JP3061362B2 - Heating furnace extraction control method for hot rolling line - Google Patents

Heating furnace extraction control method for hot rolling line

Info

Publication number
JP3061362B2
JP3061362B2 JP8058699A JP5869996A JP3061362B2 JP 3061362 B2 JP3061362 B2 JP 3061362B2 JP 8058699 A JP8058699 A JP 8058699A JP 5869996 A JP5869996 A JP 5869996A JP 3061362 B2 JP3061362 B2 JP 3061362B2
Authority
JP
Japan
Prior art keywords
furnace
heating furnace
extraction
distance
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8058699A
Other languages
Japanese (ja)
Other versions
JPH09248601A (en
Inventor
圭一郎 西
公治 柳野
晃 仮谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP8058699A priority Critical patent/JP3061362B2/en
Publication of JPH09248601A publication Critical patent/JPH09248601A/en
Application granted granted Critical
Publication of JP3061362B2 publication Critical patent/JP3061362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間圧延ラインの
加熱炉抽出制御方法に係り、特に、連続鋳造と熱間圧延
を同期化して操業するためのDHCR(Direct Hot Cha
rge Rolling )実施加熱炉を含む熱間圧延工場に用いる
のに好適な、DHCR同期化操業のミスマッチを生じる
ことなく、スラブを加熱炉から抽出する際の抽出順や抽
出ピッチを調整することが可能な、熱間圧延ラインの加
熱炉抽出制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the extraction of a heating furnace in a hot rolling line, and more particularly, to a DHCR (Direct Hot Cham) for synchronizing continuous casting and hot rolling.
rge Rolling) It is possible to adjust the extraction order and pitch when extracting slabs from a heating furnace without causing a mismatch in DHCR synchronized operation, which is suitable for use in a hot rolling mill including a heating furnace. Also, the present invention relates to a heating furnace extraction control method for a hot rolling line.

【0002】[0002]

【従来の技術】圧延能率向上やコスト低減のため、近
年、ホットスリップ、厚板、形鋼等の熱間圧延工場で
は、連続鋳造と熱間圧延を同期化して操業する、いわゆ
るDHCR操業が行われるようになってきている。この
DHCR操業においては、鋳込み速度をベースとした連
続鋳造の出鋼能力(トン/時間)と、加熱・圧延能力を
ベースとした圧延能率を、各々事前に計算(時刻計算と
呼ばれる)し、スケジューリングして同期化を行ってい
る。
2. Description of the Related Art In recent years, in order to improve rolling efficiency and reduce costs, so-called DHCR operations, in which continuous casting and hot rolling are operated in synchronization with each other, have been carried out at hot rolling mills for hot slip, thick plates, section steel, and the like. Is becoming increasingly common. In this DHCR operation, the tapping capacity based on the casting speed (ton / hour) and the rolling efficiency based on the heating / rolling capacity are calculated in advance (called time calculation), and scheduling is performed. And then synchronize.

【0003】即ち、プッシャータイプやウォーキングビ
ームタイプの連続式の加熱炉では、スラブ抽出能力と装
入能力がほぼ等しいか、装入能力が若干上回っている。
しかしながら、瞬間的に装入が遅れた場合には、これを
予測・検知して、その加熱炉の抽出ピッチを落とす必要
がある。逆に、装入が早い場合には、抽出ピッチを速め
る必要がある。特に、連続鋳造と同期化するDHCR操
業では、この調整は不可欠である。
That is, in a continuous heating furnace of a pusher type or a walking beam type, the slab extraction capacity and the charging capacity are almost equal to each other, or the charging capacity is slightly higher.
However, when charging is instantaneously delayed, it is necessary to predict and detect this and lower the extraction pitch of the heating furnace. Conversely, when charging is fast, it is necessary to increase the extraction pitch. This adjustment is essential, especially in DHCR operations that are synchronized with continuous casting.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来
は、抽出ピッチの制御方法については、いくつも提唱さ
れているが、抽出順のオンラインでの決定や変更方法に
ついては提案されていなかった。即ち、従来は、圧延寸
法や加熱温度の連続性を考慮して予め決定された抽出順
に従うのみで、操業変動による抽出順変更は、全てオペ
レータの手作業で行うか、能率は低下するがピッチダウ
ンさせて環境の回復を待っていた。
Conventionally, however, a number of methods for controlling the extraction pitch have been proposed, but no method for determining or changing the extraction order online has been proposed. That is, conventionally, only the extraction order determined in advance in consideration of the continuity of the rolling dimensions and the heating temperature is followed, and the extraction order change due to the operation fluctuation is all performed manually by the operator, or the efficiency decreases, but the pitch decreases. I went down and waited for the environment to recover.

【0005】従って、トラブル等による出鋼、圧延の停
止、ピッチダウン、連続鋳造・圧延の時刻計算誤差、あ
るいは瞬間的なミスマッチングが発生した場合、十分に
調整し切れず、同期化操業が崩れるという問題点を有し
ていた。
[0005] Therefore, when tapping, stoppage of rolling, pitch down, time calculation error of continuous casting / rolling, or instantaneous mismatching due to troubles or the like, or instantaneous mismatching occurs, the adjustment cannot be performed sufficiently and the synchronization operation is broken. There was a problem that.

【0006】例えば、出鋼(装入)能力が、圧延(抽
出)能力よりも高い場合には、加熱炉装入側でスラブが
停滞し、温度低下や燃料コスト悪化を生じる。一方、出
鋼(装入)能力が圧延(抽出)能力よりも低い場合に
は、加熱炉装入側でスラブが不足し、抽出を続けている
と空炉が発生して燃料コストが悪化したり、抽出が停止
して、スラブ到着待ちのダウンタイムが発生したり、圧
延ミルもピッチダウンして圧延能率が低下する。
[0006] For example, when the tapping (loading) capacity is higher than the rolling (extraction) capacity, the slab stagnates on the heating furnace charging side, causing a decrease in temperature and a deterioration in fuel cost. On the other hand, when the tapping (charging) capacity is lower than the rolling (extraction) capacity, the slab is insufficient on the charging side of the heating furnace, and if the extraction is continued, an empty furnace is generated and the fuel cost deteriorates. In addition, the extraction is stopped, and downtime waiting for the arrival of the slab occurs, or the rolling mill is pitched down, and the rolling efficiency is reduced.

【0007】一方、本発明に多少関連があるものとし
て、特開平4−143222には、現在のビレット温度
から帯出口目標温度まで焼き上げるに有する昇温速度、
ビレットが現在在荷位置地点から帯出口に到達するまで
の時間、帯毎の在荷総本数に対する脱炭管理剤の占める
比率、及び各ビレットの寄与率(重み)の各々をファジ
ィ変数として定義し、その4つの変数の夫々の状態をそ
の変化態様に応じてルール化することが記載されている
が、設定炉温を決定するだけで、抽出順や抽出ピッチの
決定には用いられていなかった。
[0007] On the other hand, as having some relevance to the present invention, Japanese Patent Application Laid-Open No. 4-143222 discloses a heating rate for baking from the current billet temperature to the target outlet temperature.
The time required for the billet to reach the belt exit from the current loading position, the ratio of the decarburizing agent to the total number of cargoes in each belt, and the contribution rate (weight) of each billet are defined as fuzzy variables. It states that each of the four variables is ruled in accordance with the manner of change, but only determines the set furnace temperature and is not used to determine the extraction order or extraction pitch. .

【0008】本発明は、前記従来の問題点を解消するべ
くなされたもので、DHCR同期化操業のミスマッチを
確実に防止することが可能な、熱間圧延ラインの加熱炉
抽出制御方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and provides a method for controlling the extraction of a heating furnace in a hot rolling line, which can reliably prevent a mismatch in DHCR synchronization operation. The purpose is to:

【0009】[0009]

【課題を解決するための手段】本発明は、連続鋳造と熱
間圧延を同期化して操業するためのDHCR実施加熱炉
を含む熱間圧延ラインにおいて、将来の所定時点での加
熱炉内装入側の空炉距離を予測計算し、該予測計算結果
に応じて、少くとも前記DHCR実施加熱炉の抽出順や
抽出ピッチを予め調整することにより、前記課題を解決
したものである。
SUMMARY OF THE INVENTION The present invention relates to a hot rolling line including a DHCR-executing heating furnace for operating a continuous casting and a hot rolling in synchronization with each other. This problem has been solved by predicting and calculating the empty furnace distance of the DHCR, and adjusting at least the extraction order and the extraction pitch of the DHCR-executing heating furnace according to the prediction calculation result.

【0010】又、前記将来の所定時点での装入側空炉距
離を、現時点の装入側空炉距離から、現時点から前記所
定時点までに装入されるスラブの幅総和(スラブ間隔も
含む)を減じ、更に、同じく現時点から前記所定時点ま
でに抽出されるスラブの幅総和(スラブ間隔も含む)を
加えることによって予測計算するようにしたものであ
る。
In addition, the charging-side empty furnace distance at a predetermined time in the future is calculated from the charging-side empty furnace distance at the present time to the total width of slabs to be charged from the current time to the predetermined time (including the slab interval). ) Is subtracted and the sum of the widths of the slabs (including the slab intervals) extracted from the current time to the predetermined time is also calculated.

【0011】又、ある加熱炉の抽出調整と他の加熱炉の
抽出調整が相反する場合は、非線形関数により各々のア
クションの度数を判定して、その大小関係により調整す
るようにしたものである。
When the extraction adjustment of a certain heating furnace and the extraction adjustment of another heating furnace are contradictory, the frequency of each action is determined by a non-linear function, and adjustment is made based on the magnitude relation. .

【0012】又、直近の空炉距離と将来の空炉距離を共
に予測計算し、将来の空炉距離に応じて、加熱炉装入直
後から大きく帯単位で動かすと共に、直近の空炉距離に
応じて、抽出間際に調整するようにしたものである。
Further, the distance of the nearest air furnace and the distance of the future air furnace are both predicted and calculated. In accordance with the distance of the future air furnace, the furnace is moved greatly in units of band immediately after charging the heating furnace, and the distance to the nearest air furnace is determined. Accordingly, adjustment is made immediately before the extraction.

【0013】本発明においては、加熱炉内装入側の空炉
距離(負のときは装入側ダブつき)を予測計算し、その
予測計算結果に応じて、DHCR実施加熱炉の抽出順
(繰上げ/そのまま/繰下げ)や抽出ピッチ(ピッチア
ップ/そのまま/ピッチダウン)を予め調整するように
したので、DHCR同期化操業のミスマッチを確実に防
止することが可能となる。
In the present invention, the distance of the empty furnace on the inlet side of the heating furnace interior (when the value is negative, the charging side has a dub) is predicted and calculated. Since the pitch (pitch up / pitch down / pitch down) and the extraction pitch (pitch up / pitch down / pitch down) are adjusted in advance, it is possible to reliably prevent a mismatch in the DHCR synchronization operation.

【0014】以下、図1に示す如く、連続鋳造機10で
鋳造されたスラブ8が、直結台車12によってスラブヤ
ード14に運ばれ、このスラブヤード14に設けられた
コンベア16、18からプッシャー(図示省略)によっ
て、例えば4台並設された加熱炉21、22、23、2
4に装入され、該加熱炉21、22、23、24によっ
て加熱されたスラブ8が、反対側から圧延ライン28に
抽出される場合を考える。
As shown in FIG. 1, a slab 8 cast by a continuous casting machine 10 is conveyed to a slab yard 14 by a directly connected carriage 12, and is pushed from conveyors 16 and 18 provided in the slab yard 14 by pushers (shown in FIG. 1). For example, four heating furnaces 21, 22, 23, 2
4, and the slab 8 heated by the heating furnaces 21, 22, 23, 24 is extracted to the rolling line 28 from the opposite side.

【0015】本発明においては、図2に示す如く、将来
のある時点における加熱炉内装入側空炉距離を予測す
る。具体的には、まず、現在からx分後の装入側空炉距
離Yfを、次式によって予測する。
According to the present invention, as shown in FIG. 2, the air furnace distance on the inlet side inside the heating furnace at a certain point in the future is predicted. Specifically, first, the charging-side empty furnace distance Yf after x minutes from the present is predicted by the following equation.

【0016】 Yf=Yp−Sin+Sout …(1)Yf = Yp−Sin + Sout (1)

【0017】ここで、Sinは、これからx分間に装入さ
れるスラブの幅総和(図2のスラブ幅Wyとスラブ間隔
Pyの和)で、連続鋳造の出鋼実績、出鋼速度、直結台
車12のトラッキング等から算出する。又、Sout は、
これからx分間に抽出されるスラブの幅総和(同じくス
ラブ幅Wyとスラブ間隔Pyの和)で、加熱炉の燃焼制
御で用いる在炉時間予測から算出することができる。
Here, Sin is the total width of the slab to be charged in the next x minutes (the sum of the slab width Wy and the slab interval Py in FIG. 2), and is the result of continuous casting, the tapping speed, and the direct connection bogie. 12 and the like. Also, Sout is
From this, the sum of the slab widths extracted in x minutes (similarly, the sum of the slab width Wy and the slab interval Py) can be calculated from the in-furnace time prediction used in the combustion control of the heating furnace.

【0018】(1)式により現在からx分後の装入側空
炉距離Yfが予測できたら、例えば図3に示すような非
線形関数に従って、各炉の抽出ピッチアップ(図3で
は、その大小も有)、そのまま、ピッチダウンを指示す
る。これは、例えば、オペレータへ指示を与えたり、あ
るいは、自動抽出機能へ自動的に指示を与えることがで
きる。ここで、ある加熱炉のピッチ調整と他の加熱炉の
ピッチ調整とが相反するような場合(ある加熱炉をピッ
チアップすると、他の加熱炉は相対的にピッチダウンと
なる)、各々のアクションの度数(図3の縦軸)の大小
関係により判断し、例えば度数が大きい方を優先するこ
とができる。
When the charging-side empty furnace distance Yf x minutes after the present can be predicted by the equation (1), the extraction pitch of each furnace is increased according to a nonlinear function as shown in FIG. ), And instruct pitch down as it is. This can, for example, give instructions to the operator or automatically give an automatic extraction function. Here, when the pitch adjustment of a certain heating furnace and the pitch adjustment of another heating furnace are contradictory (when a certain heating furnace is pitched up, another heating furnace is relatively pitched down), each action is performed. (The vertical axis in FIG. 3) is determined based on the magnitude relationship, and, for example, the one with the higher frequency can be prioritized.

【0019】特に、直近の空炉距離と将来の空炉距離を
共に予測計算し、将来の空炉距離に応じて、加熱炉装入
直後から大きく帯単位で動かすと共に、直近の空炉距離
に応じて、抽出間際に調整するようにした場合には、よ
り的確な調整を行うことができる。
In particular, the distance of the nearest air furnace and the distance of the future air furnace are both predicted and calculated. Accordingly, when the adjustment is performed immediately before the extraction, more accurate adjustment can be performed.

【0020】[0020]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0021】本発明を実施するための装置は、図4に示
す如く、装入予定時刻計算部30と、抽出予定時刻計算
部32と、空炉距離推定部34と、ストップ・ゴー判定
部36から構成されている。
As shown in FIG. 4, the apparatus for carrying out the present invention includes a scheduled charging time calculating section 30, a scheduled extracting time calculating section 32, an empty furnace distance estimating section 34, and a stop / go determining section 36. It is composed of

【0022】前記装入予定時刻計算部30は、各炉の未
装入材を数十本テーブル(装入順テーブルと称する)と
して持ち(1号〜3号加熱炉21、22、23は、例え
ば各15本程度、DHCR操業加熱炉である4号加熱炉
24は、例えば40本程度)、各スラブに対して装入予
定時刻を計算する。
The estimated charging time calculating unit 30 has dozens of uncharged materials of each furnace as a table (referred to as a charging order table) (No. 1 to No. 3 heating furnaces 21, 22, and 23). For example, the estimated charging time for each slab is calculated for each slab, for example, about 15 pieces each, and the No. 4 heating furnace 24, which is a DHCR operation heating furnace, for example, about 40 pieces.

【0023】炉別の前記装入順テーブルの項目として
は、例えば、サイクル番号+抽出順、規格、トラッキン
グ位置、装入ルート、装入可能炉(炉別サイクルで装入
される炉)、装入炉番列(仮)(装入可能炉の中から各
炉に均等に割り振る)、スラブ長さ、スラブ幅、スラブ
重量、装入予定時刻、実験番号等が挙げられる。
The items in the charging order table for each furnace include, for example, cycle number + extraction order, standard, tracking position, charging route, chargeable furnace (furnace charged in each furnace-specific cycle), and charging. An entry number (temporary) (equally allocated to each of the furnaces that can be charged), a slab length, a slab width, a slab weight, an estimated charging time, an experiment number, and the like.

【0024】装入予定時刻Tinの推定は、DHCR材に
ついては、次式に示す如く、オンライン基準の加熱炉到
着予定時刻Tarを基準とし、鋳込み開始、トーチカット
等の実績によって補正する。
The estimated charging time Tin is estimated with respect to the DHCR material based on the on-line standard estimated heating furnace arrival time Tar as shown in the following equation, and corrected based on the results such as casting start and torch cutting.

【0025】 Tin=Tar+(直近の実績−予測) …(2)Tin = Tar + (the latest result−prediction) (2)

【0026】一方、DHCR材以外については、コンベ
ア16、18上の材料のみを対象とし、それ以外のヤー
ド材については積み込み遅れ無しとして、次式により推
定する。
On the other hand, for the materials other than the DHCR material, only the materials on the conveyors 16 and 18 are targeted, and for the other yard materials, there is no loading delay, and the estimation is made by the following equation.

【0027】 Tin=Tp+Tcv+Tlift+Ttable …(3)Tin = Tp + Tcv + Tlift + Ttable (3)

【0028】ここで、Tpは現在時刻、Tcvはコンベア
搬送時間(位置と枚数の関数)、Tliftはリフター時間
(パターンで定数)、Ttable はテーブル搬送時間(ル
ートと加熱炉番号の関数)である。
Here, Tp is the current time, Tcv is the conveyor transfer time (a function of the position and the number of sheets), Tlift is the lifter time (a constant in a pattern), and Ttable is the table transfer time (a function of the route and the heating furnace number). .

【0029】前記抽出予定時刻計算部32は、加熱炉の
後半1/3に設けられた均熱帯に在炉中の全スラブと、
これから入る1本(余裕分)を対象として、圧延ライン
28側の抽出ピッチと、加熱炉の焼け具合から見た加熱
炉抽出ピッチを計算し、両方のうち遅い方の値を抽出予
定時刻とする。
The scheduled extraction time calculation unit 32 includes all the slabs existing in the soaking zone in the latter half of the heating furnace,
Calculate the extraction pitch on the rolling line 28 side and the heating furnace extraction pitch from the viewpoint of the degree of burning of the heating furnace for one of the pieces to be entered (a margin), and set the later value of both as the scheduled extraction time. .

【0030】前記空炉距離推定部34は、計算時に注目
するキースラブ(例えばこれから出す2本目)抽出開始
時の直近空炉距離Ynfを次式によって計算する。
The air furnace distance estimating section 34 calculates the nearest air furnace distance Ynf at the time of starting the extraction of the key slab (for example, a second slab to be taken out) at the time of calculation by the following equation.

【0031】 Ynf=Yp+Z1−Fl …(5)Ynf = Yp + Z1-Fl (5)

【0032】ここで、Ypは、図5に示す如く、現在の
装入側空炉距離、Z1は、炉口からキースラブ先頭まで
の距離で、炉内トラッキング結果を用いる。又、Fl
は、キースラブ抽出までの装入炉長であり、現在からキ
ースラブ抽出開始予定時刻までに当該炉に装入される予
定のスラブ(装入順テーブル参照)の幅の総和となる。
なお、2〜4号炉の場合、更にスラブ間隔(例えば70
mm)×枚数を加える。
Here, as shown in FIG. 5, Yp is the current distance of the empty furnace on the charging side, and Z1 is the distance from the furnace port to the head of the key slab, and uses the in-furnace tracking result. Also, Fl
Is the charging furnace length up to the extraction of the key slab, and is the total sum of the widths of the slabs (see the charging order table) to be charged into the furnace from the present to the scheduled start time of the key slab extraction.
In the case of reactors 2 to 4, the slab spacing (for example, 70
mm) x number of sheets.

【0033】更に、DHCR操業炉については、次式を
用いて、均熱帯抽出完了時の将来空炉距離Yffを算出
する。
Further, with respect to the DHCR operating furnace, the future empty furnace distance Yff at the time of completion of the isotropy extraction is calculated using the following equation.

【0034】 Yff=Yp+Z2−F2 …(6)Yff = Yp + Z2-F2 (6)

【0035】ここで、Z2は、図6に示す如く、炉口か
ら第2加熱帯先頭スラブの先頭までの距離、F2は、第
2加熱帯先頭スラブ抽出までの装入炉長である。なお、
距離Z2及び炉長F2の計算方法は、(5)式のZ1、
F1の場合と同様である。
Here, as shown in FIG. 6, Z2 is the distance from the furnace port to the head of the second heating zone head slab, and F2 is the charging furnace length until the second heating zone head slab is extracted. In addition,
The calculation method of the distance Z2 and the furnace length F2 is as follows:
This is the same as in the case of F1.

【0036】前記ストップ・ゴー判定部36は、空炉距
離推定部34で計算された将来空炉距離Yffを用い
て、加熱炉装入直後から大きく帯単位で動かす「将来入
替」と、前記直近空炉距離Ynfを用いて、抽出間際
(約10〜30分)に調整する「直近入替」を行う。
The stop / go determination unit 36 uses the future furnace distance Yff calculated by the furnace distance estimating unit 34 to perform a “future replacement” operation in which the furnace is largely moved immediately after charging of the heating furnace in band units. Using the empty furnace distance Ynf, “nearest replacement” is performed to adjust immediately before extraction (about 10 to 30 minutes).

【0037】具体的には、直近入替では、図7に例示す
る如く、抽出順の繰上げ(U)/そのまま(S)/繰下
げ(D)の3段階の非線形関数により、アクションの度
数を決定する。図7(A)は1号炉、図7(B)は2、
3号炉、図7(C)は4号炉の非線形関数を示す。ここ
で、4号炉については、リフトアップチャージャーがつ
いており、相当の空炉も許されるので、「そのまま」と
すると空炉距離が長くなっている。
More specifically, in the latest replacement, as shown in FIG. 7, the frequency of the action is determined by a three-stage nonlinear function of advancing (U) / as is (S) / decreasing (D) in the order of extraction. . FIG. 7 (A) shows the first reactor, FIG. 7 (B) shows the second reactor,
Reactor No. 3 and FIG. 7 (C) shows the nonlinear function of Reactor No. 4. Here, as for the No. 4 reactor, a lift-up charger is provided, and a considerable empty furnace is also permitted. Therefore, if "as is", the empty furnace distance is long.

【0038】一方、現時点から30分乃至1時間程度の
将来を見る将来入替では、図8に例示する如く、そのま
ま(STAY)、ピッチアップ(PU)/ピッチダウン
(D)、ピッチアップ大(PU2 )/ピッチダウン大
(PD2 )の5段階の非線形関数によりアクションの度
数を決定する。図8(A)は1号炉、図8(B)は2、
3号炉、図8(C)は4号炉である。
On the other hand, in future replacement in which the future is viewed for about 30 minutes to one hour from the present time, as shown in FIG. 8, (STAY), pitch up (PU) / pitch down (D), large pitch up (PU) 2 ) The frequency of action is determined by a five-step nonlinear function of large pitch down (PD 2 ). Fig. 8 (A) is the first reactor, Fig. 8 (B) is the second reactor,
FIG. 8C shows a No. 3 furnace, and FIG.

【0039】このようにして、直近及び将来の装入側空
炉距離Ynf、Yffを共にパラメータとして抽出順の
繰上げ/繰下げやピッチアップ/ピッチダウンを行うこ
とによって、ミスマッチの無い的確な抽出を行うことが
できる。
In this way, by performing the up / down or pitch up / pitch down of the extraction order using both the latest and future charging side air furnace distances Ynf and Yff as parameters, accurate extraction without mismatch is performed. be able to.

【0040】なお、直近入替や将来入替を行うための非
線形関数の例は、図7や図8に限定されない。又、直近
入替、将来入替のいずれか一方のみでも良い。
Note that examples of the non-linear function for performing the latest replacement and the future replacement are not limited to FIGS. Further, only one of the latest replacement and the future replacement may be used.

【0041】[0041]

【発明の効果】本発明によれば、装入側空炉距離をパラ
メータとしているので、加熱炉からの抽出順や抽出ピッ
チを的確に制御することができ、DHCR操業において
もミスマッチを防止することが可能となる。
According to the present invention, the distance of the empty furnace on the charging side is used as a parameter, so that the order of extraction from the heating furnace and the extraction pitch can be accurately controlled, and the mismatch can be prevented even in the DHCR operation. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される熱間圧延工場の構成例を示
す平面図
FIG. 1 is a plan view showing a configuration example of a hot rolling mill to which the present invention is applied.

【図2】同じく加熱炉内の状況を示す平面図FIG. 2 is a plan view showing the situation inside the heating furnace.

【図3】本発明で用いられるアクション度数を決定する
ための非線形関数の例を示す線図
FIG. 3 is a diagram illustrating an example of a non-linear function for determining an action frequency used in the present invention.

【図4】本発明の実施形態における全体構成を示すブロ
ック線図
FIG. 4 is a block diagram showing an overall configuration in an embodiment of the present invention.

【図5】本発明の実施形態における直近の空炉距離を計
算する原理を説明するための平面図
FIG. 5 is a plan view for explaining the principle of calculating the latest air furnace distance in the embodiment of the present invention.

【図6】同じく将来の空炉距離を計算する原理を説明す
るための平面図
FIG. 6 is a plan view for explaining the principle of calculating the future furnace distance in the same manner.

【図7】本発明の実施形態のストップ・ゴー判定部で用
いられている直近入替のための非線形関数の例を示す線
FIG. 7 is a diagram showing an example of a non-linear function for immediate replacement used in the stop / go determination unit of the embodiment of the present invention.

【図8】同じく将来入替のための非線形関数の例を示す
線図
FIG. 8 is a diagram showing an example of a non-linear function for future replacement as well.

【符号の説明】[Explanation of symbols]

8…スラブ 10…連続鋳造機 12…直結台車 14…スラブヤード 16、18…コンベア 21、22、23、24…加熱炉 28…圧延ライン 30…装入予定時刻計算部 32…抽出予定時刻計算部 34…空炉距離推定部 Ynf…直近空炉距離 Yff…将来空炉距離 36…ストップ・ゴー判定部 8 ... Slab 10 ... Continuous casting machine 12 ... Directly connected carriage 14 ... Slab yard 16,18 ... Conveyor 21,22,23,24 ... Heating furnace 28 ... Rolling line 30 ... Scheduled charging time calculation unit 32 ... Scheduled extraction time calculation unit 34: empty furnace distance estimating unit Ynf: nearest empty furnace distance Yff: future empty furnace distance 36: stop / go determination unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−330152(JP,A) 特開 平5−59438(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21B 37/00 C21D 9/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-330152 (JP, A) JP-A-5-59438 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B21B 37/00 C21D 9/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】連続鋳造と熱間圧延を同期化して操業する
ためのDHCR実施加熱炉を含む熱間圧延ラインにおい
て、 将来の所定時点での加熱炉内装入側の空炉距離を予測計
算し、 該予測計算結果に応じて、少くとも前記DHCR実施加
熱炉の抽出順や抽出ピッチを予め調整して、 DHCR同期化操業のミスマッチを防止することを特徴
とする熱間圧延ラインの加熱炉抽出制御方法。
1. A hot rolling line including a DHCR heating furnace for operating a continuous casting and a hot rolling in synchronization with each other, and predicts and calculates an empty furnace distance on a heating furnace interior entrance side at a predetermined time in the future. According to the prediction calculation result, at least the extraction order and the extraction pitch of the DHCR-executing heating furnace are adjusted in advance to prevent a mismatch of the DHCR synchronization operation, thereby extracting the heating furnace from the hot rolling line. Control method.
【請求項2】請求項1において、前記将来の所定時点で
の装入側空炉距離を、現時点の装入側空炉距離から、現
時点から前記所定時点までに装入されるスラブの幅総和
(スラブ間隔も含む)を減じ、更に、同じく現時点から
前記所定時点までに抽出されるスラブの幅総和(スラブ
間隔も含む)を加えることによって予測計算するように
したことを特徴とする熱間圧延ラインの加熱炉抽出制御
方法。
2. The method according to claim 1, wherein the charging-side empty furnace distance at a predetermined time in the future is calculated from a charging-side empty furnace distance at a current time to a total width of slabs to be charged from the current time to the predetermined time. Hot rolling characterized by subtracting the slab spacing (including the slab spacing) and adding the sum of slab widths (including the slab spacing) also extracted from the current time to the predetermined time. Line heating furnace extraction control method.
【請求項3】請求項1において、ある加熱炉の抽出調整
と他の加熱炉の抽出調整が相反する場合は、非線形関数
により各々のアクションの度数を判定して、その大小関
係により調整することを特徴とする熱間圧延ラインの加
熱炉抽出制御方法。
3. The method according to claim 1, wherein when the extraction adjustment of a certain heating furnace and the extraction adjustment of another heating furnace are contradictory, the frequency of each action is determined by a non-linear function, and the adjustment is performed based on the magnitude relation. A heating furnace extraction control method for a hot rolling line.
【請求項4】請求項1において、直近の空炉距離と将来
の空炉距離を共に予測計算し、将来の空炉距離に応じ
て、加熱炉装入直後から大きく帯単位で動かすと共に、
直近の空炉距離に応じて、抽出間際に調整することを特
徴とする熱間圧延ラインの加熱炉抽出制御方法。
4. The method according to claim 1, further comprising predicting and calculating both the latest air furnace distance and the future air furnace distance, and moving the air furnace greatly in band units immediately after charging the heating furnace according to the future air furnace distance.
A method for controlling the extraction of a heating furnace in a hot rolling line, wherein the adjustment is performed immediately before the extraction in accordance with the latest air furnace distance.
JP8058699A 1996-03-15 1996-03-15 Heating furnace extraction control method for hot rolling line Expired - Fee Related JP3061362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8058699A JP3061362B2 (en) 1996-03-15 1996-03-15 Heating furnace extraction control method for hot rolling line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8058699A JP3061362B2 (en) 1996-03-15 1996-03-15 Heating furnace extraction control method for hot rolling line

Publications (2)

Publication Number Publication Date
JPH09248601A JPH09248601A (en) 1997-09-22
JP3061362B2 true JP3061362B2 (en) 2000-07-10

Family

ID=13091785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8058699A Expired - Fee Related JP3061362B2 (en) 1996-03-15 1996-03-15 Heating furnace extraction control method for hot rolling line

Country Status (1)

Country Link
JP (1) JP3061362B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309514B (en) * 2022-01-06 2023-06-02 宝武集团鄂城钢铁有限公司 System and method for continuous casting billet hot delivery and hot charging integrated production
CN114921632B (en) * 2022-04-13 2023-11-21 柳州钢铁股份有限公司 Method and system for guiding production rhythm based on medium plate heating process

Also Published As

Publication number Publication date
JPH09248601A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
JPS6111289B2 (en)
CN111187894B (en) Method for determining steel charging time and preventing hot-fed steel billet from damaging stokehole equipment
JP3061362B2 (en) Heating furnace extraction control method for hot rolling line
US5873959A (en) Adaptive control for reheat furnace
US3695594A (en) Method and apparatus for operating a pusher type furnace
JPH0442084B2 (en)
JP2011157590A (en) Apparatus and method for controlling sheet temperature in continuous annealing furnace
JPH10263641A (en) Method for controlling mill paging in hot rolling line
US5902371A (en) Melt shop scheduling for continuous casting
JP4227354B2 (en) Apparatus and method for creating a heating schedule in a hot rolling mill.
JP2006274401A (en) Method for automatically controlling combustion in continuous heating furnace
JPH08246016A (en) Method for controlling end point of blowing in converter
JPS641206B2 (en)
JP2843764B2 (en) Heating furnace extraction time determination method
JPS5597808A (en) Controller for charging pitch for worked material
JP3105377B2 (en) Extraction pitch prediction method for continuous heating furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JP3928314B2 (en) Method for predicting and determining heating furnace extraction time and heating furnace control method
JP2817545B2 (en) Heating furnace combustion control method
JP3982219B2 (en) Continuous heating furnace charging control method
JPH07113086A (en) Automatic control of discharging amount in dry quenching apparatus for coke
JPH11264026A (en) Method for determing slab withdraw time in hot rolling
JPH09262611A (en) Method for judging neck in work efficiency of hot rolling line
JPH076001B2 (en) Furnace temperature setting device for continuous heating furnace
JPS5836648B2 (en) How to control a heating furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees