JPH08246016A - Method for controlling end point of blowing in converter - Google Patents

Method for controlling end point of blowing in converter

Info

Publication number
JPH08246016A
JPH08246016A JP4537995A JP4537995A JPH08246016A JP H08246016 A JPH08246016 A JP H08246016A JP 4537995 A JP4537995 A JP 4537995A JP 4537995 A JP4537995 A JP 4537995A JP H08246016 A JPH08246016 A JP H08246016A
Authority
JP
Japan
Prior art keywords
converter
molten steel
blowing
temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4537995A
Other languages
Japanese (ja)
Other versions
JP3146907B2 (en
Inventor
Hidefumi Tachibana
秀文 橘
Toshiyuki Yamamoto
俊行 山本
Masahiko Mizuta
匡彦 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP04537995A priority Critical patent/JP3146907B2/en
Publication of JPH08246016A publication Critical patent/JPH08246016A/en
Application granted granted Critical
Publication of JP3146907B2 publication Critical patent/JP3146907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: To provide a control method suiting the end point temp. in a converter, by which the dropping temp. of molten steel after the end point of blowing in the converter is predicted to obtain a prescribed molten steel temp. at the time of continuous casting operation. CONSTITUTION: (1) A required molten steel temp. at the time of continuous casting operation, the operation starting schedule time in each apparatus, the operational necessary schedule time, the transporting time and the heat history and temp. raising rate, dropping rate results of each apparatus since the preceding blowing in the converter in the past, are collected. (2) The molten steel temp. dropping rate (▵T) up to the casting time in a continuous caster after completing the blowing in the converter is predicted according to the variations in the steelmaking process and the transportation. (3) The target temp. of the molten steel up to the end point of the blowing in the converter is corrected based on the predicted molten steel temp. dropping rate (▵T). (4) The end point control of the blowing in the converter is executed based on the corrected target temp. of the end point of the blowing in the converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、転炉、二次精錬装置お
よび連続鋳造機を用いる一連のプロセスからなる製鋼プ
ロセスにおける転炉の吹錬終点制御方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a blowing end point of a converter in a steelmaking process comprising a series of processes using a converter, a secondary refining device and a continuous casting machine.

【0002】[0002]

【従来の技術】従来の転炉終点制御方法では、図2に示
す代表的な実施例の制御ブロック図のように、主とし
て、あらかじめ鋼種別に設定された終点温度、終点炭素
濃度となるように吹錬中のサブランス計測時点から終点
までの吹錬条件(酸素供給量・冷却材投入量)の指示を
実施している。また、転炉終点以降の各プロセスおよび
運搬時の溶鋼温度変動については、吹錬者が各プロセス
スケジュールから推定し、吹錬者の判断にて終点温度の
目標値修正を実施しているのが実状である。
2. Description of the Related Art In a conventional converter end point control method, as shown in a control block diagram of a typical embodiment shown in FIG. 2, the end point temperature and the end point carbon concentration are mainly set in advance according to the steel type. Instructions for blowing conditions (oxygen supply amount / coolant input amount) from the time of sublance measurement during blowing to the end point are given. Regarding the molten steel temperature fluctuation during each process and transportation after the end of the converter, the blower estimates from each process schedule, and the target value of the end temperature is corrected at the discretion of the blower. It is the actual situation.

【0003】特開平02−190413号公報には、精
錬炉において、過去の操業要因および予測誤差と当該操
業要因とを考慮した時系列モデル式の予測計算に基づき
フィードバック制御することにより目標値への適中精度
を高める精錬制御方法が提案されている。しかしなが
ら、この方法はあくまで精錬炉単独プロセス系での固定
的な目標値に対する適中精度の向上策であり、下工程
(二次精錬、鋳造)の各プロセスおよび運搬時の要因変
動の影響は考慮されていなかった。
Japanese Patent Laid-Open No. 02-190413 discloses that in a refining furnace, feedback control is performed based on a prediction calculation of a time series model formula in consideration of past operation factors and prediction errors and the operation factors to obtain a target value. A refining control method has been proposed to improve the accuracy of accuracy. However, this method is just a measure to improve the accuracy of medium-term accuracy against a fixed target value in a smelting furnace single process system, and the influence of factor changes during each process of the lower process (secondary smelting and casting) and during transportation is considered. Didn't.

【0004】特開昭62−297411号公報および特
開平01―246313号公報には、取鍋の内壁レンガ
温度に着目し、取鍋の温度降下カーブから各プロセスの
温度降下量を求める方法、および成分に基づく液相線温
度等により決定した目標出鋼温度を取鍋耐火物を測温し
て推定した降温分で補正することにより適正な目標出鋼
温度を決定する方法が提案されている。
In Japanese Patent Laid-Open No. 62-297411 and Japanese Patent Laid-Open No. 01-246313, attention is paid to the temperature of bricks on the inner wall of the ladle, and a method of determining the amount of temperature drop of each process from the temperature drop curve of the ladle, and A method has been proposed for determining an appropriate target tapping temperature by correcting the target tapping temperature determined by the liquidus temperature or the like based on the component with the temperature drop estimated by measuring the temperature of the ladle refractory.

【0005】[0005]

【発明が解決しようとする課題】転炉終点温度は、主と
して鋼種別に連続鋳造機での鋳込み時点の要求溶鋼温度
により転炉以降の平均的な温度降下量を考慮して決定さ
れる。しかしながら、実際には、各プロセスの設備履歴
による影響ならびに処理ピッチおよび溶鋼運搬時間のば
らつきにより連続鋳造機の鋳込み時点での溶鋼温度は、
そのままでは要求溶鋼温度とは外れたものとなる。この
補償のため、下工程の二次精錬装置等での無駄な昇温ま
たは冷却が必要となり、昇温用Al投入量または冷却材
投入量が増加し、これらの原単位の悪化を招くこととな
る。
The end temperature of the converter is determined mainly by the required molten steel temperature at the time of casting in a continuous casting machine in consideration of the average temperature drop after the converter for each steel type. However, in reality, the molten steel temperature at the time of casting of the continuous casting machine is due to the influence of the facility history of each process and the variation of the processing pitch and the molten steel transportation time,
If it is left as it is, it will be out of the required molten steel temperature. To compensate for this, it is necessary to uselessly raise or cool the temperature in the secondary refining device or the like in the lower step, and increase the amount of Al for heating or the amount of coolant to be added, which causes deterioration of these basic units. Become.

