JP3057892B2 - Electronic sphygmomanometer - Google Patents

Electronic sphygmomanometer

Info

Publication number
JP3057892B2
JP3057892B2 JP4099419A JP9941992A JP3057892B2 JP 3057892 B2 JP3057892 B2 JP 3057892B2 JP 4099419 A JP4099419 A JP 4099419A JP 9941992 A JP9941992 A JP 9941992A JP 3057892 B2 JP3057892 B2 JP 3057892B2
Authority
JP
Japan
Prior art keywords
cuff
pulse wave
pressure
pressurization
wave amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4099419A
Other languages
Japanese (ja)
Other versions
JPH05111468A (en
Inventor
修 白崎
照也 仁科
義徳 宮脇
正史 福良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP4099419A priority Critical patent/JP3057892B2/en
Publication of JPH05111468A publication Critical patent/JPH05111468A/en
Application granted granted Critical
Publication of JP3057892B2 publication Critical patent/JP3057892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、オシロメトリック式
電子血圧計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oscillometric electronic sphygmomanometer.

【0002】[0002]

【従来の技術】オシロメトリック式電子血圧計は、カフ
圧上に重畳する脈波を捕捉し、この振幅変化を基に血圧
を算出するものである。この振幅変化は、図7に示すよ
うに、カフ圧が収縮期圧(最高血圧)に対して充分に高
い時には小さく、その後、カフを減圧するに従って増大
し、カフ圧が拡張期圧(最低血圧)と等しくなる直前
(ほぼカフ圧=平均血圧とされる)で最大となる。つま
り、脈波極大点P点となる。その後、減少していく。こ
の振幅変化を基に血圧を算出している。
2. Description of the Related Art An oscillometric electronic sphygmomanometer captures a pulse wave superimposed on a cuff pressure and calculates a blood pressure based on a change in the amplitude. As shown in FIG. 7, this amplitude change is small when the cuff pressure is sufficiently higher than the systolic pressure (systolic blood pressure), and then increases as the cuff is depressurized. ) (The cuff pressure is approximately equal to the average blood pressure). That is, the pulse wave maximum point P is set. Then it decreases. The blood pressure is calculated based on the change in the amplitude.

【0003】オシロメトリック法による血圧決定には、
図7で示すように、カフ圧変化に伴う脈波振幅の変化
(包絡線)が用いられる。この包絡線は、カフ圧がほぼ
平均血圧と等しくなった点で最大となり(P点)、その
圧力点から離れるに伴い振幅が減少する。血圧を算出す
るには、カフ圧が最高・最低血圧と等しくなる点(S点
・D点)を認識する必要がある。この2点は「脈波振幅
が最大振幅値の相対比と等しい点」として決定される。
カフ圧は予めある圧力値まで加圧され、その後徐々に減
圧されるから、S点、P点、D点の順に通過することと
なる。従って、S点はP点通過まで検知できない。例え
ば、測定前の加圧がS点まで達していないとすると、S
点の脈波振幅が捕捉できないから最高血圧は測定不可
能、つまり加圧不足となる。しかし、この加圧不足が判
明するのはP点検出時点であり、それまでは加圧不足
(最高血圧測定不能)は判明しない。一般に、平均血圧
は最低血圧にかなり近いため、最高血圧測定が不可能で
あることは測定末期まで判明しないこととなる。このた
め、オシロメトリック式血圧計の使用者は、加圧の際、
最高血圧を推測し、それに対して充分に高い加圧設定を
要求される。ところが、一般の使用者或いは血圧が変動
しやすい高血圧者の場合には、それが非常に困難であ
り、加圧不足は度々起こっているのが現状である。しか
も、加圧不足は測定末期まで判明しないから、実質上測
定はやり直さねばならず、これが測定の操作性、迅速
性、更に精度まで影響を与える等の不利があった。
[0003] To determine blood pressure by the oscillometric method,
As shown in FIG. 7, the change (envelope) of the pulse wave amplitude accompanying the change of the cuff pressure is used. This envelope becomes maximum at the point where the cuff pressure becomes substantially equal to the average blood pressure (point P), and the amplitude decreases as the distance from the pressure point increases. In order to calculate the blood pressure, it is necessary to recognize points (points S and D) at which the cuff pressure becomes equal to the highest and lowest blood pressures. These two points are determined as "points where the pulse wave amplitude is equal to the relative ratio of the maximum amplitude value".
The cuff pressure is increased to a certain pressure value in advance and then gradually reduced, so that the cuff pressure passes in the order of point S, point P, and point D. Therefore, the point S cannot be detected until passing the point P. For example, if the pressure before measurement has not reached the point S,
Since the pulse wave amplitude at the point cannot be captured, the systolic blood pressure cannot be measured, that is, the pressure is insufficient. However, the lack of pressurization is determined at the point of detection of the point P, and the insufficient pressurization (measurement of systolic blood pressure is impossible) is not known until then. In general, the mean blood pressure is very close to the diastolic blood pressure, so that it is not known until the end of the measurement that the systolic blood pressure cannot be measured. Therefore, the user of the oscillometric sphygmomanometer, when pressurizing,
Guess systolic blood pressure, is required to sufficiently high pressure set for it. However, in the case of a general user or a hypertensive subject whose blood pressure is apt to fluctuate, it is very difficult, and under pressurization often occurs. In addition, since the insufficient pressurization is not known until the end of the measurement, the measurement must be substantially repeated, which has the disadvantage of affecting the operability, quickness, and accuracy of the measurement.

