JP2006276054A - Image forming apparatus and application voltage control method - Google Patents

Image forming apparatus and application voltage control method Download PDF

Info

Publication number
JP2006276054A
JP2006276054A JP2005090216A JP2005090216A JP2006276054A JP 2006276054 A JP2006276054 A JP 2006276054A JP 2005090216 A JP2005090216 A JP 2005090216A JP 2005090216 A JP2005090216 A JP 2005090216A JP 2006276054 A JP2006276054 A JP 2006276054A
Authority
JP
Japan
Prior art keywords
voltage
current
image forming
forming apparatus
charging member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005090216A
Other languages
Japanese (ja)
Inventor
Hideki Moriya
秀樹 守屋
Chikao Ikeda
周穂 池田
Hidehiko Yamaguchi
英彦 山口
Masao Omori
雅夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005090216A priority Critical patent/JP2006276054A/en
Publication of JP2006276054A publication Critical patent/JP2006276054A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image forming apparatus capable of keeping a photoreceptor in a good charged state by a simple configuration. <P>SOLUTION: The image forming apparatus includes a rotationally driven photoreceptor 2, a charging roller 3 which is disposed in contact with or in proximity to the photoreceptor 2 and charges the photoreceptor 2, a current detection resistance 12 for detecting an amount of DC current flowing from the charging roller 3 to the photoreceptor 2, and a control part 13 which applies a DC voltage being within a range of the DC voltage flowing to the photoreceptor 2, and an AC voltage to the charging roller in a plurality of conditions and computes an AC voltage to be applied to the charging roller 3, from the amount of the DC current. Consequently, the AC voltage to be applied to a charging member is computed from the amount of the DC current to be able to keep the photoreceptor in a good charged state even in the image forming apparatus having no electric charge removing functions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放電を帯電原理とする接触又は近接帯電方式で、ACバイアスとDCバイアスとを印加して感光体を一様に帯電させる画像形成装置及び印加電圧制御方法に関する。   The present invention relates to an image forming apparatus and an applied voltage control method for uniformly charging a photoconductor by applying an AC bias and a DC bias by a contact or proximity charging method based on a charging principle.

従来より、帯電装置として、電圧を印加したローラやブレード等の帯電部材を感光体等の被帯電体の面に接触させて被帯電体面を所定の極性・電位に帯電させる接触式の帯電装置が用いられている。   Conventionally, as a charging device, there is a contact type charging device in which a charging member such as a roller or a blade to which a voltage is applied is brought into contact with a surface of a charged body such as a photoconductor to charge the surface of the charged body to a predetermined polarity and potential. It is used.

この接触式の帯電装置においては、帯電装置に帯電のためのDC電圧、AC電圧を印加する方式が取られている。DC電圧の印加だけでは、感光体上の抵抗の低いところにだけ電流が流れるため均一に帯電することができない。また、感光体表面が局所的によごれると、その部分だけ帯電しなくなるという問題が生じる。そのため、DC電圧とAC電圧の両方を帯電装置に印加し、感光体表面を帯電させている。   In this contact-type charging device, a method of applying a DC voltage and an AC voltage for charging to the charging device is employed. Only by applying a DC voltage, a current flows only at a low resistance on the photoconductor, so that it cannot be uniformly charged. Further, when the surface of the photosensitive member is locally soiled, there arises a problem that only that portion is not charged. Therefore, both the DC voltage and the AC voltage are applied to the charging device to charge the surface of the photoreceptor.

しかしながら、AC電圧は大きすぎると感光体の磨耗に影響がでる。逆に小さくすると、帯電の均一性が保てなくなり、プリントしたときにむらができる。そのため、AC電圧を必要最低限の最適な値に設定する必要がある。   However, if the AC voltage is too large, the photoreceptor wear will be affected. On the other hand, if the size is reduced, the uniformity of charging cannot be maintained, and unevenness occurs when printing. For this reason, it is necessary to set the AC voltage to the minimum necessary optimum value.

特許文献1では、図1に示すように帯電ローラに印加するAC電圧を順次増やしていき、電位センサでそのときの感光体の帯電電位を検知して、飽和したところのAC電圧に基づいてAC振幅(AC電流又はAC電圧)を決定している。なお、以下では、飽和した電圧を肩電圧と呼ぶ。   In Patent Document 1, the AC voltage applied to the charging roller is sequentially increased as shown in FIG. 1, and the charged potential of the photosensitive member at that time is detected by a potential sensor, and the AC voltage is determined based on the saturated AC voltage. The amplitude (AC current or AC voltage) is determined. Hereinafter, the saturated voltage is referred to as a shoulder voltage.

特許文献2も肩電圧の検出方法に関する技術であって、肩電圧を検出するためAC電圧を順次増やしていき、そのときのDC電流を検知する。AC電圧に対するDC電流の傾きが変化しなくなった時のAC電圧を帯電部材に印加する電圧と決定している。   Patent Document 2 is also a technique related to a shoulder voltage detection method, in which the AC voltage is sequentially increased to detect the shoulder voltage, and the DC current at that time is detected. The AC voltage when the slope of the DC current with respect to the AC voltage stops changing is determined as the voltage to be applied to the charging member.

特開平9−185219号公報JP-A-9-185219 特開平7−239603号公報JP 7-239603 A

しかしながら特許文献1及び2では、AC電圧を順次大きくしながら肩電圧の検出を行なっているので、検出時間がかかるという問題がある。また、感光体や帯電部材には偏芯、膜厚のばらつきなどがあるが、これらの要因で流れるDC電流が感光体の回転と共に変動するという問題も生じる。また電位センサや消去ランプを搭載するとマシンのコストアップにつながる。   However, in Patent Documents 1 and 2, since the shoulder voltage is detected while the AC voltage is sequentially increased, there is a problem that it takes a detection time. In addition, the photoconductor and the charging member have eccentricity and variations in film thickness. However, the DC current flowing due to these factors also varies with the rotation of the photoconductor. If a potential sensor or erase lamp is installed, the cost of the machine will increase.

本発明は上記事情に鑑みてなされたものであり、簡単な構成で感光体を良好な帯電状態に保つことができる画像形成装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an image forming apparatus that can keep a photosensitive member in a favorable charged state with a simple configuration.

かかる目的を達成するために本発明の画像形成装置は、回転駆動される感光体と、前記感光体に接触又は近接して配置され、前記感光体を帯電させる帯電部材と、前記帯電部材から前記感光体に流れ込む直流電流量を検出する直流電流検出部と、前記直流電流が前記感光体に流れる範囲内の直流電圧と交流電圧とを複数の条件で前記帯電部材に印加し、前記直流電流の電流量の変化に基づいて前記帯電部材に印加する交流電圧を決定する制御部とを有する構成としている。従って除電機能を備えていない画像形成装置であっても、直流電流の電流量から帯電部材に印加する交流電圧を算出し、感光体を良好な帯電状態に保つことができる。   In order to achieve the above object, an image forming apparatus of the present invention includes a rotationally driven photoconductor, a charging member that is disposed in contact with or in proximity to the photoconductor, and charges the photoconductor. A direct current detecting unit for detecting a direct current amount flowing into the photosensitive member; and a direct current voltage and an alternating current voltage within a range in which the direct current flows through the photosensitive member are applied to the charging member under a plurality of conditions, and the direct current current And a control unit that determines an AC voltage to be applied to the charging member based on a change in the amount. Therefore, even an image forming apparatus that does not have a charge eliminating function can calculate the AC voltage applied to the charging member from the amount of DC current, and keep the photosensitive member in a good charged state.

上記画像形成装置において、前記制御部は、前記感光体が所定間隔で充放電されるように、前記帯電部材に印加する直流電圧を切り替えるとよい。従って除電機能を備えていない画像形成装置であっても、直流電流の電流量から帯電部材に印加する交流電圧を算出し、感光体を良好な帯電状態に保つことができる。   In the image forming apparatus, the control unit may switch a DC voltage applied to the charging member so that the photoconductor is charged and discharged at a predetermined interval. Therefore, even an image forming apparatus that does not have a charge eliminating function can calculate the AC voltage applied to the charging member from the amount of DC current, and keep the photosensitive member in a good charged state.

上記画像形成装置において、前記制御部は、前記感光体の回転周期の1/N(Nは任意の自然数)で、前記複数の条件の前記直流電圧と前記交流電圧とを印加するとよい。従って、感光体の1周の間に複数回の測定を行なうことができ、帯電部材に印加する交流電圧の最適値を素早く検出することができる。   In the image forming apparatus, the control unit may apply the DC voltage and the AC voltage of the plurality of conditions at 1 / N (N is an arbitrary natural number) of the rotation period of the photoconductor. Therefore, a plurality of measurements can be performed during one rotation of the photoconductor, and the optimum value of the AC voltage applied to the charging member can be quickly detected.

上記画像形成装置において、前記制御部は、前記直流電流検知部で検出した直流電流量から、次に前記帯電部材に印加する前記直流電圧と前記交流電圧との値を決定するとよい。従って、帯電部材に印加する交流電圧の最適値を素早く検出することができる。   In the image forming apparatus, the control unit may determine values of the DC voltage and the AC voltage to be next applied to the charging member from the amount of DC current detected by the DC current detection unit. Therefore, the optimum value of the AC voltage applied to the charging member can be quickly detected.

上記画像形成装置において、前記制御部は、前記直流電流検知部で検出した直流電流量の変化に基づいて前記感光体が飽和する時を検知し、そのときの印加交流電圧に、前記感光体の膜厚に応じた係数を乗算又は加算して、前記帯電部材に印加する交流電圧を決定するとよい。従って、帯電部材に印加する交流電圧を最適な値に設定することができる。   In the image forming apparatus, the control unit detects when the photoconductor is saturated based on a change in the amount of DC current detected by the DC current detection unit, and applies the AC voltage applied at that time to the film of the photoconductor. The AC voltage applied to the charging member may be determined by multiplying or adding a coefficient corresponding to the thickness. Therefore, the AC voltage applied to the charging member can be set to an optimum value.

本発明の印加電圧制御方法は、直流電流が感光体に流れる範囲内の直流電圧と交流電圧とを複数の条件で帯電部材に印加し、前記帯電部材から前記感光体に流れ込む前記直流電流の電流量から前記帯電部材に印加する交流電圧を算出するとよい。従って除電機能を備えていない画像形成装置であっても、直流電流の電流量の変化に基づいて前記帯電部材に印加する交流電圧を算出し、感光体を良好な帯電状態に保つことができる。   The applied voltage control method of the present invention applies a DC voltage and an AC voltage within a range in which a direct current flows to the photosensitive member to the charging member under a plurality of conditions, and the current of the direct current that flows from the charging member to the photosensitive member. The AC voltage applied to the charging member may be calculated from the amount. Therefore, even an image forming apparatus that does not have a charge eliminating function can calculate an AC voltage applied to the charging member based on a change in the amount of DC current, and keep the photosensitive member in a good charged state.

本発明は、簡単な構成で感光体を良好な帯電状態に保つことができる。   The present invention can keep a photosensitive member in a good charged state with a simple configuration.

添付図面を参照しながら本発明の好適な実施例を説明する。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings.

まず、図2を参照しながら本実施例の構成を説明する。2は像担持体としての感光体である。本例の感光体2は円筒状OPC感光体であり、紙面に垂直方向の中心軸線を中心に矢示の時計方向に所定のプロセススピード(周速度)で回転駆動される。   First, the configuration of the present embodiment will be described with reference to FIG. Reference numeral 2 denotes a photoconductor as an image carrier. The photoconductor 2 of this example is a cylindrical OPC photoconductor, and is rotationally driven at a predetermined process speed (circumferential speed) in the clockwise direction indicated by an arrow about a central axis perpendicular to the paper surface.

3はこの感光体2に接触させた帯電部材としての帯電ローラ(以下、BCR(Bias Charge Rollとも表記する)であり、この帯電ローラ3は感光体2の回転に従動して回転し、またAC電源10、DC電源11から所定の電圧が印加され、回転する感光体2の周面が所定の極性・電位に一様に帯電(本例では負帯電)される。   Reference numeral 3 denotes a charging roller (hereinafter referred to as BCR (Bias Charge Roll)) as a charging member brought into contact with the photosensitive member 2, and the charging roller 3 is rotated by the rotation of the photosensitive member 2 and AC. A predetermined voltage is applied from the power supply 10 and the DC power supply 11, and the peripheral surface of the rotating photosensitive member 2 is uniformly charged to a predetermined polarity and potential (in this example, negatively charged).

次いで回転感光体2の帯電処理面に、ROS(Raster Optical Scanner)4から出力される、画像変調されたレーザビームが照射(走査露光)され、露光部分の電位が減衰して静電潜像が形成される。   Next, an image-modulated laser beam output from a ROS (Raster Optical Scanner) 4 is irradiated (scanning exposure) on the charging surface of the rotating photoconductor 2, and the potential of the exposed portion is attenuated to form an electrostatic latent image. It is formed.

感光体2の回転にともなって該潜像が現像器5に対向する現像部位に到来すると、現像器5から負帯電されたトナーが供給されて反転現像によってトナー像が形成される。   When the latent image arrives at the developing portion facing the developing device 5 as the photosensitive member 2 rotates, negatively charged toner is supplied from the developing device 5 and a toner image is formed by reversal development.

感光体2の回転方向に見て現像器5の下流側には導電性の転写ローラ6が感光体ドラム2に圧接配置してあって、両者1・6のニップ部が転写部位を形成している。   A conductive transfer roller 6 is disposed in pressure contact with the photosensitive drum 2 on the downstream side of the developing device 5 when viewed in the rotation direction of the photosensitive member 2, and the nip portion between the two 1 and 6 forms a transfer portion. Yes.

感光体ドラム2の表面に形成されたトナー像が感光体2の回転につれて上記転写部位に到達すると、これとタイミングをあわせて、用紙が転写位置に供給され、これとともに所定の電圧が転写ローラ6に印加されて、トナー像が感光体2の表面から用紙に転写される。   When the toner image formed on the surface of the photoconductor drum 2 reaches the transfer portion as the photoconductor 2 rotates, the paper is supplied to the transfer position in synchronization with this, and a predetermined voltage is simultaneously applied to the transfer roller 6. The toner image is transferred from the surface of the photoreceptor 2 to the paper.

転写位置でトナー像転写を受けた用紙は定着器9へ搬送されてトナー像の定着を受け機外へ排出される。   The sheet that has received the toner image transfer at the transfer position is conveyed to the fixing device 9 where the toner image is fixed and discharged out of the apparatus.

一方、感光体2の表面に残った転写残りトナーはクリーニングブレード7によってかき落されることで、感光体2はその表面が清掃されて、次の画像形成に備える。   On the other hand, the untransferred toner remaining on the surface of the photosensitive member 2 is scraped off by the cleaning blade 7, whereby the surface of the photosensitive member 2 is cleaned and prepared for the next image formation.

さらに、本実施例は図2に示すように帯電部材に電圧を印加するAC電源10及びDC電源11と、電流流露に挿入される電流検知抵抗12と、電流検知抵抗12により検知したDC電流により帯電ローラ3に印加するAC電圧、DC電圧を制御する制御部13とを有している。   Further, in this embodiment, as shown in FIG. 2, an AC power source 10 and a DC power source 11 that apply a voltage to the charging member, a current detection resistor 12 inserted into the current flow, and a DC current detected by the current detection resistor 12 And a control unit 13 for controlling the AC voltage and the DC voltage applied to the charging roller 3.

AC電源10及びDC電源11は、直流電圧に交流電圧を重畳した電圧を帯電ローラ3に印加する。電流検知抵抗12は、帯電ローラ3に電圧を印加することによって、帯電ローラ3から感光体2に流れ込む直流電流を電圧として検出する。   The AC power supply 10 and the DC power supply 11 apply a voltage obtained by superimposing an AC voltage on a DC voltage to the charging roller 3. The current detection resistor 12 detects a direct current flowing from the charging roller 3 to the photosensitive member 2 as a voltage by applying a voltage to the charging roller 3.

本実施例の画像形成装置1は、帯電ローラ3に印加する交流電圧が最適な値となるように制御する。始めに基準の帯電電位状態となるようなAC+DC電圧を印加して、次に検知のためのAC+DC電圧を印加してDC電流を検知することを繰り返し行なう。   The image forming apparatus 1 according to the present exemplary embodiment performs control so that the AC voltage applied to the charging roller 3 becomes an optimum value. First, an AC + DC voltage that becomes a reference charging potential state is applied, and then an AC + DC voltage for detection is applied to detect a DC current repeatedly.

除電ランプを搭載していない場合、一度感光体2を帯電させてしまうと除電ができないので、感光体2を帯電させている時に流れ込こんでいた直流電流が流れなくなってしまう。そのため本実施例では、図3(A)に示すように0Vと−750Vとの直流電圧を一定間隔ごとに切り替えて印加する。帯電ローラに0Vの直流電圧を印加することで、感光体2に帯電していた電荷を放電させることができ、除電ランプなしの構成であっても、帯電ローラ3から感光体2に、常に直流電流が流れ込むように制御することができる。   If the static elimination lamp is not installed, once the photosensitive member 2 is charged, static elimination cannot be performed, so that the direct current that has flowed in when the photosensitive member 2 is charged does not flow. Therefore, in this embodiment, as shown in FIG. 3A, the DC voltage of 0 V and −750 V is switched and applied at regular intervals. By applying a DC voltage of 0 V to the charging roller, the charge charged on the photoconductor 2 can be discharged. Even in the configuration without the charge-removing lamp, the DC voltage is always applied from the charging roller 3 to the photoconductor 2. Control can be performed so that current flows.

また、肩電圧を検出するため、AC電圧の振幅を図3(B)に示すように段階的に変えていき、このとき帯電ローラ3から感光体2に流れ込む直流電流を検出する。   Further, in order to detect the shoulder voltage, the amplitude of the AC voltage is changed stepwise as shown in FIG. 3B, and at this time, the direct current flowing from the charging roller 3 to the photosensitive member 2 is detected.

本実施例の動作手順を図6のフローチャートを参照しながら説明する。本実施例では、図3(B)に示すように最初に基準条件とするDC電圧を0V、AC電圧を1.5KVppで印加する)(ステップS1)。なお、交流の1.5kVppは、ピーク・ピーク電圧が1.5kVであることを示している。次に、DC電流を検知する検知条件として、DC電圧を−750V、AC電圧を1.3kVppにしてDC電流を検知する(ステップS2)。次に、また基準条件とするDC電圧0V、AC電圧1.5kVppで印加し、測定条件となるDC電圧を−750V,AC電圧を1.1kVppにしてDC電流を検知する。   The operation procedure of this embodiment will be described with reference to the flowchart of FIG. In this embodiment, as shown in FIG. 3B, first, a DC voltage as a reference condition is applied at 0 V and an AC voltage at 1.5 KVpp) (step S1). Note that AC of 1.5 kVpp indicates that the peak-to-peak voltage is 1.5 kV. Next, as a detection condition for detecting the DC current, the DC voltage is detected by setting the DC voltage to −750 V and the AC voltage to 1.3 kVpp (step S2). Next, a DC voltage of 0 V and an AC voltage of 1.5 kVpp are applied as reference conditions, a DC voltage as a measurement condition is −750 V, an AC voltage is 1.1 kVpp, and a DC current is detected.

このような手順を繰り返していき、検出されたDC電流(図3(C))の値をプロットしていくと、図3(D)のようになる。流れたDC電流の値が大きく変化した所の直前の値が、感光体が飽和した電圧であり(ステップS3)、この電圧をもとに帯電ローラ3に印加する印加電圧を調整することで、帯電ローラ3への印加電圧を必要最低限の値とすることができる(ステップS4)。なお、検出したAC電圧は帯電状態が安定な最低限な状態であるため、実際の描画時にはその値に対して加算、乗算等の演算処理をして印加する。またその時の係数は固定でなく膜厚によって変更する。これにより、極低コストで放電生成物の発生量や感光体に対するストレスの激減させ、画質不良を発生させることもなく長期の連続使用にも耐えうる画像形成装置とすることができる。   When such a procedure is repeated and the value of the detected DC current (FIG. 3C) is plotted, the result is as shown in FIG. The value immediately before the value of the DC current that has greatly changed is the voltage at which the photoreceptor is saturated (step S3), and by adjusting the applied voltage applied to the charging roller 3 based on this voltage, The voltage applied to the charging roller 3 can be set to the minimum necessary value (step S4). Since the detected AC voltage is a minimum state in which the charged state is stable, it is applied by performing arithmetic processing such as addition and multiplication on the value during actual drawing. Further, the coefficient at that time is not fixed but is changed depending on the film thickness. As a result, the amount of generated discharge products and the stress on the photoreceptor are drastically reduced at an extremely low cost, and an image forming apparatus that can withstand long-term continuous use without causing image quality defects can be obtained.

図4に本発明の印加電圧の切り替えタイミングと感光体2の位置関係を示す。本実施例では、感光体2を3分割し、感光体2の1回転で複数回の測定を実現している。まず、図4の(a)のように感光体2上の領域Aを基準条件に設定する。基準条件はここでもDC電圧をグランド、AC電圧を1.5kVppとして説明する。次に、感光体2が回転し、図4(b)に示すように領域B上に帯電ローラ3が来ると、帯電ローラ3により領域Bに所定の検知条件を印加して、領域Bでの測定を行なう。領域Bは、図示していないが前回帯電ローラ3に近づいた時に基準条件に設定されているものとする。この状態から帯電ローラ3により検知条件のDC電圧−750V、AC電圧1.3kVppを印加する。そして、領域BでのDC電流を測定する。   FIG. 4 shows the positional relationship between the applied voltage switching timing and the photosensitive member 2 according to the present invention. In this embodiment, the photosensitive member 2 is divided into three, and a plurality of measurements are realized by one rotation of the photosensitive member 2. First, as shown in FIG. 4A, the area A on the photoreceptor 2 is set as a reference condition. Here, the reference conditions are described assuming that the DC voltage is ground and the AC voltage is 1.5 kVpp. Next, when the photosensitive member 2 rotates and the charging roller 3 comes over the area B as shown in FIG. 4B, a predetermined detection condition is applied to the area B by the charging roller 3, Measure. It is assumed that the region B is set as a reference condition when approaching the charging roller 3 last time (not shown). From this state, the charging roller 3 applies a DC voltage of −750 V and an AC voltage of 1.3 kVpp as detection conditions. Then, the DC current in region B is measured.

次に、感光体2が回転し、図4(c)に示すように領域C上に帯電ローラ3が来ると、帯電ローラ3により領域Cを基準条件に設定する。領域Cは、前回帯電ローラ3に近づいた時に検知条件の電圧を印加してDC電流の測定が行なわれているものとする。そのため、今回は、領域Cを基準条件に設定する。   Next, when the photosensitive member 2 rotates and the charging roller 3 comes over the area C as shown in FIG. 4C, the area C is set as a reference condition by the charging roller 3. In the area C, it is assumed that the DC current is measured by applying the voltage of the detection condition when approaching the charging roller 3 last time. Therefore, this time, the region C is set as a reference condition.

次に、感光体2が回転し、図4(d)に示すように領域A上に帯電ローラ3が来ると、帯電ローラ3により領域Aに所定の検知条件を印加して、領域Aでの測定を行なう。領域Aは、前回帯電ローラ3に近づいた時に基準条件に設定されているので、検知条件、例えば、DC電圧−750V、AC電圧1.1kVppを印加する。そして、領域AでのDC電流を測定する。   Next, when the photosensitive member 2 rotates and the charging roller 3 comes over the area A as shown in FIG. 4D, a predetermined detection condition is applied to the area A by the charging roller 3, and Measure. Since the area A is set as a reference condition when it approaches the charging roller 3 last time, a detection condition such as a DC voltage of −750 V and an AC voltage of 1.1 kVpp is applied. Then, the DC current in region A is measured.

このように感光体2上の領域を複数に分割して、DC電流の測定を行なうため、測定時間を短縮させることができる。例えば特許文献1や2では、6ポイントの検出に感光体6周の時間がかかるが、本例では精度を落とすことなく4周でできる。また感光体を5分割にすれば2.4周の時間で出来る。また感光体2の分割数を奇数分割で説明をしたが偶数の分割でも信号の与え方を変えることで可能である。例えば2分割の例では印加電圧を基準条件、基準条件、検知条件、検知条件の順で繰り返すことで実現でき、誤差に対しては前述同様に基準条件と検知条件の感光体における位置は同じなため生じない。そのため感光体の分割数は時間や他と影響を考慮して任意に決めることが出来る。   As described above, since the area on the photosensitive member 2 is divided into a plurality of parts and the DC current is measured, the measurement time can be shortened. For example, in Patent Documents 1 and 2, it takes 6 rotations to detect 6 points, but in this example, 4 rotations can be performed without reducing accuracy. Further, if the photosensitive member is divided into five parts, it can be completed in 2.4 rounds. Further, the number of divisions of the photosensitive member 2 has been described as an odd number division, but even the even number division can be achieved by changing the way of giving a signal. For example, in the case of two divisions, it can be realized by repeating the applied voltage in the order of the reference condition, the reference condition, the detection condition, and the detection condition. Therefore, it does not occur. Therefore, the number of divisions of the photosensitive member can be arbitrarily determined in consideration of time and other influences.

また、感光体2の1周する時間を測定し、制御部13の時間制御によって領域A,B,C上のそれぞれの同じ位置で測定を行なうことで、感光体2や帯電ローラ3の偏心、感光体膜厚のばらつきなどが原因の誤差を無くすことが出来る。   Further, by measuring the time required for one rotation of the photosensitive member 2 and performing measurement at the same positions on the areas A, B, and C by the time control of the control unit 13, the eccentricity of the photosensitive member 2 and the charging roller 3, It is possible to eliminate errors caused by variations in the photoreceptor film thickness.

次に検出値の変化するポイントを効率よく検出する方法について説明する。印加するAC電圧を図3(B)では順次減少させているが、図4に示すように最初のAC電圧(上述した説明では、1.5kVpp)に、順に+1、−1/2、+1/4、−1/8を積算して、印加するAC電圧を制御してもよい。このように1回目の検知値により次の印加値を決定することで時間的に効率よい検知ができる。   Next, a method for efficiently detecting the point where the detected value changes will be described. The applied AC voltage is sequentially decreased in FIG. 3B, but as shown in FIG. 4, the first AC voltage (1.5 kVpp in the above description) is increased to +1, −1/2, + 1 / 4 and −1/8 may be integrated to control the AC voltage to be applied. As described above, the next application value is determined based on the first detection value, so that time-effective detection can be performed.

上述した実施例は本発明の好適な実施例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。   The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

肩電圧について説明するための図である。It is a figure for demonstrating a shoulder voltage. 画像形成装置の構成を示す図である。1 is a diagram illustrating a configuration of an image forming apparatus. 帯電ローラに印加されるDC電圧とAC電圧、測定されたDC電流とを示す図である。It is a figure which shows the DC voltage and AC voltage which are applied to a charging roller, and the measured DC current. 感光体での測定位置を示す図である。It is a figure which shows the measurement position in a photoconductor. 測定時のAC電圧を示す図である。It is a figure which shows the AC voltage at the time of a measurement. 動作手順を示すフローチャートである。It is a flowchart which shows an operation | movement procedure.

符号の説明Explanation of symbols

1 画像形成装置 2 感光体
3 帯電ローラ 4 ROS
5 現像器 6 転写ローラ
7 クリーニングブレード 9 定着器
10 AC電源 11 DC電源
12 電流検知抵抗 13 制御部
DESCRIPTION OF SYMBOLS 1 Image forming apparatus 2 Photoconductor 3 Charging roller 4 ROS
5 Developing Device 6 Transfer Roller 7 Cleaning Blade 9 Fixing Device 10 AC Power Supply 11 DC Power Supply 12 Current Detection Resistor 13 Control Unit

Claims (6)

回転駆動される感光体と、
前記感光体に接触又は近接して配置され、前記感光体を帯電させる帯電部材と、
前記帯電部材から前記感光体に流れ込む直流電流量を検出する直流電流検出部と、
前記直流電流が前記感光体に流れる範囲内の直流電圧と交流電圧とを複数の条件で前記帯電部材に印加し、前記直流電流の電流量の変化に基づいて前記帯電部材に印加する交流電圧を決定する制御部とを有することを特徴とする画像形成装置。
A rotationally driven photoreceptor;
A charging member disposed in contact with or in proximity to the photoconductor to charge the photoconductor;
A direct current detector for detecting the amount of direct current flowing from the charging member into the photosensitive member;
A DC voltage and an AC voltage within a range where the DC current flows through the photoconductor are applied to the charging member under a plurality of conditions, and an AC voltage applied to the charging member based on a change in the amount of the DC current is applied. An image forming apparatus comprising: a control unit for determining.
前記制御部は、前記感光体が所定間隔で充放電されるように、前記帯電部材に印加する直流電圧を切り替えることを特徴とする請求項1記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the controller switches a DC voltage applied to the charging member so that the photosensitive member is charged and discharged at predetermined intervals. 前記制御部は、前記感光体の回転周期の1/N(Nは任意の自然数)で、前記複数の条件の前記直流電圧と前記交流電圧とを印加することを特徴とする請求項1記載の画像形成装置。   2. The controller according to claim 1, wherein the controller applies the DC voltage and the AC voltage under the plurality of conditions at 1 / N (N is an arbitrary natural number) of the rotation period of the photoconductor. Image forming apparatus. 前記制御部は、前記直流電流検知部で検出した直流電流量から、次に前記帯電部材に印加する前記直流電圧と前記交流電圧との値を決定することを特徴とする請求項1記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the control unit determines a value of the DC voltage and the AC voltage to be next applied to the charging member from a DC current amount detected by the DC current detection unit. apparatus. 前記制御部は、前記直流電流検知部で検出した直流電流量の変化に基づいて前記感光体が飽和する時を検知し、そのときの印加交流電圧に、前記感光体の膜厚に応じた係数を乗算又は加算して、前記帯電部材に印加する交流電圧を決定することを特徴とする請求項1記載の画像形成装置。   The control unit detects when the photoconductor is saturated based on a change in the amount of DC current detected by the DC current detection unit, and applies a coefficient corresponding to the film thickness of the photoconductor to the applied AC voltage at that time. The image forming apparatus according to claim 1, wherein an AC voltage applied to the charging member is determined by multiplication or addition. 直流電流が感光体に流れる範囲内の直流電圧と交流電圧とを複数の条件で帯電部材に印加し、前記帯電部材から前記感光体に流れ込む前記直流電流の電流量の変化に基づいて前記帯電部材に印加する交流電圧を決定することを特徴とする印加電圧制御方法。
The charging member is applied based on a change in the amount of the DC current flowing from the charging member into the photosensitive member by applying a DC voltage and an AC voltage within a range in which a direct current flows to the photosensitive member to the charging member under a plurality of conditions. An applied voltage control method, comprising: determining an alternating voltage to be applied to the power supply.
JP2005090216A 2005-03-25 2005-03-25 Image forming apparatus and application voltage control method Pending JP2006276054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090216A JP2006276054A (en) 2005-03-25 2005-03-25 Image forming apparatus and application voltage control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090216A JP2006276054A (en) 2005-03-25 2005-03-25 Image forming apparatus and application voltage control method

Publications (1)

Publication Number Publication Date
JP2006276054A true JP2006276054A (en) 2006-10-12

Family

ID=37210938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090216A Pending JP2006276054A (en) 2005-03-25 2005-03-25 Image forming apparatus and application voltage control method

Country Status (1)

Country Link
JP (1) JP2006276054A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267552A2 (en) 2009-06-25 2010-12-29 Canon Kabushiki Kaisha Image forming apparatus and control method of image forming apparatus
US8126344B2 (en) 2008-04-23 2012-02-28 Fuji Xerox Co., Ltd. Image forming apparatus with variable amplitude alternating current to mitigate image defects and photoconductor wear
US8229309B2 (en) 2009-02-23 2012-07-24 Fuji Xerox Co., Ltd. Image forming device, computer readable medium and photoreceptor deterioration condition estimation method
JP7400439B2 (en) 2019-12-19 2023-12-19 株式会社リコー Image forming device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239603A (en) * 1994-02-28 1995-09-12 Konica Corp Electrifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239603A (en) * 1994-02-28 1995-09-12 Konica Corp Electrifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126344B2 (en) 2008-04-23 2012-02-28 Fuji Xerox Co., Ltd. Image forming apparatus with variable amplitude alternating current to mitigate image defects and photoconductor wear
US8229309B2 (en) 2009-02-23 2012-07-24 Fuji Xerox Co., Ltd. Image forming device, computer readable medium and photoreceptor deterioration condition estimation method
EP2267552A2 (en) 2009-06-25 2010-12-29 Canon Kabushiki Kaisha Image forming apparatus and control method of image forming apparatus
US8249476B2 (en) 2009-06-25 2012-08-21 Canon Kabushiki Kaisha Image forming apparatus and method of controlling image forming apparatus
JP7400439B2 (en) 2019-12-19 2023-12-19 株式会社リコー Image forming device

Similar Documents

Publication Publication Date Title
JP2010217599A (en) Image forming apparatus
JP2010244019A (en) Image forming apparatus
JPH10232521A (en) Image forming device
JP2007171462A (en) Image forming apparatus
JP2006276056A (en) Image forming apparatus and electrification control method
JP2006276054A (en) Image forming apparatus and application voltage control method
JP6275682B2 (en) Image forming apparatus
JP2011133686A (en) Image forming apparatus
JP4692125B2 (en) Charge control device and charge control method
JP2006276471A (en) Image forming apparatus and application voltage control method
JP2012133052A (en) Image forming apparatus
JP2016057580A (en) Image forming apparatus
JP2008170948A (en) Image forming apparatus
JP2007033835A (en) Electrostatic charge controller and electrostatic charge control method
JP2007187930A (en) Image forming apparatus and film thickness measuring method
JP2007187933A (en) Charging controller and inflection point detecting method
JP2007057988A (en) Charging controller, image forming apparatus, charging control method, and program
JP2005003728A (en) Image forming apparatus
JP2012181467A (en) Image forming apparatus
CN108279554B (en) Image forming apparatus with a toner supply device
JP2018189797A (en) Image formation apparatus
JP2010266786A (en) Image forming apparatus
JP4872354B2 (en) Film thickness measuring device
JP5157118B2 (en) Image forming apparatus
JP2006267169A (en) Image forming apparatus and method for controlling applied voltage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208