the sweep of the AC current. The sweep end AC value calculation / hold 27 calculates and holds a sweep end AC value for ending the sweep of the AC current.

AC値指示部28は、AC電源14に指示するAC電流値を指示する。前回AC保持部29は、前回、AC電源14に指示したAC値を保持する。比較器30は、スイープ終了AC値算出・保持部27に保持しているスイープ終了AC値と、前回AC値保持部29の保持する前回のAC値とを比較する。比較器30は、前回指示したAC値がスイープ終了AC値に一致すると、加算器31の出力を停止させる。また、前回指示したAC値がスイープ終了AC値よりも小さい場合には、加算器31に次のAC値を出力するように指示する。加算器31は、前回のAC値にステップ値保持部32に保持しているステップ値を加算して今回のAC値を生成し、AC値指示部28に出力する。   The AC value instruction unit 28 instructs an AC current value to be instructed to the AC power supply 14. The previous AC holding unit 29 holds the AC value instructed to the AC power supply 14 last time. The comparator 30 compares the sweep end AC value held in the sweep end AC value calculating / holding unit 27 with the previous AC value held in the previous AC value holding unit 29. The comparator 30 stops the output of the adder 31 when the previously instructed AC value matches the sweep end AC value. Further, when the previously instructed AC value is smaller than the sweep end AC value, the adder 31 is instructed to output the next AC value. The adder 31 adds the step value held in the step value holding unit 32 to the previous AC value, generates the current AC value, and outputs it to the AC value instruction unit 28.

本実施例の帯電制御装置10は、感光体2に印加する最適なAC電流値を早期に検出するために、AC電流をスイープするスイープ範囲を短く絞り込む。
図5(A)に、除電ランプ8をオフしたあとの感光体表面電圧の変化を示し、図5(B)には、感光体2が飽和するまでに流れるDC電流を示す。帯電ロール3の抵抗が原因で、図5に示すように感光体2は飽和までに複数周回転しなければならない。このとき、感光体2が飽和するまでに流れたDC電流を積算して、これを感光体1周当りのDC電流の積算回数で割って飽和DC電流として算出する。この飽和DC電流の電流量は、帯電ロール3の影響を受けず、感光体2の膜厚に応じた値となる。この飽和DC電流を基にAC電流をスイープするスイープ範囲を規定する。飽和DC電流は、感光体2の膜厚によって決定され、環境が変わっても除電した状態から飽和領域において測定される直流電流は常に飽和DC電流よりも小さく、かつ環境変動による違いだけであることから、変曲点の近傍にAC電流の範囲を設定することができる。従って、変曲点算出までの時間を短縮することができる。さらに、変曲点の検出時に、AC電流が変曲点から大きく外れないので、トナーかぶりや、過大なAC電流の印加を防止することができる。
In order to detect the optimum AC current value to be applied to the photoreceptor 2 at an early stage, the charging control device 10 of this embodiment narrows down the sweep range in which the AC current is swept.
FIG. 5A shows a change in the photoreceptor surface voltage after the static elimination lamp 8 is turned off, and FIG. 5B shows a DC current flowing until the photoreceptor 2 is saturated. Due to the resistance of the charging roll 3, the photoreceptor 2 must rotate a plurality of times before saturation as shown in FIG. At this time, the DC current that flows until the photosensitive member 2 is saturated is integrated, and this is divided by the number of integrations of the DC current per rotation of the photosensitive member to calculate the saturated DC current. The amount of saturation DC current is not affected by the charging roll 3 and is a value corresponding to the film thickness of the photoreceptor 2. A sweep range for sweeping the AC current is defined based on the saturation DC current. The saturation DC current is determined by the film thickness of the photosensitive member 2, and the DC current measured in the saturation region from the state where the charge is eliminated even when the environment changes is always smaller than the saturation DC current, and only the difference due to environmental fluctuations. Thus, the AC current range can be set near the inflection point. Accordingly, it is possible to shorten the time until the inflection point is calculated. Further, since the AC current does not greatly deviate from the inflection point when the inflection point is detected, it is possible to prevent toner fog and application of an excessive AC current.

まず、飽和DC電流の値に所定値をかけて、スイープするAC電流の下限値を求める。飽和DC電流値を所定値で除算し、その値を取るときのAC値(以下、この値をIac(Start)と呼ぶ)を求める。感光体2の不飽和領域でのIac−Idc直線の傾きと、感光体2が帯電を開始する帯電開始時のAC電流の値は、上述した手順で不飽和領域傾き検出部25で予め求めておく。図6には、飽和DC電流の値を除算器24で[2]で除算した場合を例示する。この0.5×飽和DC電流の値を取るときのAC電流値Iac(Start)を上述したIac−Idc直線の傾きと、感光体2が帯電を開始する帯電開始時のAC電流とから求める。   First, the saturation DC current value is multiplied by a predetermined value to obtain the lower limit value of the AC current to be swept. The saturation DC current value is divided by a predetermined value, and an AC value (hereinafter, this value is referred to as Iac (Start)) when the value is taken is obtained. The slope of the Iac-Idc straight line in the unsaturated region of the photoconductor 2 and the value of the AC current at the start of charging when the photoconductor 2 starts to be charged are obtained in advance by the unsaturated region tilt detector 25 according to the procedure described above. deep. FIG. 6 illustrates a case where the value of the saturation DC current is divided by [2] by the divider 24. The AC current value Iac (Start) when taking the value of 0.5 × saturated DC current is obtained from the slope of the Iac-Idc straight line and the AC current at the start of charging when the photosensitive member 2 starts charging.

次に、AC電流をスイープする上限値(以下、この値をIac(End)と呼ぶ)を求める。Iac(End)の値は、図6に示すように不飽和領域でのIac−Idc直線と、飽和DC電流との交点を外挿によって求める。この外挿によって求められたAC電流値をIac(End)に設定する。   Next, an upper limit value (hereinafter, this value is referred to as Iac (End)) for sweeping the AC current is obtained. As shown in FIG. 6, the value of Iac (End) is obtained by extrapolating the intersection of the Iac-Idc line in the unsaturated region and the saturated DC current. The AC current value obtained by this extrapolation is set to Iac (End).

このようにIac(Start)とIac(End)とを設定することで、図6に示すように、この範囲内に必ず感光体の変曲点を含ませることができるので、変曲点でのAC電流値を早期に検出することができる。   By setting Iac (Start) and Iac (End) in this way, the inflection point of the photoconductor can always be included in this range as shown in FIG. The AC current value can be detected early.

なお、上述した例では、除算器24で飽和DC電流を2で除算していたが、この値は、環境等に応じて任意に設定することができる。例えば、図7(A)に示すように高温高湿の環境下では、変曲点で印加するAC電流は小さく、測定されるDC電流は大きくなり、低温低湿環境下では、変曲点で印加するAC電流は大きく、測定されるDC電流は小さくなる。このため、図7(B),(C)に示すように高温高圧の場合と、低温低湿の場合とで除算器24で除算する値を変更することで、変曲点でのAC電流値を検出するまでの時間をさらに短縮することができる。   In the above-described example, the saturation DC current is divided by 2 in the divider 24, but this value can be arbitrarily set according to the environment or the like. For example, as shown in FIG. 7A, under a high temperature and high humidity environment, the AC current applied at the inflection point is small and the measured DC current is large. Under a low temperature and low humidity environment, the AC current is applied at the inflection point. AC current is large, and the measured DC current is small. For this reason, as shown in FIGS. 7B and 7C, the AC current value at the inflection point is changed by changing the value divided by the divider 24 between high temperature and high pressure and low temperature and low humidity. The time until detection can be further shortened.