【0004】そこで、この不利を解決するために、従
来、オシロメトリック式血圧計では、加圧停止後の減圧
過程に入る時点で検出される脈波振幅と予め設定した基
準値と比較して加圧不足の有無を判断する方式(特開昭
61−130202号)や、加圧停止時のカフ圧を利用
して基準値を設定し、減圧開始時点で検出される脈波振
幅と設定した基準値とを比較して加圧不足の有無を判断
する方式(特開昭62−47337号)が採用されてい
る。
Therefore, in order to solve this disadvantage, conventionally, an oscillometric sphygmomanometer compares the pulse wave amplitude detected at the time of starting the decompression process after the stop of pressurization with a preset reference value. A method of judging the presence or absence of insufficient pressure (Japanese Patent Application Laid-Open No. Sho 61-130202), a reference value is set using the cuff pressure at the time of stopping pressurization, and the pulse wave amplitude detected at the time of starting decompression and the set reference value are set. A method (JP-A-62-47337) of judging the presence or absence of insufficient pressurization by comparing the values with the values is adopted.

【0005】[0005]

【発明が解決しようとする課題】上記した従来方式で
は、加圧不足の有無をある程度判断し得るものの、予め
設定した基準値は、計器に固定の値であり、人によっ
て、脈波振幅の大きさに差がある個人差を吸収できない
し、また加圧停止時のカフを使用して基準値を設定する
と、血圧と脈波振幅に相があり、高血圧と加圧停止時
のカフ圧も比例関係にあるのが通常であり、ある程度、
個人差が吸収できるが、加圧停止時のカフ圧は人為的
設定を要するものであり、したがって、その人の血圧が
高くなくても、かなり高い値まで加圧する場合もあり、
必ずしも適正な基準値を設定し得ないという問題があ
る。
In the above-mentioned conventional method, although the presence or absence of insufficient pressurization can be determined to some extent, the preset reference value is a fixed value for the instrument, and the magnitude of the pulse wave amplitude is determined by a person. it can not absorb the individual difference of a difference in the, also by setting the reference value by using the cuff at the time of stopping pressurization, there is correlation to the blood pressure and pulse wave amplitude, also the cuff pressure at the time of blood pressure and the pressure stop It is usually proportional, and to some extent
If it individual differences can be absorbed, the cuff pressure at the time of stopping pressurization is shall to Yosu artificial <br/> settings, therefore, also be high blood pressure of the person, which pressurized to very high values Also,
There is a problem that an appropriate reference value cannot always be set.

【0006】この発明は上記問題点に着目してなされた
ものであって、個人差等による脈波振幅の大小に対応し
て、適正な加圧不足検出をなし得る電子血圧計を提供す
ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides an electronic sphygmomanometer capable of appropriately detecting insufficient pressurization in accordance with the magnitude of pulse wave amplitude due to individual differences or the like. It is an object.

【0007】[0007]

【課題を解決するための手段及び作用】この目的を達成
させるために、この発明の電子血圧計では、次のような
構成としている。
In order to achieve this object, an electronic sphygmomanometer according to the present invention has the following configuration.

【0008】[0008]

【発明が解決しようとする課題】電子血圧計は、カフ
と、カフを加圧する加圧手段と、加圧終了後にカフを減
圧する減圧手段と、カフ内の流体圧力を検出する圧力検
出手段と、前記カフ加圧・減圧手段による加減圧中にカ
フ圧信号上に重畳した脈波成分を抽出する脈波抽出手段
と、抽出した一拍毎の脈波について振幅を算出する脈波
振幅算出手段と、カフ減圧過程において前記脈波振幅算
出手段の出力信号及び前記圧力検出手段の出力信号に基
づいて血圧値を決定する血圧決定手段とから成る電子血
圧計であって、カフ加圧中に抽出する脈波振幅の最大値
を算出し、その最大値を基にしきい値を計算するしきい
値算出手段と、このしきい値算出手段により算出したし
きい値とカフ減圧過程の初期に捉えた脈波振幅とを比較
し、この減圧過程に移行した初期に検出した脈波振幅が
しきい値より小さい場合にはカフ圧力充分と判定し、大
きい場合にはカフ加圧不足と判定するカフ加圧不足判定
手段を具備してなることを特徴としている。
The electronic sphygmomanometer comprises a cuff, a pressurizing means for pressurizing the cuff, a pressure reducing means for depressurizing the cuff after pressurization, and a pressure detecting means for detecting a fluid pressure in the cuff. Pulse wave extracting means for extracting a pulse wave component superimposed on the cuff pressure signal during pressurization and depressurization by the cuff pressurizing / depressurizing means, and pulse wave amplitude calculating means for calculating an amplitude for each extracted pulse wave An electronic sphygmomanometer comprising: a blood pressure determination unit that determines a blood pressure value based on an output signal of the pulse wave amplitude calculation unit and an output signal of the pressure detection unit in a cuff depressurization process, wherein the blood pressure is extracted during cuff pressurization. Threshold value calculating means for calculating the maximum value of the pulse wave amplitude to be performed, and calculating the threshold value based on the maximum value, and the threshold value calculated by the threshold value calculating means and the cuff depressurization process at the beginning Compare with the pulse wave amplitude, Wherein the pulse wave amplitude detected in the early and row is determined to sufficiently cuff pressure is smaller than the threshold value, it comprises a cuff pressure shortage determining means for determining the cuff pressure shortage in greater And

【0009】このような構成を有する電子血圧計では、
カフ加圧中に脈波信号を捕捉し、脈波振幅の最大値を検
出し、この最大脈波振幅値からしきい値を算出する。こ
のしきい値は、例えば脈波最大値の50%とされる。そ
して、カフ減圧過程、つまり血圧測定に移行した際に得
られる一拍目の脈波振幅がしきい値より小さいか否かを
判定する。仮に、カフ減圧過程における一拍目の脈波振
幅がしきい値より小さいとすると、最高血圧を過ぎてお
らずカフ加圧充分と判定し、そのまま血圧測定に進む。
逆に、一拍目の脈波振幅がしきい値よりも大きいとする
と、既に最高血圧を過ぎておりカフ加圧不足と判定す
る。この場合、例えばカフ加圧不足を使用者に報知する
と共に、血圧計が自動的に再加圧(追加の加圧)を実行
する。
In the electronic blood pressure monitor having such a configuration,
The pulse wave signal is captured during the cuff pressurization, the maximum value of the pulse wave amplitude is detected, and a threshold value is calculated from the maximum pulse wave amplitude value. This threshold value is, for example, 50% of the maximum value of the pulse wave. Then, it is determined whether or not the pulse wave amplitude of the first beat obtained during the cuff depressurization process, that is, when shifting to the blood pressure measurement, is smaller than the threshold value. If the pulse wave amplitude of the first beat in the cuff depressurization process is smaller than the threshold value, it is determined that the cuff pressure has not been exceeded and the cuff pressure is sufficient, and the process directly proceeds to blood pressure measurement.
Conversely, if the pulse wave amplitude of the first beat is larger than the threshold value, it is determined that the cuff pressure is insufficient because the blood pressure has already exceeded the systolic blood pressure. In this case, for example, the user is notified of insufficient cuff pressurization, and the sphygmomanometer automatically performs repressurization (additional pressurization).

【0010】かくして、加圧終了直後に、カフ加圧量が
充分であるか否かを判定し得るから、測定不可能状態や
過剰な加圧を防止でき、操作性が向上すると共に、測定
の迅速化、測定時の苦痛の軽減を実現できる。特に、加
圧中の最大脈波振幅に基づいて、しきい値(基準値)を
算出するので、個人的に、脈波振幅の大小があっても、
応じて、しきい値も変化するので、個人差の影響を受け
ることなく、適正なしきい値を設定できる。
Thus, immediately after the end of the pressurization, it is possible to determine whether or not the cuff pressurization amount is sufficient, so that the unmeasurable state or excessive pressurization can be prevented, the operability is improved, and the measurement is performed. Faster and less pain during measurement. In particular, since the threshold value (reference value) is calculated based on the maximum pulse wave amplitude during pressurization, even if the pulse wave amplitude is large or small,
The threshold value changes accordingly, so that an appropriate threshold value can be set without being affected by individual differences.

【0011】[0011]

【実施例】図4は、この発明に係る電子血圧計の具体的
な一実施例を示す回路ブロック図である。
FIG. 4 is a circuit block diagram showing a specific embodiment of the electronic sphygmomanometer according to the present invention.

【0012】電子血圧計は、カフ1と、カフ1を加圧す
る加圧ポンプ2、カフ内圧力を減圧するコントロール弁
(急速排気弁、微速排気弁)3が、それぞれエアチュー
ブ1aを介して接続され空気系が構成されている。そし
て、この加圧ポンプ2及びコントロール弁3は後述する
CPU8に電気的に接続され駆動制御されるようになっ
ている。また、エアチューブ1aには圧力センサ4が配
備されている。この圧力センサ4は、例えばひずみゲー
ジを使用したダイヤフラム変換器、或いは半導体圧力変
換素子等が使用される。圧力センサ4の出力信号(アナ
ログ量)は、増幅器5を通じてローパスフィルタ6を介
し、A/D変換器7に送られ、A/D変換器7でデジタ
ル値に変換される。このローパスフィルタ6は、加圧途
上で脈波を検出するにおいて、カフ圧信号上に混入する
加圧ポンプの圧ノイズを除去するためのものである。C
PU8は、デジルタ値に変換されノイズが除去された圧
力センサ4の出力信号を一定周期で取り込む。このCP
U8は、脈波抽出処理機能(カフ圧データから脈波を取
り込む機能)、脈波振幅算出機能(脈波の起点・終点を
一拍毎に認識し脈波振幅を算出する機能)、血圧算出処
理機能(得られた複数の脈波振幅、すなわち包絡線から
最高・最低血圧値を算出する機能)を有する。更に、C
PU8はカフ加圧中の最大脈波を基にいきし値を算出す
る機能(カフ圧不足を判定するためのしきい値、実施例
では脈波の最大値Amaxの50%)、及びカフ減圧過
程直後(カフ加圧終了後の一拍目)の脈波振幅としきい
値とを比較し、一拍目の脈波振幅がしきい値より小さい
場合は加圧充分と判定し、一拍目の脈波振幅がしきい値
より大きい場合は加圧不足(最高血圧決定用データな
し)と判定するカフ加圧不足検出機能を有する。また、
カフ加圧不足と判定した場合は、自動的にカフを再加圧
(追加加圧)する機能を有する。更に、CPU8は決定
した最高血圧、最低血圧値を表示器9に表示させる機能
を有している。
The electronic sphygmomanometer is connected to a cuff 1, a pressurizing pump 2 for pressurizing the cuff 1, and a control valve (rapid exhaust valve, slow exhaust valve) 3 for reducing the pressure in the cuff via an air tube 1a. The air system is constructed. The pressurizing pump 2 and the control valve 3 are electrically connected to a CPU 8 which will be described later, and are driven and controlled. A pressure sensor 4 is provided in the air tube 1a. As the pressure sensor 4, for example, a diaphragm converter using a strain gauge, a semiconductor pressure conversion element, or the like is used. An output signal (analog amount) of the pressure sensor 4 is sent to an A / D converter 7 via a low-pass filter 6 through an amplifier 5, and is converted into a digital value by the A / D converter 7. The low-pass filter 6 is for removing pressure noise of the pressure pump mixed into the cuff pressure signal when detecting a pulse wave during pressurization. C
The PU 8 captures the output signal of the pressure sensor 4 from which the noise has been removed after being converted into the derilta value at a constant period. This CP
U8 includes a pulse wave extraction processing function (a function of capturing a pulse wave from cuff pressure data), a pulse wave amplitude calculation function (a function of recognizing a start point and an end point of a pulse wave for each beat and calculating a pulse wave amplitude), a blood pressure calculation It has a processing function (a function of calculating the highest and lowest blood pressure values from a plurality of obtained pulse wave amplitudes, that is, envelopes). Further, C
PU8 has a function of calculating a breath value based on the maximum pulse wave during cuff pressurization (threshold for determining insufficient cuff pressure, 50% of the maximum value Amax of pulse wave in the embodiment), and depressurization of the cuff. The pulse wave amplitude immediately after the process (the first beat after the end of the cuff pressurization) is compared with the threshold value. If the pulse wave amplitude of the first beat is smaller than the threshold value, it is determined that the pressurization is sufficient, and the first beat is determined. When the pulse wave amplitude is larger than the threshold value, a cuff underpressure detection function is provided for determining that the pressure is insufficient (there is no systolic blood pressure determination data). Also,
When it is determined that the cuff pressurization is insufficient, a function of automatically repressurizing the cuff (additional pressurization) is provided. Further, the CPU 8 has a function of displaying the determined systolic and diastolic blood pressure values on the display 9.