【0006】しかしながら、従来の技術では、上述のよ
うに溶鋼の温度降下量予測に大きな影響を与える出鋼時
間や運搬時間といった時間の予測が考慮されていなかっ
たり、それらの予測精度が不十分であり、吹錬中にリア
ルタイムでかつ高精度に転炉終点溶鋼目標温度を設定す
ることが不可能であった。従来技術では、例えば、転炉
における出鋼孔の断面積がその使用回数が増すに連れて
大きくなるといった転炉構造物の劣化まで考えておら
ず、そのために前記転炉構造物の劣化の影響を強く受け
る出鋼時間の予測精度はかなり不十分なものとなる。
However, in the prior art, as described above, the prediction of time such as the tapping time and the transportation time, which has a great influence on the prediction of the temperature drop of molten steel, is not taken into consideration, or their prediction accuracy is insufficient. Therefore, it was impossible to set the target temperature of the molten steel at the end of the converter in real time and with high accuracy during blowing. In the prior art, for example, the deterioration of the converter structure such that the cross-sectional area of the tapped steel hole in the converter increases as the number of times it is used is not considered. The prediction accuracy of the tapping time, which is strongly affected by the

【0007】さらに、現状の一般的な操業として、転炉
終点温度は安全サイドをみて高目に設定されており、結
果的に必要以上の熱を付与しているために転炉耐火物お
よびO2 原単位を悪くするという問題点があった。
Further, as a general operation at present, the converter end point temperature is set to a high value from the safety side, and as a result, more heat than necessary is applied, so that the converter refractory and O 2 There was a problem that the basic unit was worsened.

【0008】本発明は、上述の従来技術の問題点に鑑み
てなされたものであり、転炉吹錬終点以降の溶鋼温度降
下量を予測し、連続鋳造機での鋳込み時点の所定の溶鋼
温度を得るために、転炉終点温度を適正化する制御方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and predicts the molten steel temperature drop amount after the end of the blowing of a converter, and determines the predetermined molten steel temperature at the time of casting in a continuous casting machine. In order to obtain the above, an object of the present invention is to provide a control method for optimizing the converter end point temperature.

【0009】[0009]

【課題を解決するための手段】本発明に係わる転炉、二
次精錬装置および連続鋳造機(CCM)を有する設備に
おける製鋼プロセスの転炉の吹錬終点制御方法は次の手
順で行うことを特徴とする。
The method for controlling the blowing end point of the converter in the steelmaking process in the equipment having the converter, the secondary refining device and the continuous casting machine (CCM) according to the present invention is performed by the following procedure. Characterize.

【0010】連続鋳造鋳込み時点での要求溶鋼温度、
上記転炉、二次精錬装置および連続鋳造機の操業開始予
定時間、操業所要予定時間、運搬時間ならびに過去の転
炉以外の各装置の熱履歴および溶鋼温度昇温量・降下量
実績を収集する。
Continuous casting required molten steel temperature at the time of casting,
Collect the scheduled operation start time of the above converter, secondary refining equipment and continuous casting machine, scheduled operation time, transportation time and past thermal history of each equipment other than converter and temperature rise / fall amount of molten steel temperature. .

【0011】前記製鋼プロセスおよび運搬の変動に応
じて、転炉吹錬終了以後の連続鋳造機鋳込み時点までの
溶鋼温度降下量(△T)を次式により予測する。
According to the variations in the steelmaking process and transportation, the molten steel temperature drop (ΔT) from the end of converter blowing to the casting of the continuous casting machine is predicted by the following equation.

【0012】△T=△TCL+△TLR+△TRH+△TRC ここで、 △T :転炉吹錬終了から連続鋳造機における鋳込み開
始までに生じる溶鋼温度降下量 △TCL:転炉吹錬終了から取鍋受鋼終了までに生じる溶
鋼温度降下量(出鋼時温度降下量) △TLR:取鍋受鋼終了から二次精錬装置での処理開始ま
でに生じる溶鋼温度降下量 (運搬時温度降下量) △TRH:二次精錬装置処理中に生じる溶鋼温度変動量 △TRC:二次精錬装置での処理終了から連続鋳造機での
鋳造開始までに生じる溶鋼温度降下量 前記の予測溶鋼温度降下量(△T)に基づき転炉吹
錬終点での溶鋼目標温度を修正する。
ΔT = ΔTCL + ΔTLR + ΔTRH + ΔTRC where ΔT is the amount of molten steel temperature drop that occurs between the end of converter blowing and the start of pouring in a continuous casting machine ΔTCL: The end of converter blowing and ladle Molten steel temperature drop that occurs until the end of steel reception (temperature drop during tapping) △ TLR: Molten steel temperature drop that occurs between the end of ladle steel reception and the start of processing in the secondary refining equipment (temperature drop during transportation) △ TRH: Fluctuation of molten steel temperature during secondary refining equipment treatment △ TRC: Amount of molten steel temperature drop occurring from the end of treatment in the secondary refining equipment to the start of casting in the continuous casting machine The predicted amount of molten steel temperature drop (△ T ), The target temperature of molten steel at the end of converter blowing is corrected.

【0013】前記の修正転炉吹錬終点目標温度に基
づき転炉の吹錬終点制御を行う。
The blowing end point control of the converter is performed based on the above-mentioned corrected converter blowing end point target temperature.

【0014】[0014]

【作用】本発明方法の要旨としては各プロセスの処理ピ
ッチおよび運搬時間の実績値を前チャージ以前の温度降
下量実績および対象チャージの鋼種、鋳込み目標温度等
から対象チャージの転炉終点以降の温度降下量を予測
し、それに基づき溶鋼目標終点温度を修正し、吹錬終点
制御を行うことにある。なお、この転炉溶鋼目標終点温
度の修正は、転炉吹錬終了以後のプロセスおよび運搬の
状態に変動が生じるたびに行われる。
The function of the method of the present invention is that the actual values of the processing pitch and the transportation time of each process are the temperature drop amount before the pre-charge, the steel type of the target charge, the casting target temperature, etc., and the temperature after the end point of the converter of the target charge. The amount of descent is predicted, the target end temperature of molten steel is corrected based on it, and blowing end point control is performed. It should be noted that the correction of the target end temperature of the molten steel in the converter is performed every time the process and the transportation state after the completion of the blowing of the converter are changed.

【0015】図3に製鋼プロセスの概略を示す。転炉1
での吹錬が終了した後、溶鋼は取鍋2に出鋼され二次精
錬装置3まで運搬された後、例えばRHのような二次精
錬装置で二次精錬処理が行われ、さらに溶鋼は連続鋳造
機4まで取鍋で運搬され連続的に鋳込まれる。図4に転
炉終点以降の時刻と溶鋼温度との関係を模式的に示すよ
うに、各プロセスそれぞれにおいて、温度降下(△Tx
x)が発生する。この温度降下量の予測を以下に示すよ
うに定式化する。(1)〜(6)式に示すように連続鋳
造機(CCM)での溶鋼鋳込み目標温度(Tcc)に、予
測した製鋼プロセスで生じる溶鋼温度降下量(△T)を
加算して転炉吹錬終時了および二次精錬装置到着時の溶
鋼目標温度を設定する。なお、溶鋼鋳込み目標温度と
は、製造鋼種により異なる溶鋼凝固温度から予め定めら
れている温度を指す。
FIG. 3 shows an outline of the steelmaking process. Converter 1
After completion of the smelting in, the molten steel is tapped into the ladle 2 and transported to the secondary refining device 3, where it is subjected to secondary refining treatment by a secondary refining device such as RH, It is transported to the continuous casting machine 4 by a ladle and continuously cast. As shown in FIG. 4 schematically showing the relationship between the time after the end of the converter and the molten steel temperature, the temperature drop (ΔTx
x) occurs. The prediction of this temperature drop amount is formulated as shown below. As shown in the equations (1) to (6), the molten steel temperature drop amount (ΔT) generated in the predicted steelmaking process is added to the molten steel casting target temperature (Tcc) in the continuous casting machine (CCM) to blow the converter. Set the molten steel target temperature at the end of smelting and at the arrival of the secondary refining equipment. The molten steel casting target temperature refers to a temperature that is predetermined from the molten steel solidification temperature that differs depending on the type of manufacturing steel.

【0016】 Ttap =Tcc+△T ・・・(1) △T=△TCL+△TLR+△TRH+△TRC ・・・(2) △TCL=A0 ・time0 +ΣAi ・ time1+Σai ・・・(3) △TLR=ΣBi ・ time2+Σbi ・・・(4) △TRH=ΣCi ・ time3+Σci ・・・(5) △TRC=ΣDi ・ time4+Σdi ・・・(6) ここで、 Ttap :転炉終点溶鋼温度 Tcc:溶鋼鋳込み温度 Ai :各操業要因(転炉出鋼から取鍋受鋼までの時間に
関係する溶鋼温度降下要因)(例えば、転炉・取鍋への
伝熱量、輻射放熱量等) ai :各操業要因(転炉出鋼から取鍋受鋼までの時間に
無関係の溶鋼温度降下要因)(例えば、冷却材、合金投
入量等) Bi :各操業要因(受鋼後二次精錬装置到着までの時間
に関係する溶鋼温度降下要因) bi :各操業要因(受鋼後二次精錬装置到着までの時間
に無関係の溶鋼温度降下要因) Ci :各操業要因(二次精錬装置処理中の時間に関係す
る溶鋼温度変動要因) ci :各操業要因(二次精錬処理中の時間に無関係の溶
鋼温度変動要因要因) Di :各操業要因(二次精錬処理後鋳込みまでの時間に
関係する溶鋼温度降下要因) di :各操業要因(二次精錬装置から鋳込みまでの時間
に無関係の溶鋼温度降下要因) time0 :出鋼待ち時間 time1 :出鋼時間 time2 :運搬時間(転炉から二次精錬装置まで) time3 :二次精錬処理時間 time4 :運搬時間(二次精錬装置から連続鋳造機まで) 図1は、本発明方法を実施するための演算装置5の構成
を示すブロック図である。以下に、本発明方法を図1に
より具体的な実施様態に基づいて説明する。
Ttap = Tcc + ΔT (1) ΔT = ΔTCL + ΔTLR + ΔTRH + ΔTRC (2) ΔTCL = A0 ・ time0 + ΣAi ・ time1 + Σai (3) ΔTLR = ΣBi・ Time2 + Σbi ・ ・ ・ (4) △ TRH = ΣCi ・ time3 + Σci ・ ・ ・ (5) △ TRC = ΣDi ・ time4 + Σdi ・ ・ ・ (6) Where, Ttap: Converter end-point molten steel temperature Tcc: Molten steel pouring temperature Ai: each Operation factors (factors of molten steel temperature drop related to the time from converter steel output to ladle steel reception) (for example, the amount of heat transfer to the converter and ladle, the amount of radiant heat dissipation) ai: Each operation factor (converter output) Molten steel temperature drop factor irrelevant to the time from steel to ladle receiving (for example, coolant, alloy input amount, etc.) Bi: Each operating factor (molten steel temperature related to the time from receiving steel to arriving at the secondary refining equipment) Factors of fall) bi: Factors of each operation (regardless of the time until the secondary refining equipment arrives after receiving steel) Of the molten steel temperature) Ci: each operation factor (fluctuation factor of molten steel temperature related to time during secondary refining process) ci: each operation factor (factor of molten steel temperature change independent of time during secondary refining process) Di: Factors of each operation (factors of molten steel temperature drop related to the time until casting after secondary refining treatment) di: Factors of operation (factors of molten steel temperature decrease independent of time from the secondary refining device to casting) time0: Steel tapping Wait time time1: tapping time time2: transportation time (from converter to secondary refining equipment) time3: secondary refining processing time time4: transportation time (from secondary refining equipment to continuous casting machine) FIG. It is a block diagram which shows the structure of the arithmetic unit 5 for implementing. Hereinafter, the method of the present invention will be described with reference to FIG. 1 based on a specific embodiment.

【0017】(1)RH制御モデル部(S−30) ここでは、CCM鋳込み要求温度および予定時刻から下
記(7)式により、CCMーRH間運搬時間(time4 )
および温度降下量(△TRC)を予測計算し(S−2
0)、その結果に基づき、一般的なRH脱炭モデル式を
用いてRH到達目標温度、RH処理開始時間ならびに二
次精錬装置処理中に生じる溶鋼温度変動量(△TRH)を
算出する。
(1) RH control model section (S-30) Here, the CCM-RH transport time (time4) is calculated from the required CCM casting temperature and the scheduled time according to the following equation (7).
And predict the temperature drop (△ TRC) (S-2
0) Based on the result, the RH reaching target temperature, the RH treatment start time, and the molten steel temperature fluctuation amount (ΔTRH) generated during the treatment of the secondary refining device are calculated using a general RH decarburization model formula.