制御部13の動作手順について図8のフローチャート及び図9を参照しながら説明する。図9には、感光体2に印加するAC電流及びDC電圧と、これによって感光体2に流れるDC電流と感光体表面電位の変化とが示されている。
飽和DC電流は、感光体2が使用開始時で膜厚がわかっている場合には計算で算出可能である。このため、ここでは制御開始時は既知とし、制御後に飽和DC電流を検知して更新するものとする。まず、飽和DC電流に対して、飽和DC電流の一定比率(ここでは50%とする)を求めて、定電流制御の期間で飽和DC電流の50%と一致するようにAC電流を制御する(ステップS1、又は図9に示す期間A)。
The operation procedure of the control unit 13 will be described with reference to the flowchart of FIG. 8 and FIG. FIG. 9 shows an AC current and a DC voltage applied to the photosensitive member 2 and a DC current flowing through the photosensitive member 2 and a change in the photosensitive member surface potential.
The saturation DC current can be calculated by calculation when the thickness of the photosensitive member 2 is known at the start of use. For this reason, here, it is assumed that the control is started and the saturation DC current is detected and updated after the control. First, a constant ratio (here, 50%) of the saturation DC current is obtained with respect to the saturation DC current, and the AC current is controlled so as to coincide with 50% of the saturation DC current during the constant current control period ( Step S1, or period A) shown in FIG.

次に制御後のAC電流値をAC電流スイープの開始点Iac(Start)としてスイープを開始する。上述したように不飽和領域傾き検出部25で、不飽和領域のIac−Idc直線の傾き、帯電開始時のAC電流等を求め、外挿によりIac−Idc直線と、飽和DC電流との交点でのAC電流値を求める。この交点をスイープ終了AC電流Iac(End)とし、このIac(End)までAC電流をスイープし、そのとき感光体2に流れ込むDC電流を測定する(ステップS2、また図9に示す期間B)。   Next, the AC current value after the control is set as the AC current sweep start point Iac (Start), and the sweep is started. As described above, the unsaturated region inclination detection unit 25 obtains the inclination of the Iac-Idc straight line in the unsaturated region, the AC current at the start of charging, etc., and extrapolates at the intersection of the Iac-Idc straight line and the saturated DC current. AC current value is obtained. This intersection point is defined as the sweep end AC current Iac (End), and the AC current is swept to this Iac (End), and the DC current flowing into the photosensitive member 2 at that time is measured (step S2 and period B shown in FIG. 9).

次に、測定したDC電流から感光体2が不飽和から飽和に変わる変曲点を検出し(ステップS3)、この変曲点でのAC値にマージンαを付加してプリント時のAC電流値を設定する。DC電圧に、AC+αのAC電流を重畳して感光体2に印加する(ステップS4)。   Next, an inflection point at which the photosensitive member 2 changes from unsaturated to saturation is detected from the measured DC current (step S3), and a margin α is added to the AC value at this inflection point to print an AC current value at the time of printing. Set. An AC current of AC + α is superimposed on the DC voltage and applied to the photoreceptor 2 (step S4).

次に、プリント時に測定されたDC電流値を用いて飽和DC電流を求めて飽和DC電流値を更新する(ステップS5、図9に示す期間C)。飽和DC電流の算出方法は、まず感光体2の表面電位をイレーズした後に、除電ランプ8をオフする。そして、DC電流値を感光体表面電位が飽和するであろう期間の間積算し、これを感光体1周当りのDC電流の積算回数で割って飽和DC電流として算出する。図9では、感光体の表面電位が帯電ロール3への印加電圧のうち直流電圧V2となる期間D、E、FのDC電流を積算して飽和DC電流とする。算出が終わったら飽和DC電流を更新する。   Next, the saturation DC current is obtained by using the DC current value measured at the time of printing, and the saturation DC current value is updated (step S5, period C shown in FIG. 9). The saturation DC current is calculated by first erasing the surface potential of the photoreceptor 2 and then turning off the charge removal lamp 8. Then, the DC current value is integrated for a period during which the photosensitive member surface potential is saturated, and this is divided by the integrated number of DC currents per rotation of the photosensitive member to calculate a saturated DC current. In FIG. 9, the DC currents in the periods D, E, and F in which the surface potential of the photoconductor becomes the DC voltage V2 among the voltages applied to the charging roll 3 are integrated to obtain a saturated DC current. When the calculation is completed, the saturation DC current is updated.

また、除電ランプ8による除電では感光体2の表面電位が0Vとはならず、残留電荷が残っている場合がある。このような残留電荷は、飽和DC電流を減少させ、比率計算での誤差となる。そこで、感光体2の帯電電圧を除電ランプ8で除電後に、V1に設定されたDC電圧にAC電流を重畳して感光体2を帯電することで、得られた飽和DC電流を残留電荷量として検出することができる。V1を0VとしてDC電圧で帯電するので、感光体2を正確に除電することができる。従って、得られる飽和DC電流を残留電荷とし、感光体2に印加するDC電圧をV2とした時に得られる飽和DC電流に加えることで、比率計算での誤差を抑え飽和検出でのAC範囲の精度を上げることができる。   Further, when the charge is removed by the charge removal lamp 8, the surface potential of the photosensitive member 2 does not become 0V, and a residual charge may remain. Such residual charge reduces the saturation DC current and causes an error in the ratio calculation. Therefore, after the charge voltage of the photoconductor 2 is neutralized by the static elimination lamp 8, the AC current is superimposed on the DC voltage set to V1 to charge the photoconductor 2, and the obtained saturated DC current is used as the residual charge amount. Can be detected. Since V1 is set to 0V and charged with a DC voltage, the photoreceptor 2 can be accurately discharged. Therefore, by adding the saturation DC current obtained as the residual charge and adding it to the saturation DC current obtained when the DC voltage applied to the photoreceptor 2 is V2, the accuracy in the AC range in saturation detection is suppressed by suppressing the error in the ratio calculation. Can be raised.

なお、図4に示す制御部13をコンピュータ処理によるソフトウェア制御によって実現することもできる。DC電流検知部12の検知したDC電流を制御部13に入力し、制御部13のCPUによる演算によって飽和DC電流、Iac(Start)、Iac(End)が算出される。演算結果は制御部13の内部メモリに保持され、CPUは、検知したDC電流と、Iac(Start),Iac(End)とを比較してAC電流を制御する。   The control unit 13 shown in FIG. 4 can also be realized by software control by computer processing. A DC current detected by the DC current detection unit 12 is input to the control unit 13, and a saturation DC current, Iac (Start), Iac (End) is calculated by calculation by the CPU of the control unit 13. The calculation result is held in an internal memory of the control unit 13, and the CPU controls the AC current by comparing the detected DC current with Iac (Start) and Iac (End).

なお、上述した実施例以外に、除電後の感光体2が飽和するまでに流れる飽和DC電流と、除電後の感光体2の一周で検出されたDC電流との比を求めて、これらの比率が一定比率となるようにAC電流を制御することもできる。すなわち、除電した感光体2が一周するまでに流れるDC電流を積算して、この積算値が、飽和DC電流の一定比率(例えば50%)となるようにAC電流を制御する。このAC値がIac(Start)となる。感光体2の一周で検出されたDC電流すなわち帯電電流と飽和DC電流との比、帯電電流/飽和DC電流が感光体表面電位に対応するため目標とする帯電電流から感光体表面電位を予測し、その値を元に現像バイアスを設定する。   In addition to the embodiments described above, the ratio between the saturation DC current that flows until the photoreceptor 2 after neutralization is saturated and the DC current that is detected in one round of the photoreceptor 2 after neutralization is obtained, and these ratios are obtained. It is also possible to control the AC current so that becomes a constant ratio. That is, the DC current that flows until the photosensitive member 2 that has been neutralized goes round is integrated, and the AC current is controlled so that this integrated value becomes a constant ratio (for example, 50%) of the saturation DC current. This AC value is Iac (Start). The photosensitive member surface potential is predicted from the target charging current since the charging current / saturation DC current corresponds to the photosensitive member surface potential, and the DC current detected in one round of the photosensitive member 2, that is, the ratio of the charging current to the saturation DC current. The development bias is set based on the value.

また、感光体2の回転数を元にDC電流や飽和DC電流を求めるのではなく、所定期間を設定してこの期間のDC電流から求めることもできる。すなわち、感光体2から流れるDC電流を所定期間積算した積算値と、所定期間での積算回数とから求めた平均電流値と、感光体2が飽和するまでに流れるDC電流の積算値と、飽和するまでの積算回数とから求めた飽和平均電流値とを求めておいて、これらの比率が一定比率となるときのAC電流を元にAC値の範囲を算出してもよい。   Further, instead of obtaining the DC current or the saturation DC current based on the rotational speed of the photosensitive member 2, a predetermined period can be set and obtained from the DC current in this period. That is, the integrated value obtained by integrating the DC current flowing from the photosensitive member 2 for a predetermined period, the average current value obtained from the number of integrations in the predetermined period, the integrated value of the DC current flowing until the photosensitive member 2 is saturated, and the saturation The range of AC values may be calculated based on the AC current when the saturation average current value obtained from the number of integrations up to this time is constant.

また、比率を求めるときに、上述した手順で求められた残留電荷量を分母分子に加えることで、誤差をなくすことができる。さらには、残留電荷量と、感光体膜厚とからイレーズ後の感光体表面電位を推定し、この推定値から残留電位の補正するか否かを判定することもできる。   Further, when the ratio is obtained, an error can be eliminated by adding the residual charge obtained by the above-described procedure to the denominator numerator. Further, the surface potential of the photoconductor after erasure can be estimated from the residual charge amount and the photoconductor film thickness, and whether or not the residual potential is corrected can be determined from this estimated value.

上述した実施例は本発明の好適な実施例である。但しこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。例えば、上述した実施例では、感光体2にAC電流を印加して帯電しているが、AC電圧を印加することも可能である。   The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the photoconductor 2 is charged by applying an AC current, but an AC voltage can also be applied.

感光体に印加するIacと、測定されるIdcとの関係を示す図である。It is a figure which shows the relationship between Iac applied to a photoreceptor, and measured Idc. Iac−Idc曲線の環境による変動を示す図である。It is a figure which shows the fluctuation | variation by the environment of an Iac-Idc curve. 画像形成装置の構成を示す図である。1 is a diagram illustrating a configuration of an image forming apparatus. 制御部の構成を示す図である。It is a figure which shows the structure of a control part. 感光体が飽和するまでの表面電位の変化と、測定されるDC電流とを示す図である。It is a figure which shows the change of the surface potential until a photoreceptor is saturated, and the measured DC current. AC電流をスイープする範囲を示す図である。It is a figure which shows the range which sweeps AC electric current. 環境に応じてスイープ範囲を変更する例を示す図である。It is a figure which shows the example which changes the sweep range according to an environment. AC電流のスイープ範囲を決定するフローチャートである。It is a flowchart which determines the sweep range of AC current. 感光体に印加するDC電圧及びAC電流と、そのときの感光体の表面電位と、DC電流の変化を示す図である。It is a figure which shows the change of DC voltage and AC current applied to a photoconductor, the surface potential of the photoconductor at that time, and DC current.

符号の説明Explanation of symbols

1 画像形成装置 2 感光体
3 帯電ロール 4 露光器
5 現像器 6 転写ロール
7 クリーニングブレード 8 除電ランプ
9 定着器 10 帯電制御装置
11 電源部 12 DC電流検知部
13 制御部 14 AC電源
15 DC電源
DESCRIPTION OF SYMBOLS 1 Image forming apparatus 2 Photoconductor 3 Charging roll 4 Exposure device 5 Developing device 6 Transfer roll 7 Cleaning blade 8 Static elimination lamp 9 Fixing device 10 Charge control device 11 Power supply part 12 DC current detection part 13 Control part 14 AC power supply 15 DC power supply

Claims (9)

直流電圧に交流電流又は交流電圧を重畳して除電した後の被帯電体に供給し、前記交流電流又は交流電圧の値を変更しながら前記被帯電体に流れる直流電流を測定することで、前記被帯電体が不飽和から飽和に変わる変曲点を検出する帯電制御装置であって、
前記被帯電体に接触または近接して配置され、該被帯電体を帯電する帯電部材と、
前記直流電流を測定する測定部と、
前記被帯電体表面電位が前記除電後の電位から飽和するまでに流れる前記直流電流を積算し、該積算値から変更する前記交流電流又は交流電圧の値の範囲を算出する制御部と、を有することを特徴とする帯電制御装置。
Supplying to the object to be charged after removing the charge by superimposing the alternating current or the alternating voltage on the direct current voltage, measuring the direct current flowing through the charged object while changing the value of the alternating current or the alternating voltage, A charging control device for detecting an inflection point where a charged body changes from unsaturated to saturated,
A charging member that is disposed in contact with or in proximity to the member to be charged and charges the member to be charged;
A measuring unit for measuring the direct current;
A controller that integrates the direct current flowing until the surface potential of the member to be charged saturates from the potential after the charge removal, and calculates a range of the alternating current or alternating voltage value to be changed from the integrated value. A charge control device characterized by that.
前記制御部は、積算開始から前記被帯電体上で前記帯電部材が除電ランプをオフした領域にさしかかるまでを含む期間で積算を行うことを特徴とする請求項1記載の帯電制御装置。   The charge control device according to claim 1, wherein the control unit performs the accumulation in a period including a period from the start of accumulation until the charging member reaches an area where the charge removal lamp is turned off on the object to be charged. 前記制御部は、除電後の前記被帯電体が一周するまでの間に流れる前記直流電流の積算値と、除電後の前記被帯電体が飽和するまでに流れる前記直流電流の積算値とを求め、
前記一周分の直流電流の積算値と、前記飽和するまでの直流電流の積算値との比率が一定比率となるときの前記交流電圧又は交流電流を元に前記交流電流又は交流電圧の値の範囲を算出することを特徴とする請求項1記載の帯電制御装置。
The control unit obtains an integrated value of the direct current that flows until the charged body after static elimination makes a round, and an integrated value of the direct current that flows until the charged body after saturation is saturated. ,
Range of the value of the alternating current or alternating voltage based on the alternating voltage or alternating current when the ratio of the integrated value of the direct current for one round and the integrated value of the direct current until saturation is a constant ratio The charge control device according to claim 1, wherein:
前記制御部は、前記被帯電体から流れる前記直流電流を所定期間積算した積算値と、前記所定期間での積算回数とから求めた平均電流値と、前記被帯電体が飽和するまでに流れる前記直流電流の積算値と、前記飽和するまでの積算回数とから求めた飽和平均電流値とを求め、
前記平均電流値と前記飽和平均電流値との比率が一定比率となるときの前記交流電圧又は交流電流を元に前記交流電流又は交流電圧の値の範囲を算出することを特徴とする請求項1記載の帯電制御装置。
The control unit includes an integrated value obtained by integrating the DC current flowing from the charged body for a predetermined period, an average current value obtained from the number of integrations in the predetermined period, and the flowing current until the charged body is saturated. Obtain the integrated value of DC current and the saturation average current value obtained from the number of integrations until saturation,
2. The range of the value of the AC current or AC voltage is calculated based on the AC voltage or AC current when the ratio of the average current value and the saturation average current value is a constant ratio. The charging control device described.
前記制御部は、前記被帯電体の不飽和領域で、印加する交流電流又は交流電圧と、そのとき測定される直流電流との関係を示す直線の傾きを求め、該直線が飽和するまでに流れる前記直流電流の積算値を取るときの交流電流又は交流電圧の値を外挿によって求め、該交流電流又は交流電圧の値を元に前記交流電流又は前記交流電圧の値の範囲を算出することを特徴とする請求項1記載の帯電制御装置。   The control unit obtains a slope of a straight line indicating a relationship between an AC current or AC voltage to be applied and a DC current measured at that time in the unsaturated region of the charged body, and flows until the straight line is saturated. Obtaining the value of the alternating current or the alternating voltage when taking the integrated value of the direct current by extrapolation, and calculating the range of the alternating current or the alternating voltage based on the alternating current or the alternating voltage value The charge control device according to claim 1, wherein 前記制御部は、環境に応じて前記一定比率を変更することを特徴とする請求項3又は4記載の帯電制御装置。   The charging control apparatus according to claim 3, wherein the control unit changes the constant ratio according to an environment. 前記制御部は、前記被帯電体の帯電電圧を除電ランプで除電後に、0Vに設定された前記直流電圧に前記交流電圧又は交流電流を重畳して前記被帯電体を帯電し、得られた積算値を残留電荷量として前記比率算出の際の分母分子に加えることを特徴とする請求項3又は4記載の帯電制御装置。   The control unit charges the charged object by superimposing the alternating voltage or alternating current on the direct-current voltage set to 0 V after the charge voltage of the charged object is discharged by a charge-removing lamp. 5. The charge control device according to claim 3, wherein a value is added as a residual charge amount to a denominator numerator at the time of calculating the ratio. 前記制御部は、前記残留電荷量から除電後の残留電位を算出することを特徴とする請求項7記載の帯電制御装置。   The charging control device according to claim 7, wherein the control unit calculates a residual potential after static elimination from the residual charge amount. 直流電圧に交流電流又は交流電圧を重畳して除電した後の被帯電体に供給し、前記交流電流又は交流電圧の値を変更しながら前記被帯電体に流れる直流電流を測定することで、前記被帯電体が不飽和から飽和に変わる変曲点を検出する変曲点検出方法であって、
前記被帯電体表面電位が前記除電後の電位から飽和するまでに流れる前記直流電流を積算し、該積算値から変更する前記交流電流又は交流電圧の値の範囲を算出することを特徴とする変曲点検出方法。
Supplying to the object to be charged after removing the charge by superimposing the alternating current or the alternating voltage on the direct current voltage, measuring the direct current flowing through the charged object while changing the value of the alternating current or the alternating voltage, An inflection point detection method for detecting an inflection point at which an object to be charged changes from unsaturated to saturated,
The DC current flowing until the surface potential of the member to be charged saturates from the potential after neutralization is integrated, and the range of the AC current or AC voltage value to be changed is calculated from the integrated value. Music point detection method.
JP2006006793A 2006-01-13 2006-01-13 Charging controller and inflection point detecting method Pending JP2007187933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006793A JP2007187933A (en) 2006-01-13 2006-01-13 Charging controller and inflection point detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006793A JP2007187933A (en) 2006-01-13 2006-01-13 Charging controller and inflection point detecting method

Publications (1)

Publication Number Publication Date
JP2007187933A true JP2007187933A (en) 2007-07-26

Family

ID=38343136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006793A Pending JP2007187933A (en) 2006-01-13 2006-01-13 Charging controller and inflection point detecting method

Country Status (1)

Country Link
JP (1) JP2007187933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199094A (en) * 2006-01-23 2007-08-09 Kyocera Mita Corp Charging device for image forming apparatus
JP2017044801A (en) * 2015-08-25 2017-03-02 キヤノン株式会社 Image forming apparatus
US11226571B2 (en) 2019-08-09 2022-01-18 Ricoh Company, Ltd. Image forming apparatus that controls a charging bias based on an estimated surface potential

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199094A (en) * 2006-01-23 2007-08-09 Kyocera Mita Corp Charging device for image forming apparatus
JP4480680B2 (en) * 2006-01-23 2010-06-16 京セラミタ株式会社 Charging device for image forming apparatus
JP2017044801A (en) * 2015-08-25 2017-03-02 キヤノン株式会社 Image forming apparatus
US11226571B2 (en) 2019-08-09 2022-01-18 Ricoh Company, Ltd. Image forming apparatus that controls a charging bias based on an estimated surface potential

Similar Documents

Publication Publication Date Title
JP5247549B2 (en) Image forming apparatus
JP2001201921A (en) Electrification controlling method, and image forming device
US7471906B2 (en) Image forming apparatus and image forming method
JP2006309144A (en) Image forming apparatus
JP2001201920A (en) Control method of electrification, and image forming device
JP2010019936A (en) Charging apparatus and image forming apparatus
JP2006276056A (en) Image forming apparatus and electrification control method
JP6168910B2 (en) Image forming apparatus
JP4692125B2 (en) Charge control device and charge control method
JP2011133686A (en) Image forming apparatus
JP6275682B2 (en) Image forming apparatus
JP2007187933A (en) Charging controller and inflection point detecting method
JP2007327992A (en) Image forming apparatus
JP2006276054A (en) Image forming apparatus and application voltage control method
JP2007033835A (en) Electrostatic charge controller and electrostatic charge control method
JP2007187930A (en) Image forming apparatus and film thickness measuring method
JP2010079060A (en) Image forming apparatus and voltage detecting method
JP2007219270A (en) Image forming apparatus
JPH08166706A (en) Electrifier
JP4872354B2 (en) Film thickness measuring device
JP2007057988A (en) Charging controller, image forming apparatus, charging control method, and program
JP6589889B2 (en) Image forming apparatus
JP2012181467A (en) Image forming apparatus
JP5328470B2 (en) Image forming apparatus
JP2009003483A (en) Image forming apparatus