【0013】図1は、実施例電子血圧計の具体的な処理
動作を示すフローチャートである。測定に際し、電源ス
イッチ及び加圧スイッチをONすると、カフ1の加圧が
スタートする。〔ステップ(以下、STという)1〕。
なお、この時点では加圧目標値は、予め手動スイッチで
任意に設定されている。この加圧中に、圧力センサ4の
出力信号に基づいて、カフ圧データから脈波成分を抽出
する(ST2)。これは、プログラム上で実現ささるハ
イパスフィルタである。このフィルタの遮断周波数を、
例えば0.7Hz程度とすれば加圧開始時の過度応答時
間を約1秒程度に押さえられ、脈波認識をより迅速に開
始できる。次に、一拍毎の脈波振幅が算出される(ST
3)。そして、加圧中に捕捉される脈波のうち、最大の
振幅を持つものを認識し、その振幅値がメモリに記憶さ
れる、つまり脈波振幅の最大値が記憶される(ST
4)。ST5では、カフ圧が予め設定された加圧目標値
に到達したか否かを判定している。つまり、カフ圧が加
圧目標値に到達するまでST2乃至ST4が繰り返され
る。いま、カフ圧が加圧目標値に到達したとすると、こ
のST5の判定がYESとなり加圧停止される(ST
6)と同時に、微速排気が開始され(ST7)、血圧測
定に移行する。
FIG. 1 is a flowchart showing a specific processing operation of the electronic blood pressure monitor of the embodiment. When the power switch and the pressure switch are turned on at the time of measurement, the pressure of the cuff 1 starts. [Step (hereinafter referred to as ST) 1].
At this time, the pressurization target value is arbitrarily set in advance by a manual switch. During this pressurization, a pulse wave component is extracted from the cuff pressure data based on the output signal of the pressure sensor 4 (ST2). This is a high-pass filter realized on a program. The cutoff frequency of this filter is
For example, when the frequency is set to about 0.7 Hz, the transient response time at the start of pressurization can be suppressed to about 1 second, and the pulse wave recognition can be started more quickly. Next, the pulse wave amplitude for each beat is calculated (ST
3). Then, among the pulse waves captured during pressurization, the one having the largest amplitude is recognized, and the amplitude value is stored in the memory, that is, the maximum value of the pulse wave amplitude is stored (ST
4). In ST5, it is determined whether or not the cuff pressure has reached a preset pressurization target value. That is, ST2 to ST4 are repeated until the cuff pressure reaches the pressurization target value. Now, assuming that the cuff pressure has reached the pressurization target value, the determination in ST5 is YES, and pressurization is stopped (ST5).
6) At the same time, the slow exhaust is started (ST7), and the process shifts to blood pressure measurement.

【0014】まず、ST8及びST9では、カフ加圧中
と同様にそれぞれ脈波抽出、脈波振幅算出を実行する。
ST10では、加圧不足検出を行うために、一拍目の脈
波振幅が得られたか否かを判定している。得られた脈波
振幅が一拍目の脈波振幅である場合にのみ、次のST1
1へ進みカフ加圧不足検出処理を実行するが、そうでな
い場合にはST15へジャンプし血圧算出処理に移行す
る。いま、一拍目の脈波振幅であるとすると、ST10
の判定がYESとなり、加圧不足検出処理に移行する。
ここで、加圧中最大脈波振幅値と第1拍目の脈波振幅が
比較され、加圧不足の判定を行う(ST12)。そし
て、加圧不足でないと判定された場合には、このST1
2の判定がNOとなり、ST15の血圧測定算出処理に
移る。しかし、加圧不足と判定された場合には、ST1
2の判定がYESとなり、加圧目標値の変更が行われる
(ST13)。これは、初期の加圧目標値に所定の圧力
値(例えば30mmHg)を加えた値にする等の処理で
ある。続いて、加圧が再度開始された後、ST5へ進み
新たな加圧目標値までの加圧が実行される。
First, in ST8 and ST9, pulse wave extraction and pulse wave amplitude calculation are respectively performed in the same manner as during cuff pressurization.
In ST10, it is determined whether or not the pulse wave amplitude of the first beat has been obtained in order to detect insufficient pressurization. Only when the obtained pulse wave amplitude is the pulse wave amplitude of the first beat, the next ST1
The process proceeds to 1 to execute the cuff pressurization insufficient detection process. If not, the process jumps to ST15 and shifts to the blood pressure calculation process. Assuming that the pulse wave amplitude is the first beat, ST10
Is YES, and the process proceeds to the under-pressurization detection process.
Here, the maximum pulse wave amplitude value during pressurization is compared with the pulse wave amplitude of the first beat, and it is determined that pressurization is insufficient (ST12). If it is determined that the pressure is not insufficient, this ST1
The determination at 2 is NO, and the flow proceeds to the blood pressure measurement calculation process at ST15. However, if it is determined that pressurization is insufficient, ST1
The determination at 2 is YES, and the pressurization target value is changed (ST13). This is a process of adding a predetermined pressure value (for example, 30 mmHg) to the initial pressurization target value, and the like. Subsequently, after the pressurization is restarted, the process proceeds to ST5, and pressurization to a new pressurization target value is performed.

【0015】血圧算出処理は、微速排気が進み拡張期圧
(DP)が決定されるまでST8乃至ST15を繰り返
し、DPが決定されるとST16の判定がYESとな
り、急速排気され(ST17)、血圧値の表示が行われ
る。
In the blood pressure calculation process, ST8 to ST15 are repeated until the evacuation is advanced and the diastolic pressure (DP) is determined. When the DP is determined, the determination in ST16 becomes YES, rapid exhaust is performed (ST17), and the blood pressure is calculated. The value is displayed.

【0016】図2は、上記加圧不足判定処理(上記ST
12)の詳細な処理動作を示すフローチャートである。
この処理では、カフ減圧過程に移行した一拍目の脈波振
幅と加圧中に捕捉した最大脈波振幅とを比較して加圧不
足の判定を行う。まず、カフ加圧不足検出のためのしき
い値THを算出する(ST21)。しきい値THは、加
圧中の最大脈波振幅に、例えば2つの係数K1 、K2
乗ずることによって算出する。つまり、 TH=(加圧中最大脈波振幅)×K1 ×K2 ここで、K1 は脈波抽出フィルタの特性に依存する係数
である。加圧中に脈波抽出を行うフィルタは、減圧中の
血圧測定にて用いられるものと同一のものでも良いが
(その場合は係数K1 は「1」となるが)、一般に、加
圧開始から数秒間はフィルタ出力上に過度応答が生じ、
脈波検出が阻害される。そこで、過度応答時間を短縮す
る目的でより高い遮断周波数のフィルタを用いることが
考えられる。その場合、脈波の比較的低い周波数成分が
除去されるため、脈波の振幅がほぼ一定の比率で圧縮さ
れる。そこで、それを補正するために係数K1 を乗じ
る。一方、K2 は収縮期圧算出のための脈波振幅の相対
比(ここでは0.5としている)である。
FIG. 2 is a flow chart of the above-described under-pressurization determination processing (ST ST).
It is a flowchart which shows the detailed processing operation of 12).
In this process, the underpressure is determined by comparing the pulse wave amplitude of the first beat that has shifted to the cuff depressurization process with the maximum pulse wave amplitude captured during the pressurization. First, a threshold value TH for detecting insufficient cuff pressurization is calculated (ST21). The threshold value TH is calculated by multiplying the maximum pulse wave amplitude during pressurization by, for example, two coefficients K 1 and K 2 . That is, TH = (maximum pulse wave amplitude during pressurization) × K 1 × K 2 where K 1 is a coefficient depending on the characteristics of the pulse wave extraction filter. The filter for extracting the pulse wave during the pressurization may be the same as that used for measuring the blood pressure during the depressurization (in that case, the coefficient K 1 is “1”). For a few seconds, there is a transient response on the filter output,
Pulse wave detection is hindered. Therefore, it is conceivable to use a filter having a higher cutoff frequency for the purpose of shortening the transient response time. In this case, since the relatively low frequency components of the pulse wave are removed, the amplitude of the pulse wave is compressed at a substantially constant ratio. Therefore, multiplied by a coefficient K 1 in order to correct it. Meanwhile, K 2 is the relative ratio of the pulse wave amplitude for systolic pressure calculating out (is set to 0.5 in this case).

【0017】ここで係数K1の算出方法について説明す
る。たとえば、図5の減圧過程の脈波振幅包絡線dと加
圧過程の脈波振幅包絡線iで示すように、上記した理由
で加圧時の脈波振幅がある比率で小さくなる。この比率
は、図6の測定例(測定数599について、加圧過程の
最大振幅と減圧過程の最大振幅の交点をプロット)で
は、減圧過程の最大振幅をx、加圧過程の最大振幅をy
とし、ある程度ラフに考え、直線Lが原点を通るものと
するとy=axで表わされ、図例ではa=2/3程度で
ある。したがって測定例のような血圧計では、K1
1.5と設定される。
Here, a method of calculating the coefficient K 1 will be described. For example, as shown by the pulse wave amplitude envelope d in the depressurization process and the pulse wave amplitude envelope i in the pressurization process in FIG. 5, the pulse wave amplitude during pressurization decreases at a certain ratio for the above-described reason. In the measurement example of FIG. 6 (intersection of the maximum amplitude in the pressurization process and the maximum amplitude in the depressurization process for the measurement number 599), this ratio is x as the maximum amplitude in the depressurization process and y as the maximum amplitude in the pressurization process.
Assuming that the straight line L passes through the origin, it is expressed as y = ax, and in the illustrated example, a = 2. Therefore, in a sphygmomanometer as in the measurement example, K 1 =
1.5 is set.

【0018】つまり、血圧測定開始直後の脈波振幅[こ
こでは第1拍目の脈波振幅・AMP(1)としている]
が、最大脈波振幅の推定値(実施例では加圧中の最大脈
波振幅Amax-i×K1で代用)に、K2を乗じた値を
加圧不足判定のしきい値THとしている。上記測定例の
概算のものでは、しきい値は、 TH=Amax-i×1.5×0.5 となる。ST22では、一拍目の脈波振幅Ap(1)が
しきい値THより小さいか否かを判定している。つま
り、一拍目の脈波振幅がしきい値より大きければ、加圧
がS点(図7参照)に対応するカフ圧より低い、即ち加
圧不足である(最高血圧検出のためデータなし)と判定
される。この場合、ST22の判定がNOとなり、加圧
不足と判定し(ST24)リターンする。つまり、上記
ST13へ進み加圧目標値の変更が実行される。逆に、
一拍目の脈波振幅がしきい値より小さければ、このST
22の判定がYESとなり、加圧充分(最高血圧検出の
ためのデータあり)と判定され(ST23)、リターン
する。つまり、ST15へ進み血圧測定処理が実行され
る。
That is, the pulse wave amplitude immediately after the start of the blood pressure measurement [here, the pulse wave amplitude of the first beat / AMP (1)]
But the estimate of the maximum pulse wave amplitude (exemplary maximum pulse wave amplitude Amax of pressurization in the example - substitute i × K 1) to a value obtained by multiplying the K 2 as the threshold T H of pressurized shortage determination I have. In the approximation of the above measurement example, the threshold value is TH = Amax - i * 1.5 * 0.5. In ST22, it is determined whether or not the pulse wave amplitude Ap (1) of the first beat is smaller than the threshold value TH. That is, if the pulse wave amplitude of the first beat is larger than the threshold value, the pressurization is lower than the cuff pressure corresponding to the point S (see FIG. 7), that is, the pressurization is insufficient (no data for detecting systolic blood pressure). Is determined. In this case, the determination in ST22 is NO, it is determined that the pressurization is insufficient (ST24), and the routine returns. That is, the process proceeds to ST13 to change the target pressurization value. vice versa,
If the pulse wave amplitude of the first beat is smaller than the threshold, this ST
The determination at 22 is YES, and it is determined that pressure is sufficient (there is data for detecting systolic blood pressure) (ST23), and the routine returns. That is, the process proceeds to ST15, where the blood pressure measurement process is executed.

【0019】なお、図6の加圧過程最大脈波振幅−減圧
過程最大脈波振幅の相間特性を示す、直線式は、厳密に
は、直線LがY軸と交叉するので、直線Lはy=ax+
bとなり、これを考慮すると、しきい値はTH=[Am
ax-i×K3+K4]×K2となる。このしきい値THを
上記概算のしきい値に代えて用いてもよい。図6の厳密
な直線Lを使用した、しきい値THの算出方法を説明す
る。
Note that the straight line equation showing the interphase characteristic between the maximum pulse wave amplitude in the pressurization process and the maximum pulse wave amplitude in the depressurization process in FIG. 6 is strictly speaking, since the straight line L intersects the Y axis, the straight line L is y. = Ax +
b, and considering this, the threshold value is TH = [Am
ax - i × K 3 + K 4] a × K 2. This threshold value TH may be used instead of the approximate threshold value. A method of calculating the threshold value TH using the strict straight line L in FIG. 6 will be described.

【0020】サンプルデータより求めた直線Lは、 y=ax+b=0.5321x+0.1965 これは Amax-i=aAmax-d+bと表わせる。
これを変形して Amax-d=(1/a)Amax-i−b/a しきい値は TH=減圧中最大脈波振幅×K2で求めら
れるから、 TH=(1/a・Amax-i−b/a)×K2 =(K3Amax-i−K4)×K2 となる。ここでK3=1/a=1/0.5321=1.
88 K4=b/a=0.1965/0.5321=0.37
The straight line L obtained from the sample data is as follows: y = ax + b = 0.5321x + 0.1965 This can be expressed as Amax - i = aAmax - d + b.
By transforming this Amax - d = (1 / a ) Amax - from i-b / a threshold is obtained by TH = vacuum in the maximum pulse wave amplitude × K 2, TH = (1 / a · Amax - i-b / a) × K 2 = (K 3 Amax - i-K 4) a × K 2. Here, K 3 = 1 / a = 1 / 0.5321 = 1.
88 K 4 = b / a = 0.1965 / 0.5321 = 0.37

【0021】図3は、前記減圧中に実行される血圧算出
処理(上記ST十五)の詳細な処理動作を示すフローチ
ャートである。ここで、Amp(n)及びPc(n)等
の必要なデータは、直前に実行される脈波抽出・脈波振
幅算出処理において算出ずみとする。また、脈波の番号
(n)及び収縮期圧SP、拡張期圧DPは、それぞれ
「0」に初期化済みとする。
FIG. 3 is a flowchart showing the detailed processing operation of the blood pressure calculation process (ST15) executed during the pressure reduction. Here, it is assumed that necessary data such as Amp (n) and Pc (n) have been calculated in the pulse wave extraction / pulse wave amplitude calculation processing executed immediately before. It is also assumed that the pulse wave number (n), the systolic pressure SP, and the diastolic pressure DP have already been initialized to “0”, respectively.

【0022】まず、脈波の番号nが1インクリメントさ
れる(ST31)。次のST32では、算出直後のAm
p(n)がAmaxと比較される。つまり、Amp
(n)がAmaxより小さいか否か判定している。ここ
で、予めAmaxを「0」に設定しておくと、Amp
(n)はAmaxより大きいため、このAmp(n)の
値をAmaxに代入した後(ST33)、ST31へリ
ターンし、この処理を繰り返す。そして、Amp(n)
がAmaxよりも大きくなると、次のST34へ進む。
Amp(n)がAmaxより大きいとは、包絡線は既に
極大点を経過し減少過程にあることを意味する。次のS
T34では、収縮期圧(最高血圧)SPが「0」である
か否かを判定している。ここで、SPが「0」であるな
ら、SPが未決定あると判定する。この場合、ST34
の判定がYESとなり、ST35乃至ST38でSP算
出処理に移行する。逆に、SPが決定ずみであれば、こ
のST34の判定がNOとなり、ST39へ移行し、D
P算出処理を実行する。今、SPが「0」であり未決定
であるとすると、ST35で脈波のカウンタjを現在の
脈波番号nにセットする(ST35)。次に、jを1デ
クリメントして(ST36)、jで指定される脈波振幅
Amp(j)を極大値Amax×0.5と比較する(S
T37)。ここで、Amp(j)がAmax×0.5よ
りも大きければ、このST37の判定がNOとなりST
36へ戻り、逆にAmp(j)がAmax×0.5より
よりも小さければ、このPC(j)を収縮期圧(最高血
圧)SPとする(ST38)。そして、次に拡張期圧D
P算出処理に移行する。まず、ST39ではAmp
(n)がDP算出しきい値(Amax×0.7)以下に
減少したか否かを判定する。Amp(n)がAmax×
0.7以下に減少したとすると、このST39の判定が
YESとなり、Pc(n)をDPとし(ST40)、リ
ターンする。
First, the pulse wave number n is incremented by 1 (ST31). In the next ST32, Am immediately after the calculation
p (n) is compared to Amax. That is, Amp
It is determined whether (n) is smaller than Amax. Here, if Amax is previously set to “0”, Amp
Since (n) is larger than Amax, the value of Amp (n) is substituted for Amax (ST33), and the process returns to ST31 and repeats this process. And Amp (n)
Is larger than Amax, the process proceeds to next ST34.
If Amp (n) is larger than Amax, it means that the envelope has already passed the maximum point and is in the process of decreasing. Next S
At T34, it is determined whether or not the systolic pressure (systolic blood pressure) SP is “0”. Here, if the SP is “0”, it is determined that the SP has not been determined. In this case, ST34
Is YES, and the process proceeds to SP calculation processing in ST35 to ST38. Conversely, if SP has been determined, the determination in ST34 is NO, and the process proceeds to ST39, where D
Execute P calculation processing. Now, assuming that SP is "0" and has not been determined, the pulse wave counter j is set to the current pulse wave number n in ST35 (ST35). Next, j is decremented by 1 (ST36), and the pulse wave amplitude Amp (j) specified by j is compared with the maximum value Amax × 0.5 (S36).
T37). Here, if Amp (j) is larger than Amax × 0.5, the determination in ST37 becomes NO and ST
Returning to 36, if Amp (j) is smaller than Amax × 0.5, this PC (j) is set as the systolic pressure (systolic blood pressure) SP (ST38). And then the diastolic pressure D
The process proceeds to the P calculation process. First, in ST39, Amp
It is determined whether or not (n) has decreased below the DP calculation threshold value (Amax × 0.7). Amp (n) is Amax ×
If it is reduced to 0.7 or less, the determination in ST39 becomes YES, Pc (n) is set to DP (ST40), and the routine returns.

【0023】[0023]

【発明の効果】この発明では、以上のように、カフ加圧
中に抽出する脈波振幅の最大値を検出し、その最大値を
基にしきい値を計算し、カフ減圧過程の一拍目の脈波振
幅をしきい値と比較し、一拍目の脈波振幅がしきい値よ
り大きい場合にはカフ加圧不足と判定し、しきい値より
小さい場合にはカフ加圧充分と判定することとしたか
ら、カフ加圧終了直後にカフの過不足状態が正確に検出
できる。従って、オシロメトリック式血圧計の操作性が
向上し、今までより測定の迅速化、測定時の苦痛の軽減
実現し得る等、発明目的を達成した優れた効果を有す
る。
As described above, according to the present invention, the maximum value of the pulse wave amplitude to be extracted during the cuff pressurization is detected, and the threshold value is calculated based on the maximum value. Pulse wave amplitude is compared with the threshold value. If the pulse wave amplitude of the first beat is larger than the threshold value, it is determined that cuff pressurization is insufficient. Therefore, the cuff excess or deficiency state can be accurately detected immediately after the end of the cuff pressurization. Therefore, the oscillometric sphygmomanometer has an excellent effect of achieving the object of the invention, such as improved operability, faster measurement and less pain at the time of measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例電子血圧計の処理動作を示すメインフロ
ーチャートである。
FIG. 1 is a main flowchart illustrating a processing operation of an electronic blood pressure monitor according to an embodiment.

【図2】実施例電子血圧計の加圧不足検出処理を示すフ
ローチャートである。
FIG. 2 is a flowchart illustrating an under-pressurization detection process of the electronic blood pressure monitor according to the embodiment.

【図3】実施例電子血圧計の減圧中の血圧算出処理を示
すフローチャートである。
FIG. 3 is a flowchart illustrating a blood pressure calculation process during decompression of the electronic blood pressure monitor according to the embodiment.

【図4】実施例電子血圧計の回路構成例を示すブロック
図である。
FIG. 4 is a block diagram illustrating a circuit configuration example of the electronic blood pressure monitor according to the embodiment.

【図5】加圧過程と減圧過程における脈波振幅の相違を
説明する説明図である。
FIG. 5 is an explanatory diagram for explaining a difference between pulse wave amplitudes in a pressurizing process and a depressurizing process.

【図6】加圧過程最大脈波振幅と減圧過程最大脈波振幅
の相間を求めるための測定例を示す図である。
FIG. 6 is a diagram showing a measurement example for obtaining a phase between a maximum pulse wave amplitude in a pressurization process and a maximum pulse wave amplitude in a decompression process.

【図7】オシロメトリック血圧計における血圧決定過程
を示す説明図である。
FIG. 7 is an explanatory diagram showing a blood pressure determination process in an oscillometric sphygmomanometer.

【符号の説明】[Explanation of symbols]

1 カフ 2 加圧ポンプ 3 コントロール弁 6 ローパスフィルタ 8 CPU 1 Cuff 2 Pressurizing pump 3 Control valve 6 Low pass filter 8 CPU

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮脇 義徳 京都市下京区中堂寺南町17番地 サイエ ンスセンタービル 株式会社オムロンラ イフサイエンス研究所内 (72)発明者 福良 正史 京都市下京区中堂寺南町17番地 サイエ ンスセンタービル 株式会社オムロンラ イフサイエンス研究所内 (58)調査した分野(Int.Cl.7,DB名) A61B 5/00 - 5/03 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshinori Miyawaki 17 Science Center Building, Chudo-ji Minamicho, Shimogyo-ku, Kyoto Inside Omronla IF Science Research Institute, Inc. Sense Center Building Omron La If-Science Research Institute, Inc. (58) Fields surveyed (Int. Cl. 7 , DB name) A61B 5/00-5/03

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】カフと、カフを加圧する加圧手段と、加圧
終了後にカフを減圧する減圧手段と、カフ内の流体圧力
を検出する圧力検出手段と、前記カフ加圧・減圧手段に
よる加減圧中にカフ圧信号上に重畳した脈波成分を抽出
する脈波抽出手段と、抽出した一拍毎の脈波について振
幅を算出する脈波振幅算出手段と、カフ減圧過程におい
て前記脈波振幅算出手段の出力信号及び前記圧力検出手
段の出力信号に基づいて血圧値を決定する血圧決定手段
とから成る電子血圧計において、 カフ加圧中に抽出する脈波振幅の最大値を算出し、その
最大値を基にしきい値を計算するしきい値算出手段と、
このしきい値算出手段により算出したしきい値とカフ減
圧過程の初期に捉えた脈波振幅とを比較し、この減圧過
程に移行した初期に検出した脈波振幅がしきい値より小
さい場合にはカフ圧力充分と判定し、大きい場合にはカ
フ加圧不足と判定するカフ加圧不足判定手段を具備して
なる電子血圧計。
1. A cuff, a pressurizing means for pressurizing a cuff, a pressure reducing means for depressurizing the cuff after pressurization, a pressure detecting means for detecting a fluid pressure in the cuff, and the cuff pressurizing / depressurizing means. Pulse wave extracting means for extracting a pulse wave component superimposed on the cuff pressure signal during pressurizing and depressing, pulse wave amplitude calculating means for calculating an amplitude of the extracted pulse wave for each beat, and the pulse wave in the cuff depressurizing process. An electronic sphygmomanometer comprising an output signal of an amplitude calculating means and a blood pressure determining means for determining a blood pressure value based on an output signal of the pressure detecting means, wherein a maximum value of a pulse wave amplitude to be extracted during cuff pressurization is calculated; Threshold calculation means for calculating a threshold based on the maximum value;
The threshold value calculated by the threshold value calculation means is compared with the pulse wave amplitude captured at the beginning of the cuff depressurization process, and when the pulse wave amplitude detected at the beginning of the depressurization process is smaller than the threshold value, Is an electronic sphygmomanometer provided with a cuff pressurization insufficiency determining means for determining that the cuff pressure is sufficient and determining that the cuff pressure is insufficient when the pressure is large.
JP4099419A 1991-05-01 1992-04-20 Electronic sphygmomanometer Expired - Lifetime JP3057892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4099419A JP3057892B2 (en) 1991-05-01 1992-04-20 Electronic sphygmomanometer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-99919 1991-05-01
JP9991991 1991-05-01
JP4099419A JP3057892B2 (en) 1991-05-01 1992-04-20 Electronic sphygmomanometer

Publications (2)

Publication Number Publication Date
JPH05111468A JPH05111468A (en) 1993-05-07
JP3057892B2 true JP3057892B2 (en) 2000-07-04

Family

ID=26440557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4099419A Expired - Lifetime JP3057892B2 (en) 1991-05-01 1992-04-20 Electronic sphygmomanometer

Country Status (1)

Country Link
JP (1) JP3057892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247133A (en) * 2010-05-21 2011-11-23 日本光电工业株式会社 Blood pressure measuring apparatus and blood pressure measuring method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668651B2 (en) * 2005-03-16 2011-04-13 フクダ電子株式会社 Sphygmomanometer
JP4213188B2 (en) * 2007-02-06 2009-01-21 シチズンホールディングス株式会社 Electronic blood pressure monitor
JP5026542B2 (en) * 2010-03-26 2012-09-12 シチズンホールディングス株式会社 Electronic blood pressure monitor
JP2012200507A (en) * 2011-03-28 2012-10-22 Omron Healthcare Co Ltd Electronic sphygmomanometer and calculation program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247133A (en) * 2010-05-21 2011-11-23 日本光电工业株式会社 Blood pressure measuring apparatus and blood pressure measuring method
CN102247133B (en) * 2010-05-21 2014-11-05 日本光电工业株式会社 Blood pressure measuring apparatus
US9119537B2 (en) 2010-05-21 2015-09-01 Nihon Kohden Corporation Blood pressure measuring apparatus and blood pressure measuring method
US9622667B2 (en) 2010-05-21 2017-04-18 Nihon Kohden Corporation Blood pressure measuring apparatus and blood pressure measuring method

Also Published As

Publication number Publication date
JPH05111468A (en) 1993-05-07

Similar Documents

Publication Publication Date Title
EP1426008B1 (en) Blood pressure measuring apparatus
JP3178195B2 (en) Continuous blood pressure monitor
EP0456844A1 (en) Non-invasive automatic blood pressure measuring apparatus
JPH084574B2 (en) Electronic blood pressure monitor
US5522395A (en) Electronic sphygmomanometer and method of controlling operation of same
JP3057892B2 (en) Electronic sphygmomanometer
JP2004000422A (en) Sphygmomanometer having waveform analyzing function
JPH05165Y2 (en)
JP2001008909A (en) Electric sphygmomanometer
JP3042051B2 (en) Electronic sphygmomanometer
JP2842696B2 (en) Electronic sphygmomanometer
JP3041936B2 (en) Electronic sphygmomanometer
JP3015908B2 (en) Electronic sphygmomanometer
JP2936814B2 (en) Electronic sphygmomanometer
JP2985316B2 (en) Electronic sphygmomanometer
EP0585460B1 (en) Electronic sphygmomanometer and method of controlling performance thereof
JP3042052B2 (en) Electronic sphygmomanometer
JP3506268B2 (en) Electronic sphygmomanometer
JP2936816B2 (en) Electronic sphygmomanometer
JP3071305B2 (en) Electronic sphygmomanometer
JP4398553B2 (en) Electronic blood pressure monitor
JPH05337090A (en) Electronic blood pressure gauge
JPH0479655B2 (en)
JPH0479654B2 (en)
JP2024063672A (en) Arterial endothelial function testing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

EXPY Cancellation because of completion of term