【0018】例えば、図5に示すようなRH装置内溶鋼
を3分割したモデルを用いる。その時、各領域での溶鋼
体積および炭素濃度をVi、Ci (i=1〜3)とする
と、(8)式に基づき、目標炭素濃度になるための二次
精錬処理時間を計算し、その結果と(9)式により、二
次精錬(RH)到達温度(初期温度)を逆算することに
より求める。
For example, a model obtained by dividing molten steel in the RH apparatus into three as shown in FIG. 5 is used. At that time, if the molten steel volume and the carbon concentration in each region are Vi and Ci (i = 1 to 3), the secondary refining treatment time to reach the target carbon concentration is calculated based on the equation (8), and the result is obtained. And the equation (9) are used to obtain the secondary refining (RH) reaching temperature (initial temperature) by back calculation.

【0019】 △TRC={p1 ・(TRHE −Tn )+p2 ・(TRHE −Tatm )} /Wst・time4 ・・・(7) ここで、 time4=C(操業実績から得た定数) Wst :溶鋼重量 TRHE :RH処理後温度 Tn :取鍋内壁レンガ温度(℃) Tatm :大気温度(℃) pj :操業実績データから得た定数 Vi (dCi /dt)=Qst(Ci-1 −Ci )−kA(Ci −Ce ) ・・・(8) Qst:溶鋼還流量 k :物質移動係数 A :脱炭反応界面積 Wst・Cp ・(dTi /dt)=Cp ・Qst・(Ti-1 −Ti ) +ΣQr −Qcl−Qls ・・・(9) Ti :i領域の溶鋼温度 Cp :溶鋼の比熱 ΣQr :全反応熱変化率 Qcl :冷材冷却熱変化率 Qls :大気他への放熱量 (2)転炉終点目標温度演算部(S−40) 転炉炉吹錬以降の各プロセスでの温度降下量予測を以下
の各ステップで演算し、上記(1)式に基づき連続鋳造
機(CC)鋳込み温度が要求温度になるよう、転炉終点
目標温度を演算する。この時、二次精錬炉での昇温用A
l投入冷却材投入が0となるように決定することが望ま
しい。
ΔTRC = {p1. (TRHE-Tn) + p2. (TRHE-Tatm)} / Wst.time4 (7) where time4 = C (constant obtained from operation results) Wst: molten steel weight TRHE: Temperature after RH treatment Tn: Ladle inner wall brick temperature (° C) Tatm: Atmospheric temperature (° C) pj: Constant obtained from operation data Vi (dCi / dt) = Qst (Ci-1 -Ci) -kA ( Ci-Ce) (8) Qst: molten steel reflux amount k: mass transfer coefficient A: decarburization reaction interfacial area Wst.Cp. (dTi / dt) = Cp.Qst. (Ti-1 -Ti) +. SIGMA.Qr- Qcl-Qls (9) Ti: Molten steel temperature in the i region Cp: Specific heat of molten steel ΣQr: Total reaction heat change rate Qcl: Cooling material cooling heat change rate Qls: Heat release to atmosphere (2) Converter end point Target temperature calculation unit (S-40) Prediction of temperature drop in each process after the blowing of the converter furnace Based on the above equation (1), the converter end point target temperature is calculated so that the continuous casting machine (CC) casting temperature becomes the required temperature. At this time, A for temperature rise in the secondary refining furnace
It is desirable to determine so that the l input coolant input is 0.

【0020】温度降下量の予測を実施する各演算ステッ
プについては以下に示すとおりである。
The calculation steps for predicting the temperature drop amount are as follows.

【0021】出鋼時間予測演算(S−51) 出鋼時温度降下量に強く影響を与える出鋼時間(time1
)は、転炉構造物の一部である出鋼孔の溶損を考慮す
ることにより、すなわち出鋼孔の使用回数が増すに従っ
て、出鋼孔周辺の耐火レンガの溶損により出鋼孔の径が
大きくなるという仮定のもとで、溶鋼の物質収支を用い
ることにより次の(10)式で予測する。
Prediction calculation of tapping time (S-51) Tapping time (time1) that strongly affects the temperature drop during tapping
) Is due to the melting loss of the tap hole that is a part of the converter structure, that is, as the number of times the tap hole is used increases, the melting loss of the refractory bricks around the tap hole causes Using the mass balance of molten steel under the assumption that the diameter becomes large, the following equation (10) is used for prediction.

【0022】 time1 =(Wst)/{π/4・(D0 +αN)2 ・ρvs } ・・・(10) time1:出鋼時間 D0 :未使用出鋼孔直径 N :出鋼孔使用回数 α :先行操業の実績データから得られた係数 ρ :溶鋼密度 vs :溶鋼流速 取鍋温度予測演算(S−52) 当該受鋼取鍋2の前回使用時鋳込み終了時から予熱場に
おける予熱開始までに要した時間や予熱時間、予熱前の
待機時での蓋の有無等の操業要因を考慮して、受鋼前の
取鍋温度を次の(11)式で予測する。
Time1 = (Wst) / {π / 4 · (D0 + αN) 2 · ρvs} (10) time1: tapping time D0: unused tapping hole diameter N: tapping hole usage frequency α: Coefficient obtained from actual operation data ρ: Molten steel density vs: Molten steel flow velocity Ladle temperature prediction calculation (S-52) Required for the previous use of the relevant steel ladle 2 from the end of casting to the start of preheating in the preheating field The ladle temperature before receiving the steel is predicted by the following formula (11) in consideration of operating factors such as the heating time, the preheating time, and the presence or absence of the lid in the standby before the preheating.

【0023】 Ttb=TCCE −(q1 +q2 ・tkara+Hcov )+q3 ・ty −(q4 +q5 ・Lk )・(tmo+tst) ・・・・(11) Ttb :受鋼直前の取鍋温度 TCCE :前回使用時の鋳込み終了溶鋼温度 tkara:前回使用時鋳込み終了時から予熱開始までに要
した時間 ty :予熱時間 Lk :取鍋使用回数 tmo :取鍋移動時間 tst :取鍋待機時間 qj :操業実績データから得た定数 (j=1〜5) Hcov :予熱前蓋無し時の温度降下補正係数 出鋼時温度降下量予測演算(S−53) 出鋼時に生じる温度降下の影響係数を決めるに当たって
は転炉構造物である転炉炉壁構造物の劣化、取鍋耐火物
の劣化および製造鋼種、副原料投入量等の要因を考慮し
て(12)式により予測する。
Ttb = TCCE- (q1 + q2.tkara + Hcov) + q3.ty- (q4 + q5.Lk). (Tmo + tst) ... (11) Ttb: Ladle temperature immediately before receiving steel TCCE: Casting at the time of previous use Finished molten steel temperature tkara: Time required from the end of casting in the previous use to the start of preheating ty: Preheating time Lk: Ladle usage time tmo: Ladle moving time tst: Ladle standby time qj: Constant obtained from operation results data (J = 1 to 5) Hcov: Temperature drop correction coefficient without preheating front lid Prediction calculation of temperature drop during tapping (S-53) In determining the effect coefficient of temperature drop that occurs during tapping, the converter structure is used. Prediction is made according to equation (12) in consideration of factors such as deterioration of certain converter furnace wall structure, deterioration of ladle refractory, manufacturing steel grade, and amount of auxiliary raw material input.

【0024】 △TCL=m1 ・time0 +m2 ・Wre+{m3 ・(Ttap +273 )4 /Wst+m4 ・(Ttap −Tn )/Wst}・time1 +Σβi ・Gi /Wst ・・・・(12) time0:出鋼待ち時間 Wre :吹錬終点以降に投入される冷却材量(T) Ttap :転炉終点溶鋼温度(℃) Wst :溶鋼重量(T) βi :出鋼中投入係数 Gi :合金投入量(T)(i=1〜10) mj :操業実績データより得た定数(j=1〜4) 運搬時間予測演算(S−54) 取鍋の運搬時間は連続鋳造機における鋳込み条件との関
係から次の(13)式により予測する。
ΔTCL = m1 ・ time0 + m2 ・ Wre + {m3 ・ (Ttap + 273) 4 / Wst + m4 ・ (Ttap-Tn) / Wst} ・ time1 + Σβi ・ Gi / Wst ・ ・ ・ ・ (12) time0: Waiting for tapping Time Wre: Amount of coolant (T) injected after the end of blowing Ttap: Molten steel temperature (° C) at the end of converter Wst: Molten steel weight (T) βi: Input factor during tapping Gi: Alloy input (T) ( i = 1 to 10) mj: constant obtained from operation performance data (j = 1 to 4) transportation time prediction calculation (S-54) The transportation time of the ladle is as follows from the relationship with the casting conditions in the continuous casting machine ( Predict according to equation 13).

【0025】 time2 =s1 ・tr0 +s2 ・tr1 +s3 ・・・・(13) tr0 :連続鋳造機鋳込み総数 tr1 :連続鋳造機鋳込み連番 s1 ,s2 ,s3 :先行操業実績データから得たパラメ
ータ(鋼種に依存) 運搬時温度降下量予測演算(S−55) 運搬時に生じる温度降下に関しては、前記運搬時間予測
演算(S−54)で予測した運搬時間および取鍋耐火物
の劣化等の要因を考慮して、次の(14)式で予測す
る。
Time2 = s1 · tr0 + s2 · tr1 + s3 ··· (13) tr0: total casting number of continuous casting machine tr1: continuous casting machine casting serial number s1, s2, s3: parameters obtained from previous operation performance data (steel type) Calculation of temperature drop during transportation (S-55) Regarding temperature drop occurring during transportation, factors such as the transportation time predicted by the transportation time prediction calculation (S-54) and deterioration of ladle refractory are taken into consideration. Then, the prediction is made by the following equation (14).

【0026】 △TLR={n1 ・(Tla−Tn )+n2 ・(Tla−Tatm )}/Wst ・time2 ・・・・(14) Tla :出鋼時溶鋼温度(℃) nj :操業実績データより得た定数 (3)転炉制御モデル部(S−10) 上述の転炉終点目標温度演算値を入力とし、吹錬中サブ
ランス計測値(C%,温度)を初期値として終点までの
送酸量、冷却材投入量の演算を行う。本演算は、転炉終
点目標温度の変更があるたびにダイナミックに修正計算
が実施される。
ΔTLR = {n1. (Tla-Tn) + n2. (Tla-Tatm)} / Wst.time2 .... (14) Tla: Molten steel temperature at tapping (° C) nj: Obtained from operation result data Constant (3) Converter control model part (S-10) The above-mentioned converter end point target temperature calculation value is input, and the amount of oxygen transfer until the end point is set with the sublance measurement value (C%, temperature) during blowing as the initial value. , Calculate the amount of coolant input. This calculation is dynamically corrected every time the converter end point target temperature is changed.

【0027】例えば計算式としては次の統計モデル式
(15)、(16)式(酸素バランス式および温度バラ
ンス式)を用いる。
For example, the following statistical model formulas (15) and (16) (oxygen balance formula and temperature balance formula) are used as calculation formulas.

【0028】転炉温度バランス式 △T=a0 (CS −CE )+a1 ・ln(CS /CE ) +a2 [(−1/CS )−(−1/CE )] +a3 [ 0.5(−1/CS2)− 0.5(−1/CE2)] +f(WCL)+K ・・・・・(15) a0 ,a1 ,a2 ,a3 :先行転炉操業の実績データよ
り得た定数 K :制御対象とする転炉操業の条件にて定まる変数 f(WCL):サブランス計測時点から吹錬終点までに投
入された冷却材量WCLの関数 CS :吹錬末期のサブランス計測による鋼中炭素含有
量計測値(%) CE :吹錬終点における鋼中炭素含有量(%) WCL :サブランス計測時点から吹錬終点にいたる期間
に溶鋼中に投入された冷却材量(T) 転炉酸素バランス式 △O2 /WST=a0 (CS −CE )+a1 ・ln(CS /CE ) +a2 [(−1/CS )−(−1/CE )] +a3 [ 0.5(−1/CS2)− 0.5(−1/CE2)] +K ・・・・(16) O2 :酸素量(Nm3 ) WST:主原料装入量から推定した溶鋼重量(T)
[0028] The converter furnace temperature balance equation △ T = a0 (CS -CE) + a1 · ln (CS / CE) + a2 [(-1 / CS) - (- 1 / CE)] + a3 [0.5 (-1 / CS 2 ) -0.5 (-1 / CE 2 )] + f (WCL) + K (15) a0, a1, a2, a3: constants obtained from the actual data of the preceding converter operation K: conversion to be controlled Variable determined by furnace operating conditions f (WCL): Function of coolant amount WCL injected from the time of sublance measurement to the end of blowing. CS: Measured carbon content in steel by sublance measurement at the end of blowing (%). CE: Carbon content in steel at the end of blowing (%) WCL: Amount of coolant injected into molten steel during the period from the time of sublance measurement to the end of blowing (T) Converter oxygen balance formula ΔO 2 / WST = a0 (CS-CE) + a1.ln (CS / CE) + a2 [(-1 / CS)-(-1 CE)] + a3 [0.5 ( -1 / CS 2) - 0.5 (-1 / CE 2)] + K ···· (16) O 2: oxygen (Nm 3) WST: estimated from the main raw material charging amount Molten Steel Weight (T)

【0029】[0029]

【実施例】本発明方法を図1に示す制御ブロック構成に
より、実際に操業を行っている製鋼プロセスにおいて、
吹錬の終了時の転炉から、取鍋への受鋼、取鍋での運搬
を経て二次精錬装置(RH)および連続鋳造機(CC
M)に至るまでの製鋼プロセスに適用した。低炭素鋼5
0チャージに対し、前述の図2の従来の方法と本発明方
法との予測精度比較検証を行ったところ、従来の方法で
は±10℃以内の温度適中率は54%であったが、本発
明方法での適中率は85%の好結果を得た。
EXAMPLE In the steelmaking process which is actually in operation, the method of the present invention is controlled by the control block configuration shown in FIG.
At the end of blowing, the steel is transferred to the ladle, steel is transferred to the ladle, and then the secondary refining equipment (RH) and continuous casting machine (CC) are used.
It was applied to the steelmaking process up to M). Low carbon steel 5
When the conventional method of FIG. 2 and the method of the present invention were compared and verified with respect to 0 charge, the temperature accuracy within ± 10 ° C. was 54% in the conventional method. The predictive value of the method was 85%.

【0030】また、連続鋳造機での鋳込み目標温度を1
570℃として操業した、上記低炭素鋼50チャージの
転炉終点温度実績値のヒストグラムは図6に示す通りで
あり、本発明方法により、12℃の平均転炉終点温度の
低減を確認した。
Further, the casting target temperature in the continuous casting machine is set to 1
A histogram of the actual values of the converter end point temperature of the low carbon steel 50 charge operated at 570 ° C. is as shown in FIG. 6, and it was confirmed that the average converter end point temperature of 12 ° C. was reduced by the method of the present invention.

【0031】上述の温度適中率の向上および転炉終点温
度の低減により得られた実質効果として、転炉および二
次精錬装置耐火物原単位6%、二次精錬時投入冷材10
%、昇温用Al原単位12%ならびに昇温用酸素原単位
12%の向上がなされた。
As a substantial effect obtained by the above-mentioned improvement of the temperature appropriateness ratio and reduction of the converter end point temperature, the converter and the secondary refining unit refractory basic unit 6%, the secondary refining input cooling material 10
%, Al unit for temperature raising 12%, and oxygen unit for temperature raising 12%.

【0032】[0032]

【発明の効果】以上のように、本発明方法により、転炉
終点以降の温度降下量を精度良く予測することで、転炉
吹錬終了温度および二次精錬装置到着温度を適正に設定
することができ、そのために転炉あるいは二次精錬装置
での余分な操業を減少させることが可能となり、製鋼コ
ストおよび製鋼時間において効率化が達成できる。
As described above, according to the method of the present invention, by accurately predicting the temperature drop amount after the end of the converter, it is possible to properly set the end temperature of the blowing of the converter and the arrival temperature of the secondary refining device. Therefore, it becomes possible to reduce the extra operation in the converter or the secondary refining device, and the efficiency can be achieved in the steelmaking cost and the steelmaking time.

【0033】更に、転炉終点温度の適正化(終点温度の
低減)が達成され、転炉耐火物、O2 原単位および冷却
材原単位の向上という大きな効果が得られる。
Further, the optimization of the converter end point temperature (reduction of the end point temperature) is achieved, and a great effect of improving the converter refractory, the O 2 unit and the coolant unit is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例の演算装置構成を示すブ
ロック図である。
FIG. 1 is a block diagram showing a configuration of an arithmetic unit according to an embodiment of a method of the present invention.

【図2】従来の転炉終点制御方法の代表的な実施例の制
御ブロック図である。
FIG. 2 is a control block diagram of a typical embodiment of a conventional converter end point control method.

【図3】製鋼プロセスの概略図である。FIG. 3 is a schematic view of a steelmaking process.

【図4】転炉終点以降の時刻と溶鋼温度との関係を模式
図である。
FIG. 4 is a schematic diagram showing the relationship between the time after the end of the converter and the molten steel temperature.

【図5】RH制御モデルの説明図である。FIG. 5 is an explanatory diagram of an RH control model.

【図6】低炭素鋼50チャージでの転炉終点温度実績値
のヒストグラムである。
FIG. 6 is a histogram of converter end-point temperature actual values for 50 charges of low-carbon steel.

【符号の説明】[Explanation of symbols]

1 転炉 2 取鍋 3 二次精錬装置(RH) 4 連続鋳造機(CCM) 5 演算装置 1 Converter 2 Ladle 3 Secondary Refining Device (RH) 4 Continuous Casting Machine (CCM) 5 Computing Device

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年3月16日[Submission date] March 16, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】図3に製鋼プロセスの概略を示す。転炉1
での吹錬が終了した後、溶鋼は取鍋2に出鋼され二次精
錬装置3まで運搬された後、例えばRHのような二次精
錬装置で二次精錬処理が行われ、さらに溶鋼は連続鋳造
機4まで取鍋で運搬され連続的に鋳込まれる。図4に転
炉終点以降の時刻と溶鋼温度との関係を模式的に示すよ
うに、各プロセスそれぞれにおいて、温度降下(△Tx
x)が発生する。この温度降下量の予測を以下に示すよ
うに定式化する。(1)〜(6)式に示すように連続鋳
造機(CCM)での溶鋼鋳込み目標温度(Tcc)に、予
測した製鋼プロセスで生じる溶鋼温度降下量(△T)を
加算して転炉吹錬終了時および二次精錬装置到着時の溶
鋼目標温度を設定する。なお、溶鋼鋳込み目標温度と
は、製造鋼種により異なる溶鋼凝固温度から予め定めら
れている温度を指す。
FIG. 3 shows an outline of the steelmaking process. Converter 1
After completion of the smelting in, the molten steel is tapped into the ladle 2 and transported to the secondary refining device 3, where it is subjected to secondary refining treatment by a secondary refining device such as RH, It is transported to the continuous casting machine 4 by a ladle and continuously cast. As shown in FIG. 4 schematically showing the relationship between the time after the end of the converter and the molten steel temperature, the temperature drop (ΔTx
x) occurs. The prediction of this temperature drop amount is formulated as shown below. As shown in the equations (1) to (6), the molten steel temperature drop amount (ΔT) generated in the predicted steelmaking process is added to the molten steel casting target temperature (Tcc) in the continuous casting machine (CCM) to blow the converter. setting the Netsui Ryoji and secondary refining equipment arrival of the molten steel target temperature. The molten steel casting target temperature refers to a temperature that is predetermined from the molten steel solidification temperature that differs depending on the type of manufacturing steel.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】 △TRC={p1 ・(TRHE −Tn )+p2 ・(TRHE −Tatm )} /Wst・time4 ・・・(7) ここで、 time4=C(操業実績から得た定数) Wst :溶鋼重量 TRHE :RH処理後温度 Tn :取鍋内壁レンガ温度(℃) Tatm :大気温度(℃) pj :操業実績データから得た定数 Vi (dCi /dt)=Qst(Ci-1 −Ci )−kA(Ci −Ce ) ・・・(8) Qst:溶鋼還流量 k :物質移動係数 A :脱炭反応界面積 Wst・Cp ・(dTi /dt)=Cp ・Qst・(Ti-1 −Ti ) +ΣQr −Qcl−Qls ・・・(9) Ti :i領域の溶鋼温度 Cp :溶鋼の比熱 ΣQr :全反応熱変化率 Qcl :冷材冷却熱変化率 Qls :大気他への放熱量 (2)転炉終点目標温度演算部(S−40) 転炉吹錬以降の各プロセスでの温度降下量予測を以下の
各ステップで演算し、上記(1)式に基づき連続鋳造機
(CC)鋳込み温度が要求温度になるよう、転炉終点目
標温度を演算する。この時、二次精錬炉での昇温用Al
投入冷却材投入が0となるように決定することが望まし
い。
ΔTRC = {p1. (TRHE-Tn) + p2. (TRHE-Tatm)} / Wst.time4 (7) where time4 = C (constant obtained from operation results) Wst: molten steel weight TRHE: Temperature after RH treatment Tn: Ladle inner wall brick temperature (° C) Tatm: Atmospheric temperature (° C) pj: Constant obtained from operation data Vi (dCi / dt) = Qst (Ci-1 -Ci) -kA ( Ci-Ce) (8) Qst: molten steel reflux amount k: mass transfer coefficient A: decarburization reaction interfacial area Wst.Cp. (dTi / dt) = Cp.Qst. (Ti-1 -Ti) +. SIGMA.Qr- Qcl-Qls (9) Ti: Molten steel temperature in the i region Cp: Specific heat of molten steel ΣQr: Total reaction heat change rate Qcl: Cooling material cooling heat change rate Qls: Heat release to atmosphere (2) Converter end point Starring target temperature calculation unit (S-40) the amount of temperature drop prediction in rolling Ro吹 wrought after each process in the following steps Based on the above equation (1), the converter end point target temperature is calculated so that the continuous casting machine (CC) casting temperature becomes the required temperature. At this time, Al for heating in the secondary refining furnace
It is desirable to determine so that the input of the supplied coolant is zero.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】転炉温度バランス式 △T=u0 (CS −CE )+u1 ・ln(CS /CE +u2 [(−1/CS )−(−1/CE )] +u3 [ 0.5(−1/CS 2)− 0.5(−1/CE 2)] +f(WCL)+K ・・・・・(15)u0 ,u1 ,u2 ,u3 :先行転炉操業の実績データよ
り得た定数 K :制御対象とする転炉操業の条件にて定まる変数 f(WCL):サブランス計測時点から吹錬終点までに投
入された冷却材量WCLの関数 CS :吹錬末期のサブランス計測による鋼中炭素含有
量計測値(%) CE :吹錬終点における鋼中炭素含有量(%) WCL :サブランス計測時点から吹錬終点にいたる期間
に溶鋼中に投入された冷却材量(T) 転炉酸素バランス式 △O2 /WST=v0 (CS −CE )+v1 ・ln(CS /CE ) +v2 [(−1/CS )−(−1/CE )] +v3 [ 0.5(−1/CS 2)− 0.5(−1/CE 2)] +K ・・・・(16) O2 :酸素量(Nm3 ) WST:主原料装入量から推定した溶鋼重量(T)v0 ,v1 ,v2 ,v3 :先行転炉操業の実績データよ
り得た定数
The converter temperature balance equation △ T = u0 (CS -CE) + u1 · ln (CS / CE) + u2 [(-1 / CS) - (- 1 / CE)] + u3 [0.5 (-1 / CS 2 ) -0.5 (-1 / CE 2 )] + f (WCL) + K (15) u0, u1, u2, u3 : Constant obtained from the actual data of the preceding converter operation K: Transfer to be controlled Variable determined by furnace operating conditions f (WCL): Function of coolant amount WCL injected from the time of sublance measurement to the end of blowing. CS: Measured carbon content in steel by sublance measurement at the end of blowing (%). CE: Carbon content in steel at the end of blowing (%) WCL: Amount of coolant injected into molten steel during the period from the time of sublance measurement to the end of blowing (T) Converter oxygen balance formula ΔO 2 / WST = v0 (CS -CE) + v1 · ln (CS / CE) + v2 [(-1 / CS) - (- 1 CE)] + v3 [0.5 ( -1 / CS 2) - 0.5 (-1 / CE 2)] + K ···· (16) O 2: oxygen (Nm 3) WST: estimated from the main raw material charging amount Molten Steel Weight (T) v0, v1, v2, v3: Based on actual data of preceding converter operation
Obtained constant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】転炉、二次精錬装置および連続鋳造機を有
する設備における製鋼プロセスの転炉の吹錬終点制御方
法において、連続鋳造鋳込み時点での要求溶鋼温度、上
記転炉、二次精錬装置および連続鋳造機の操業開始予定
時間、操業所要予定時間、運搬時間ならびに過去の転炉
以外の各装置の熱履歴および溶鋼温度昇温量・降下量実
績を収集し、前記製鋼プロセスおよび運搬の変動に応じ
て、転炉吹錬終了以後の連続鋳造機鋳込み時点までの溶
鋼温度降下量(△T)を下記の式により予測し、前記予
測溶鋼温度降下量(△T)に基づき転炉吹錬終点での溶
鋼目標温度を修正し、前記修正転炉吹錬終点目標温度に
基づき転炉の吹錬終点制御を行うことを特徴とする転炉
の吹錬終点制御方法。 △T=△TCL+△TLR+△TRH+△TRC ここで、 △T :転炉吹錬終了から連続鋳造機における鋳込み開
始までに生じる溶鋼温度降下量 △TCL:転炉吹錬終了から取鍋受鋼終了までに生じる溶
鋼温度降下量 △TLR:取鍋受鋼終了から二次精錬装置での処理開始ま
でに生じる溶鋼温度降下量 △TRH:二次精錬装置処理中に生じる溶鋼温度変動量 △TRC:二次精錬装置での処理終了から連続鋳造機での
鋳造開始までに生じる溶鋼温度降下量
1. A method for controlling a blowing end point of a converter in a steelmaking process in a facility having a converter, a secondary refining device and a continuous casting machine, wherein a required molten steel temperature at the time of continuous casting and casting, the converter, the secondary refining. Scheduled start time of operation of equipment and continuous casting machine, expected operation time, transportation time and past thermal history of each equipment other than converter According to the fluctuation, the molten steel temperature drop amount (ΔT) after the end of the converter blowing up to the casting time of the continuous casting machine is predicted by the following formula, and based on the predicted molten steel temperature drop amount (ΔT), the converter blowing is performed. A method for controlling the blowing end point of a converter, wherein the molten steel target temperature at the end point of the smelting is corrected, and the blowing end point control of the converter is performed based on the corrected target temperature of the blowing end point of the converter. ΔT = ΔTCL + ΔTLR + ΔTRH + ΔTRC where ΔT: amount of molten steel temperature drop that occurs from the end of converter blowing to the start of casting in a continuous casting machine ΔTCL: end of converter blowing and ladle receiving ΔTLR: Temperature drop of molten steel that occurs from the end of ladle steel reception to the start of processing in the secondary refining equipment △ TRH: Fluctuation of molten steel temperature that occurs during secondary refining equipment processing △ TRC: Two The amount of molten steel temperature drop that occurs from the end of processing at the next refining equipment to the start of casting at the continuous casting machine
JP04537995A 1995-03-06 1995-03-06 Converter end point control method for converter Expired - Fee Related JP3146907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04537995A JP3146907B2 (en) 1995-03-06 1995-03-06 Converter end point control method for converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04537995A JP3146907B2 (en) 1995-03-06 1995-03-06 Converter end point control method for converter

Publications (2)

Publication Number Publication Date
JPH08246016A true JPH08246016A (en) 1996-09-24
JP3146907B2 JP3146907B2 (en) 2001-03-19

Family

ID=12717643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04537995A Expired - Fee Related JP3146907B2 (en) 1995-03-06 1995-03-06 Converter end point control method for converter

Country Status (1)

Country Link
JP (1) JP3146907B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007631A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Method for setting target temperature of ending blowing in converter
JP2010261080A (en) * 2009-05-08 2010-11-18 Sumitomo Metal Ind Ltd Method for adjusting concentration and temperature of molten metal component, and method for producing steel
JP2011089180A (en) * 2009-10-23 2011-05-06 Sumitomo Metal Ind Ltd Method for producing steel for high-strength and highly corrosion-resistant oil-well pipe
KR101477265B1 (en) * 2013-08-28 2015-01-02 현대제철 주식회사 Method for making molten steel by converter
CN115041642A (en) * 2022-05-23 2022-09-13 宝武集团鄂城钢铁有限公司 Converter tapping method
CN117553921A (en) * 2024-01-12 2024-02-13 山东钢铁股份有限公司 Converter molten steel temperature prediction method, system, terminal and storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007631A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Method for setting target temperature of ending blowing in converter
JP2010261080A (en) * 2009-05-08 2010-11-18 Sumitomo Metal Ind Ltd Method for adjusting concentration and temperature of molten metal component, and method for producing steel
JP2011089180A (en) * 2009-10-23 2011-05-06 Sumitomo Metal Ind Ltd Method for producing steel for high-strength and highly corrosion-resistant oil-well pipe
KR101477265B1 (en) * 2013-08-28 2015-01-02 현대제철 주식회사 Method for making molten steel by converter
CN115041642A (en) * 2022-05-23 2022-09-13 宝武集团鄂城钢铁有限公司 Converter tapping method
CN115041642B (en) * 2022-05-23 2023-06-27 宝武集团鄂城钢铁有限公司 Tapping method of converter
CN117553921A (en) * 2024-01-12 2024-02-13 山东钢铁股份有限公司 Converter molten steel temperature prediction method, system, terminal and storage medium
CN117553921B (en) * 2024-01-12 2024-04-19 山东钢铁股份有限公司 Converter molten steel temperature prediction method, system, terminal and storage medium

Also Published As

Publication number Publication date
JP3146907B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP5145790B2 (en) Blowing end point temperature target setting method for converter
JPH08246016A (en) Method for controlling end point of blowing in converter
JP3561401B2 (en) State estimation method for manufacturing process
JP4100179B2 (en) Molten steel temperature control method and apparatus
JP5482615B2 (en) Blowing control method in converter
JP6252532B2 (en) Apparatus and method for setting target molten steel temperature at the end of converter blowing
JPH11335721A (en) Method for controlling temperature of molten metal in secondary refining and apparatus therefor
JP2751800B2 (en) Liquid Steel Temperature Control Method in Steel Making Process
JP2001034672A (en) Operation plan adjusting method and operation plan adjusting system
JP2005320563A (en) Method for controlling temperature of molten steel
CN102234715B (en) Cross steel tapping control method for blooming furnace group
JP2947109B2 (en) Temperature control method for molten metal
JPH083621A (en) Method for adjusting molten steel temperature in steelmaking process
JPS5822325A (en) Optimum control means for heating oven for bloom
JPH055121A (en) Method for controlling steel tapping temperature
JP2018003079A (en) Device for setting target molten steel temperature at converter blowing completion, method for setting target molten steel temperature at converter blowing completion, converter blowing method and converter operation method
JPH0160530B2 (en)
JP2773610B2 (en) Automatic control method of cutout amount of coke dry fire extinguishing equipment
JP6375741B2 (en) Control method of molten steel temperature in steelmaking factory
JP7031350B2 (en) How to estimate the casting time in the steelmaking process
JP3061362B2 (en) Heating furnace extraction control method for hot rolling line
JPH10330826A (en) Method for controlling molten metal temperature
JP5942399B2 (en) Converter end point temperature setting method
SU1562646A1 (en) Device for controlling iron-melting in cupola furnace
JP2016211045A (en) Device and method for setting target molten steel temperature at the end of converter blowing, and converter operation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees