JP5026542B2 - Electronic blood pressure monitor - Google Patents

Electronic blood pressure monitor Download PDF

Info

Publication number
JP5026542B2
JP5026542B2 JP2010072724A JP2010072724A JP5026542B2 JP 5026542 B2 JP5026542 B2 JP 5026542B2 JP 2010072724 A JP2010072724 A JP 2010072724A JP 2010072724 A JP2010072724 A JP 2010072724A JP 5026542 B2 JP5026542 B2 JP 5026542B2
Authority
JP
Japan
Prior art keywords
pulse wave
pressure
amplitude
cuff
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010072724A
Other languages
Japanese (ja)
Other versions
JP2011200576A (en
Inventor
和博 野口
中西  孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Systems Japan Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Systems Japan Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Systems Japan Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2010072724A priority Critical patent/JP5026542B2/en
Priority to CN 201110073520 priority patent/CN102198001B/en
Publication of JP2011200576A publication Critical patent/JP2011200576A/en
Application granted granted Critical
Publication of JP5026542B2 publication Critical patent/JP5026542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、カフ圧に重畳される心拍毎の動脈脈波成分に基づいて、最高血圧及び最低血圧を算出する振動法(オシロメトリック法)による電子血圧計に関する。   The present invention relates to an electronic sphygmomanometer based on a vibration method (oscillometric method) for calculating a systolic blood pressure and a diastolic blood pressure based on an arterial pulse wave component for each heartbeat superimposed on a cuff pressure.

このような電子血圧計による血圧測定は、被測定者の上腕にゴム嚢を内蔵したカフを巻回して装着し、カフ内の圧力を徐々に加圧又は減圧する過程で、カフ内の圧力(カフ圧)信号に重畳する血流の拍動による脈波を検出し、その脈波の最大波高値を判定して、それに所定比率αを乗じて得られる波高値が発生する時期に相当する高い方のカフ圧を最高血圧として、異なる比率βを乗じて得られる波高値が発生する時期に相当する低い方のカフ圧を最低血圧として、それぞれ算出する。あるいは動脈脈波値の変動パラメータに基いて時期を判定する変動パラメータ判定方式もある(特許文献1参照)。   Blood pressure measurement using such an electronic sphygmomanometer is performed by winding a cuff with a built-in rubber sac around the upper arm of the subject and gradually increasing or reducing the pressure in the cuff. Cuff pressure) The pulse wave due to the pulsation of the blood flow superimposed on the signal is detected, the maximum peak value of the pulse wave is determined, and the pulse wave value obtained by multiplying it by the predetermined ratio α is high corresponding to the time when the peak value is generated The lower cuff pressure corresponding to the time when the crest value obtained by multiplying the different ratio β is generated is set as the lowest blood pressure. Alternatively, there is a variation parameter determination method for determining the timing based on the variation parameter of the arterial pulse wave value (see Patent Document 1).

しかし、血圧測定時に被測定者の腕や指などの体の動きである体動(アーチファクト)が生じると、腕の筋肉が伸縮してカフ内の容積が変化し、結果としてカフ圧信号に急激な減圧又は加圧が生じ、圧力信号が乱れる。このような圧力信号の乱れが生じると、脈波を正確に検出することができず、正確な血圧の測定ができなくなる場合がある。   However, if a body movement (artifact), which is the movement of the body of the person being measured, occurs during blood pressure measurement, the arm muscles expand and contract and the volume in the cuff changes, resulting in a sudden increase in the cuff pressure signal. The pressure signal is disturbed. When such a disturbance of the pressure signal occurs, the pulse wave cannot be detected accurately, and accurate blood pressure measurement may not be possible.

そこで、従来から電子血圧計によりカフ内の圧力を徐々に加圧又は減圧する過程で、カフ圧信号に重畳する脈波を検出する際に、体動を含む異常データやノイズ信号を除去して、適切な脈波のみによって最高血圧および最低血圧を算出することが、例えば特許文献2などに見られるように、種々提案されている。   Therefore, when detecting a pulse wave superimposed on the cuff pressure signal in the process of gradually increasing or decreasing the pressure in the cuff with an electronic sphygmomanometer, abnormal data including body movements and noise signals are removed. Various calculations have been proposed to calculate the systolic blood pressure and the diastolic blood pressure using only appropriate pulse waves, as can be seen, for example, in Patent Document 2.

特公平3−62088号公報Japanese Examined Patent Publication No. 3-62088 特公平5−32053号公報Japanese Patent Publication No. 5-32053

上記のように、異常データやノイズ信号を除去した適切な脈波のみによって最高血圧および最低血圧を算出するようにすれば、多少の異常データやノイズがあっても血圧の測定は可能になるが、脈波の大きさには個人差があるため、判定基準値を一律にすると正常な脈波を体動によるものと誤検出してしまったり、体動が混入した脈波を正常なものと判定してしまうこともあり、体動による脈波の異常を正確かつ効率よく検出するのは難しかった。   As described above, if the systolic blood pressure and the diastolic blood pressure are calculated only from appropriate pulse waves from which abnormal data and noise signals have been removed, blood pressure can be measured even with some abnormal data and noise. Because there are individual differences in the magnitude of the pulse wave, if the judgment reference value is uniform, a normal pulse wave may be mistakenly detected as a result of body movement, or a pulse wave mixed with body movement may be normal. In some cases, it is difficult to accurately and efficiently detect abnormalities in the pulse wave due to body movement.

そこで、特許文献2に記載された電子血圧計においては、カフ圧の減圧時に血圧を測定するが、その際に検出される脈波データの一部から判定上限値と判定下限値を算出し、その判定上限値と判定下限値に基づいてその後の脈波データの正常、異常を判定して異常データを除去するようにしている。このようにすれば、脈波の大きさの個人差が体動判定の基準に反映されることになる。   Therefore, in the electronic sphygmomanometer described in Patent Document 2, the blood pressure is measured when the cuff pressure is reduced, and the determination upper limit value and the determination lower limit value are calculated from a part of the pulse wave data detected at that time, Based on the determination upper limit value and the determination lower limit value, normal or abnormal pulse wave data thereafter is determined and the abnormal data is removed. In this way, the individual difference in the magnitude of the pulse wave is reflected in the body movement determination criterion.

しかし、この方法では血圧を測定するカフ圧の減圧中に検出される脈波データを利用して判定上限値と判定下限値を算出するため、その算出ができるまでは異常データを判別できず、血圧測定を開始できない。そのため、血圧測定の時間が長くなる。しかも、その判定上限値と判定下限値の算出処理及びその後の異常データの判別処理が複雑であり、体動
などによる脈波の異常を正確かつ効率よく検出して測定中の被測定者の測定状態を判定することはできないという問題があった。
However, in this method, since the determination upper limit value and the determination lower limit value are calculated using the pulse wave data detected during the reduction of the cuff pressure for measuring the blood pressure, the abnormal data cannot be determined until the calculation can be performed, Blood pressure measurement cannot be started. Therefore, the time for blood pressure measurement is lengthened. In addition, the calculation process for the upper and lower determination limits and the subsequent process for determining abnormal data are complicated, and the measurement of the subject under measurement is being performed by accurately and efficiently detecting abnormalities in the pulse wave due to body movement. There was a problem that the state could not be determined.

この発明は、このような問題を解決するためになされたものであり、体動などによる脈波の異常を正確かつ効率よく検出し、測定中の被測定者の測定状態を判定できるようにすることを目的とする。   The present invention has been made to solve such a problem, and it is possible to accurately and efficiently detect an abnormality of a pulse wave due to body movement or the like, and to determine a measurement state of a measurement subject during measurement. For the purpose.

この発明による電子血圧計は上記の目的を達成するため、カフと、そのカフ内の圧力を加圧する加圧手段と、カフ内の圧力を減圧する減圧手段と、加圧と減圧とを制御する制御手段と、カフ内の圧力を検出する圧力センサと、カフ内の加圧中に圧力センサの出力信号から、加圧中の脈波振幅である圧力センサによる圧力検出信号の微分波形の振幅を検出する加圧中脈波微分振幅検出手段と、カフ内の減圧中に圧力センサの出力信号から、減圧中の脈波振幅を検出する減圧中脈波振幅検出手段と、減圧中の脈波振幅である圧力センサによる圧力検出信号の微分波形の振幅を検出する減圧中脈波微分振幅検出手段と、減圧中脈波振幅検出手段が検出する脈波振幅に基づいて血圧値を算出する血圧算出手段と、を備え、加圧中脈波微分振幅検出手段が検出した最大脈波振幅値と、減圧中脈波微分振幅検出手段が検出した最大脈波振幅値とを比較して、所定倍した値以上であったときに体動として検出する体動検出手段を有し、体動検出手段による体動の検出により被測定者の測定状態が異常であると判定し、加圧中脈波微分振幅検出手段が検出する最大脈波振幅値は、カフ内の加圧中で分波形の1番目に大きな振幅と2番目に大きな振幅との差が所定値未満の場合は1番目に大きな振幅を、所定値以上の場合は2番目に大きな振幅を採用することを特徴とする。
In order to achieve the above object, an electronic sphygmomanometer according to the present invention controls a cuff, a pressurizing unit that pressurizes the pressure in the cuff, a depressurizing unit that depressurizes the pressure in the cuff, and pressurization and depressurization. The control means, the pressure sensor for detecting the pressure in the cuff, and the amplitude of the differential waveform of the pressure detection signal by the pressure sensor, which is the pulse wave amplitude during pressurization, from the pressure sensor output signal during pressurization in the cuff The pressure pulse differential amplitude detecting means for detecting pressure, the pulse wave amplitude detecting means for detecting the pulse wave amplitude during pressure reduction from the output signal of the pressure sensor during pressure reduction in the cuff, and the pulse wave amplitude during pressure reduction A pressure reducing pulse wave differential amplitude detecting means for detecting the differential waveform amplitude of the pressure detection signal by the pressure sensor; and a blood pressure calculating means for calculating a blood pressure value based on the pulse wave amplitude detected by the pressure reducing pulse wave amplitude detecting means. , pressurization pulse wave differential amplitude detecting means Comparing the detected maximum pulse wave amplitude value with the maximum pulse wave amplitude value detected by the pulse wave differential amplitude detecting means during decompression, and detecting a body motion detecting means as a body motion when the value is equal to or greater than a predetermined value The body pulse is detected by the body motion detection means to detect that the measurement state of the subject is abnormal, and the maximum pulse wave amplitude value detected by the pulse wave differential amplitude detection means during pressurization is the pressurization in the cuff. Among them, the first largest amplitude is adopted when the difference between the first largest amplitude and the second largest amplitude of the divided waveform is less than a predetermined value, and the second largest amplitude is adopted when the difference is larger than the predetermined value. It shall be the.

また、上記最大脈波微分振幅を所定倍した値の所定倍は、2〜3倍程度がよい。
上記測定状態判定手段によって判定された測定中の被測定者の状態を報知する報知手段を有してもよい。
The predetermined multiple of the value obtained by multiplying the maximum pulse wave differential amplitude by a predetermined value is preferably about 2 to 3 times.
You may have an alerting | reporting means to alert | report the state of the to-be-measured person determined by the said measurement state determination means.

この発明による電子血圧計は、カフ圧の加圧中に短時間で被測定者に適した体動の判定基準となる閾値を決め、減圧時には直ちに体動の検出と正常な脈波データによる血圧測定を開始でき、体動による脈波の異常を正確かつ効率よく検出し、測定中の被測定者の測定状態を判定できる。   The electronic sphygmomanometer according to the present invention determines a threshold value that is a determination criterion of body motion suitable for the subject in a short time during the pressurization of the cuff pressure, and immediately detects the body motion and the blood pressure based on normal pulse wave data during the decompression. Measurement can be started, abnormalities of pulse waves due to body movements can be detected accurately and efficiently, and the measurement state of the subject under measurement can be determined.

この発明による電子血圧計の一実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment of the electronic blood pressure meter by this invention. 図1に示した電子血圧計のカフ内加圧中における圧力センサの出力信号(圧力検出信号)とその微分波形の例を示す波形図である。It is a wave form diagram which shows the example of the output signal (pressure detection signal) of a pressure sensor during the pressurization in a cuff of the electronic sphygmomanometer shown in FIG. 1, and its differential waveform. 図1に示した電子血圧計のカフ内減圧中における圧力センサの出力信号(圧力検出信号)とその微分波形の例を示す波形図である。It is a wave form diagram which shows the example of the output signal (pressure detection signal) of a pressure sensor in the pressure reduction in a cuff of the electronic sphygmomanometer shown in FIG. 1, and its differential waveform. 図3に示した圧力検出信号中に含まれる脈波成分の脈波高と最高血圧及び最低血圧との関係並びに体動の影響を説明するための線図である。FIG. 4 is a diagram for explaining the relationship between the pulse wave height of the pulse wave component included in the pressure detection signal shown in FIG. 3, the maximum blood pressure and the minimum blood pressure, and the influence of body movement. 図1に示したマイクロコンピュータ6による血圧測定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the blood-pressure measurement process by the microcomputer 6 shown in FIG.

以下、この発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、この発明による電子血圧計の一実施形態の構成を図1によって説明する。図1はその電子血圧計の構成を示すブロック図であり、(a)は全体の概略構成図、(b)は(a)における記憶・演算手段10の機能構成を示す機能ブロック図である。   First, the configuration of an embodiment of an electronic blood pressure monitor according to the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of the electronic sphygmomanometer, (a) is a schematic configuration diagram of the whole, and (b) is a functional block diagram showing the functional configuration of the storage / calculation means 10 in (a).

この電子血圧計は、図1(a)に示すように、カフ1と、そのカフ1とそれぞれチューブ12で接続された加圧手段2、減圧手段3、および圧力センサ4とを備え、さらに信号系としてA/Dコンバータ5、マイクロコンピュータ6、操作手段7、および表示手段8を備えている。図中白抜き太線は空気の流れを、黒太線は信号の流れをそれぞれ示している。   As shown in FIG. 1 (a), this electronic sphygmomanometer includes a cuff 1, a pressurizing means 2, a depressurizing means 3 and a pressure sensor 4 respectively connected to the cuff 1 by a tube 12, and further includes a signal. As a system, an A / D converter 5, a microcomputer 6, an operation means 7, and a display means 8 are provided. In the figure, open bold lines indicate the air flow, and black thick lines indicate the signal flow.

カフ1は、被測定者の上腕又は手首に巻くゴム嚢を一体にした帯状又は筒状の柔軟な部材である。加圧手段2は、チューブ12を通してカフ内に空気を送り込んで加圧する加圧ポンプ、減圧手段3は、チューブ12を通してカフ内の空気を一定速度で逃がして減圧する定速減圧と残りの空気を急速に排気する急速減圧を行うための減圧弁とからなる。   The cuff 1 is a band-shaped or cylindrical flexible member in which a rubber sac wound around the upper arm or wrist of the measurement subject is integrated. The pressurizing unit 2 is a pressurizing pump that sends air into the cuff through the tube 12 and pressurizes it. The depressurizing unit 3 is a constant-speed depressurizing unit that releases the air in the cuff at a constant speed through the tube 12 and decompresses the remaining air. It consists of a pressure reducing valve for performing rapid pressure reduction that exhausts rapidly.

圧力センサ4は、カフ1内の圧力を検出して電気信号に変換するセンサであり、例えば半導体圧力変換素子や歪ゲージ等を使用する。A/Dコンバータ5は、圧力センサ4から出力されるアナログの電気信号(例えば電圧信号)を多値デジタル信号に変換する。   The pressure sensor 4 is a sensor that detects the pressure in the cuff 1 and converts it into an electrical signal. For example, a semiconductor pressure conversion element or a strain gauge is used. The A / D converter 5 converts an analog electrical signal (for example, a voltage signal) output from the pressure sensor 4 into a multi-value digital signal.

マイクロコンピュータ6は、中央演算処理ユニットであるCPU、読み出し専用メモリ(プログラムメモリ)であるROM、読み出し書き込みメモリ(データメモリ)であるRAM、および入出力部であるI/Oポートと、それらを接続するCPUバス等からなり、ROMに格納された血圧測定プログラムをCPUが実行することによって、血圧測定の処理を実行するが、図1(a)では記憶・演算手段10と制御手段11とに分けて示している。   The microcomputer 6 is connected to a central processing unit CPU, a read only memory (program memory) ROM, a read / write memory (data memory) RAM, and an input / output unit I / O port. The CPU executes a blood pressure measurement program stored in the ROM by a CPU bus or the like, and executes blood pressure measurement processing. In FIG. It shows.

制御手段11の機能は、加圧手段2による加圧動作と減圧手段3による定速減圧動作および急速減圧動作を制御することである。操作手段7の測定開始ボタン(図示せず)が押されると、加圧手段2の加圧ポンプを動作させて、カフ1内に空気を送り込んで急速に加圧し、圧力センサ4によって検出されるカフ1内の圧力が所定値に達すると加圧ポンプを停止させる。   The function of the control means 11 is to control the pressurization operation by the pressurization means 2 and the constant speed decompression operation and the rapid decompression operation by the decompression means 3. When a measurement start button (not shown) of the operating means 7 is pressed, the pressurizing pump of the pressurizing means 2 is operated, air is sent into the cuff 1 to rapidly pressurize, and is detected by the pressure sensor 4. When the pressure in the cuff 1 reaches a predetermined value, the pressurizing pump is stopped.

その後、減圧手段3によって定速減圧を行なう。このとき、定速減圧弁にゴム排気弁を用いた場合は、ゴム排気弁によりほぼ一定速度で減圧される。そして、血圧測定終了時には、ゴム排気弁とは別に設けた急速減圧弁を開き、カフ1内に残った空気を急速に排気させる。また、定速減圧弁に電磁弁を用いた場合は、カフ1内が一定速度で減圧するように、圧力センサ4によって検出されるカフ1内の圧力の検出値に応じて電磁弁の開度を制御する。そして、血圧測定終了時には、電磁弁を全開にして、カフ1内に残った空気を急速に排気させる。   Thereafter, constant pressure reduction is performed by the decompression means 3. At this time, when a rubber exhaust valve is used as the constant speed pressure reducing valve, the pressure is reduced by the rubber exhaust valve at a substantially constant speed. At the end of blood pressure measurement, a rapid pressure reducing valve provided separately from the rubber exhaust valve is opened, and the air remaining in the cuff 1 is rapidly exhausted. When a solenoid valve is used as the constant speed pressure reducing valve, the opening degree of the solenoid valve is determined according to the detected pressure value in the cuff 1 detected by the pressure sensor 4 so that the pressure in the cuff 1 is reduced at a constant speed. To control. At the end of blood pressure measurement, the solenoid valve is fully opened, and the air remaining in the cuff 1 is rapidly exhausted.

マイクロコンピュータ6による記憶・演算手段10の機能については後述する。   The function of the storage / calculation means 10 by the microcomputer 6 will be described later.

操作手段7は、血圧測定時に被測定者によって操作される各種ボタンやスイッチ等を有し、例えば電源スイッチを兼ねた測定開始ボタンや、被測定者の識別子を入力するためのIDボタン、測定結果を記憶させるメモリボタンなどが適宜設けられる。   The operating means 7 has various buttons and switches operated by the subject at the time of blood pressure measurement. For example, a measurement start button also serving as a power switch, an ID button for inputting the subject's identifier, and a measurement result A memory button or the like is stored as appropriate.

表示手段8は、マイクロコンピュータ6の記憶・演算手段10によって算出された最高血圧及び最低血圧を表示するもので、例えば液晶表示装置である。この表示手段8に、脈拍数や時間、特に大きな体動なども表示してもよい。   The display means 8 displays the maximum blood pressure and the minimum blood pressure calculated by the storage / calculation means 10 of the microcomputer 6 and is, for example, a liquid crystal display device. The display means 8 may also display the pulse rate and time, particularly a large body movement.

マイクロコンピュータ6による記憶・演算手段10は、図1(b)に示すように、加圧中脈波微分振幅検出手段13、減圧中脈波検出手段14、減圧中脈波微分振幅検出手段15、体動検出手段16、および血圧算出手段17の機能を有する。
As shown in FIG. 1B, the storage / calculation means 10 by the microcomputer 6 includes a pressurizing pulse wave differential amplitude detecting means 13, a decompressing pulse wave differential detecting means 14, a decompressing pulse wave differential amplitude detecting means 15, and a body motion detection. Functions of means 16 and blood pressure calculation means 17 are provided.

加圧中脈波微分振幅検出手段13は、カフ1内の加圧中にA/Dコンバータ5を介して入力する圧力センサの出力信号を微分し、その微分波(脈波による)の最大振幅を検出して記憶する。
The pulse wave differential amplitude detecting means 13 during pressurization differentiates the output signal of the pressure sensor input via the A / D converter 5 during pressurization in the cuff 1, and determines the maximum amplitude of the differential wave (by pulse wave). Detect and store.

減圧中脈波検出手段14は、カフ1内の減圧中にA/Dコンバータ5を介して入力する圧力センサの出力信号に含まれる脈波成分を検出する。   The depressurizing pulse wave detecting means 14 detects a pulse wave component included in the output signal of the pressure sensor input via the A / D converter 5 during depressurization in the cuff 1.

減圧中脈波微分振幅検出手段15は、カフ内の減圧中に上記圧力センサの出力信号を微分して脈波微分振幅(h)を検出する。   The pulse wave differential amplitude detecting means 15 during decompression detects the pulse wave differential amplitude (h) by differentiating the output signal of the pressure sensor during decompression of the cuff.

体動検出手段16は、減圧中脈波微分振幅検出手段15によって検出された脈波微分振幅が加圧中脈波微分振幅検出手段13によって検出された最大脈波微分振幅を所定倍した値(h×α)以上であったときに体動として検出する。
The body motion detection means 16 is a value obtained by multiplying the maximum pulse wave differential amplitude detected by the pressurizing pulse wave differential amplitude detection means 13 by a predetermined value (h ×). α) If it is greater than or equal to, it is detected as body movement.

血圧算出手段17は、減圧中脈波検出手段14によって検出された脈波の各波高値から体動検出手段によって体動が検出されたときの波高値を除いた最大波高値に基づいて最高血圧と最低血圧を算出する。その算出方法については後述する。   The blood pressure calculation unit 17 calculates the maximum blood pressure based on the maximum peak value obtained by subtracting the peak value when body motion is detected by the body motion detection unit from each peak value of the pulse wave detected by the decompressing pulse wave detection unit 14. Calculate the minimum blood pressure. The calculation method will be described later.

この血圧算出手段17によって算出した最高血圧と最低血圧は表示手段8によって表示される。   The maximum blood pressure and the minimum blood pressure calculated by the blood pressure calculation unit 17 are displayed by the display unit 8.

体動検出手段16によって検出された体動のうち、そのときの脈波の波高値を除去しても正確な血圧の算出ができなくなるような体動があった場合には、測定中に被測定者の状態に血圧値に影響を与える異常があったと判定して、それを表示手段8によって体動マークや測定異常マークなどで表示するとよい。   Of the body motions detected by the body motion detection means 16, if there is body motion that cannot be calculated accurately even if the peak value of the pulse wave at that time is removed, It may be determined that there is an abnormality affecting the blood pressure value in the state of the measurer, and this is displayed on the display means 8 with a body movement mark, a measurement abnormality mark, or the like.

その場合には、その体動を検出した時点で測定動作を中止し、カフ1内の残りの空気を急速に排気するようにしてもよい。   In that case, the measurement operation may be stopped when the body movement is detected, and the remaining air in the cuff 1 may be exhausted rapidly.

ここで、図2にこの電子血圧計による血圧測定時のカフ1内加圧中における圧力センサ4の出力信号(圧力検出信号Pu)と、それを微分した圧力の変化速度を示す微分波(微分信号Du)の例を示す。この図において、横軸は時間〔sec〕であり、縦軸の左側の目盛は圧力検出信号Puの圧力〔mmHg〕、右側の目盛は微分信号Duの加圧速度〔mmHg/sec〕である。   Here, FIG. 2 shows an output signal (pressure detection signal Pu) of the pressure sensor 4 during pressurization in the cuff 1 during blood pressure measurement by this electronic sphygmomanometer, and a differential wave (differential) indicating a pressure change speed obtained by differentiating the output signal. An example of the signal Du) is shown. In this figure, the horizontal axis is time [sec], the scale on the left side of the vertical axis is the pressure [mmHg] of the pressure detection signal Pu, and the scale on the right side is the pressurization speed [mmHg / sec] of the differential signal Du.

この微分信号Duの振幅は加圧中に検出される脈波の大きさに応じている。そこで、その微分信号Duの振幅hを検出して記憶する。しかし、その微分信号Duの振幅が加圧中
の体動による場合もある。そのため、微分波形の1番目に大きな振幅と2番目に大きな振幅とを比較して、その差が所定値未満の場合は1番目に大きな振幅を最大振幅hとし、所定値以上の場合は1番目に大きな振幅は体動による可能性があるため、2番目に大きな振幅を最大振幅hとすると方がよい。
The amplitude of the differential signal Du depends on the magnitude of the pulse wave detected during pressurization. Therefore, the amplitude h of the differential signal Du is detected and stored. However, the amplitude of the differential signal Du may be due to body movement during pressurization. Therefore, the first largest amplitude and the second largest amplitude of the differential waveform are compared, and when the difference is less than a predetermined value, the first largest amplitude is set as the maximum amplitude h, and when the difference is greater than the predetermined value, the first Therefore, it is better to set the second largest amplitude as the maximum amplitude h.

これが図1(b)における加圧中脈波微分振幅検出手段13の機能である。この加圧中脈波微分振幅検出手段13で得られる脈波微分振幅のうち振幅が最大となる加圧中最大脈波微分振幅hを所定倍したh×αを、減圧時における体動検出の判定基準となる閾値として使用する。   This is the function of the pressurizing pulse wave differential amplitude detecting means 13 in FIG. Determination of body motion detection at the time of decompression is h × α obtained by multiplying the maximum pulse wave differential amplitude h during pressurization with the maximum amplitude among the pulse wave differential amplitudes obtained by the pulse wave differential amplitude detection means 13 during pressurization. Used as a reference threshold.

そして、カフ1内を所定圧力まで加圧した後、略一定の速度で比較的ゆっくりと減圧しながら脈波を検出して血圧を算出するが、図3にその際の圧力センサ4の出力信号(圧力検出信号Pd)と、それを微分した圧力の変化速度を示す微分波(微分信号Dd)の例を示す。この図において、横軸は時間〔sec〕であり、縦軸の左側の目盛は圧力検出信号Pdの圧力〔mmHg〕、右側の目盛は微分信号Ddの減圧速度〔mmHg/sec〕である。   Then, after pressurizing the cuff 1 to a predetermined pressure, the blood pressure is calculated by detecting the pulse wave while reducing pressure relatively slowly at a substantially constant speed. FIG. 3 shows the output signal of the pressure sensor 4 at that time. An example of (pressure detection signal Pd) and a differential wave (differential signal Dd) indicating a pressure change speed obtained by differentiating the pressure detection signal Pd is shown. In this figure, the horizontal axis is time [sec], the scale on the left side of the vertical axis is the pressure [mmHg] of the pressure detection signal Pd, and the scale on the right side is the pressure reduction rate [mmHg / sec] of the differential signal Dd.

図1(b)における減圧中脈波検出手段14はこの圧力検出信号Pdから各脈波の開始圧力と脈波高を検出して記憶し、血圧算出手段17がその脈波データに基づいて最高血圧と最低血圧を算出するが、その詳細は後述する。   The pulse wave detecting means 14 during decompression in FIG. 1B detects and stores the starting pressure and pulse wave height of each pulse wave from the pressure detection signal Pd, and the blood pressure calculating means 17 determines the maximum blood pressure based on the pulse wave data. The minimum blood pressure is calculated, details of which will be described later.

減圧中脈波微分振幅検出手段15が、図3に示す圧力検出信号Pdを微分して、その微分信号Ddの各振幅(微分振幅)Aを検出し、体動検出手段16がその微分振幅Aと前述した最大脈波微分振幅hをα倍した値(h×α)とを比較して、A≧h×αのときに体動を検出する。図3に示す例では大きな微分振幅Anがh×α以上であり、体動として検出させる。   The pulse wave differential amplitude detection means 15 during decompression differentiates the pressure detection signal Pd shown in FIG. 3 to detect each amplitude (differential amplitude) A of the differential signal Dd, and the body motion detection means 16 detects the differential amplitude A. The above-described maximum pulse wave differential amplitude h is compared with a value (h × α) multiplied by α, and body motion is detected when A ≧ h × α. In the example shown in FIG. 3, the large differential amplitude An is greater than or equal to h × α and is detected as body movement.

ところで、図3に示す圧力検出信号Pdには略一定の割合で低下していくカフ内圧力に重畳して心拍に同期した脈波が現れている。   By the way, in the pressure detection signal Pd shown in FIG. 3, a pulse wave synchronized with the heartbeat is superimposed on the pressure in the cuff decreasing at a substantially constant rate.

この減圧中における圧力検出信号Pdから、図1(b)に示した減圧中脈波検出手段14が検出する各脈波(体動等のノイズ成分も含む)を図4に示す。図4における横軸は各脈波が上昇し始める時点の脈波開始圧力〔mmHg〕であり、縦軸はその各脈波高(波高値)〔mmHg〕である。この図4に示すように、脈波高はカフ内圧力が高いときは小さく、減圧に従って大きくなり、最大波高値の脈波Pmaxを示した後、再び小さくなる。   FIG. 4 shows each pulse wave (including noise components such as body movement) detected by the pulse wave detecting means 14 during pressure reduction shown in FIG. 1B from the pressure detection signal Pd during pressure reduction. The horizontal axis in FIG. 4 is the pulse wave start pressure [mmHg] when each pulse wave starts to rise, and the vertical axis is the pulse wave height (wave height value) [mmHg]. As shown in FIG. 4, the pulse wave height is small when the pressure in the cuff is high, increases as the pressure decreases, and then decreases again after showing the maximum wave height pulse wave Pmax.

しかし、体動を混入した脈波Pnは異常な波高値の脈波として、前述したように体動検出手段16によって検出される。   However, the pulse wave Pn mixed with body motion is detected by the body motion detection means 16 as described above as a pulse wave having an abnormal peak value.

血圧の算出は、正常な脈波の波高値のうち最大波高値の脈波、図4の例では脈波Pmax の波高値Hmaxを判定し、それに基づいて算出する。すなわち、その最大波高値Hmaxに所定比率αとして例えば50%を乗じて得られるHmax×50%の波高値に対応する高い方の脈波開始圧力を最高血圧(SYS)として算出し、最大波高値Hmaxに所定比率βとしてこの例えば70%を乗じて得られるHmax×70%の波高値に対応する低い方の脈波開始圧力を最低血圧(DIA)として算出する。   The blood pressure is calculated based on the pulse wave value of the maximum pulse wave value among the pulse wave value values of the normal pulse wave, that is, the wave wave value Hmax of the pulse wave Pmax in the example of FIG. That is, a higher pulse wave start pressure corresponding to a peak value of Hmax × 50% obtained by multiplying the maximum peak value Hmax by a predetermined ratio α, for example, 50% is calculated as a maximum blood pressure (SYS), and the maximum peak value is calculated. A lower pulse wave start pressure corresponding to a peak value of Hmax × 70% obtained by multiplying Hmax by a predetermined ratio β, for example, 70% is calculated as a minimum blood pressure (DIA).

しかし、体動を混入した脈波Pnの波高値を誤って最大波高値Hmax′と判定すると、最高血圧はHmax′×50%の波高値に対応する高い方の脈波開始圧力SYS′と算出され、最低血圧はHmax′×70%の波高値に対応する低い方の脈波開始圧力DIA′と算出されることになる。すると、SYS′<SYS、DIA′>DIAとなるため、脈圧=
(最高血圧−最低血圧)が小さく算出されてしまう。
However, if the peak value of the pulse wave Pn mixed with body motion is erroneously determined as the maximum peak value Hmax ′, the maximum blood pressure is calculated as the higher pulse wave start pressure SYS ′ corresponding to the peak value of Hmax ′ × 50%. Thus, the minimum blood pressure is calculated as the lower pulse wave start pressure DIA ′ corresponding to the peak value of Hmax ′ × 70%. Then, since SYS ′ <SYS, DIA ′> DIA, the pulse pressure =
(Maximum blood pressure−minimum blood pressure) is calculated to be small.

そこで、前述のように体動を検出して、このような体動を混入した脈波Pnを最大波高値Hmaxの判定対象から除外することによって、血圧値の算出精度を高めることができる。
図1(b)における血圧安定度判定手段18は、加圧中脈波微分振幅検出手段13で得られる加圧中最大脈波微分振幅とその前後に検出された脈波の脈波微分振幅から加圧中脈波微分振幅の推移と、減圧中脈波微分振幅検出手段15で得られる減圧中最大脈波微分振幅とその前後に検出された脈波の脈波微分振幅から減圧中脈波微分振幅の推移とを比較して測定した血圧が不安定であるか否か判断する。
Therefore, by detecting body movement as described above and excluding the pulse wave Pn mixed with such body movement from the determination target of the maximum peak value Hmax, the calculation accuracy of the blood pressure value can be improved.
The blood pressure stability determination means 18 in FIG. 1 (b) is added from the maximum pulse wave differential amplitude during pressurization obtained by the pulse wave differential amplitude detection means 13 during pressurization and the pulse wave differential amplitudes of the pulse waves detected before and after that. The pulse wave differential amplitude during pressure reduction, the maximum pulse wave differential amplitude during pressure reduction obtained by the pressure pulse differential amplitude detecting means 15 during pressure reduction, and the pulse wave differential amplitude during pressure reduction from the pulse wave differential amplitude of the pulse wave detected before and after that, To determine whether or not the measured blood pressure is unstable.

脈波微分振幅の推移の比較は、例えば加圧時と減圧時で得られる最大脈波微分振幅とその前後に検出された微分脈波振幅から最大脈波微分振幅前後の近似直線を周知の方法などによってそれぞれ計算し、その傾きを比較することによって行なう。そして、傾きを比較して大きな差があった場合に血圧不安定状態と判断する。   A comparison of the transition of the pulse wave differential amplitude is, for example, a well-known method of calculating an approximate straight line before and after the maximum pulse wave differential amplitude from the maximum pulse wave differential amplitude obtained at the time of pressurization and at the time of decompression and the differential pulse wave amplitude detected before and after that. Each is calculated by comparing the slopes. When the inclinations are compared and there is a large difference, it is determined that the blood pressure is unstable.

脈波微分振幅の近似直線の傾きの比較は、例えば次のように行なう。まず、加圧時の最大脈波微分振幅とその直前(低圧側)の脈波微分振幅の波高値の差を求める。次に最大脈波微分振幅を検出したときの圧力値とその直前(低圧側)の脈波微分振幅を検出したときの圧力値の差を求める。そして、波高値の差を圧力値の差で割ることによって直線の傾きL1を算出する。同様に減圧時の最大脈波微分振幅とその直後(低圧側)の脈波微分振幅の波高値およびそれぞれの脈波微分振幅を検出したときの圧力値によって直線の傾きM1を算出する。同様に加圧時の最大脈波微分振幅とその直後(高圧側)の脈波微分振幅の波高値およびそれぞれの脈波微分振幅を検出したときの圧力値から直線の傾きL2と、減圧時の最大脈波微分振幅とその直前(高圧側)の脈波微分振幅の波高値およびそれぞれの脈波微分振幅を検出したときの圧力値によって直線の傾きM2を算出する。   For example, the comparison of the slopes of the approximate straight lines of the pulse wave differential amplitude is performed as follows. First, the difference between the peak value of the maximum pulse wave differential amplitude during pressurization and the pulse wave differential amplitude immediately before (low pressure side) is obtained. Next, the difference between the pressure value when the maximum pulse wave differential amplitude is detected and the pressure value when the pulse wave differential amplitude immediately before (low pressure side) is detected is obtained. Then, the slope L1 of the straight line is calculated by dividing the difference in peak values by the difference in pressure values. Similarly, the slope M1 of the straight line is calculated from the maximum pulse wave differential amplitude during decompression, the peak value of the pulse wave differential amplitude immediately after (low pressure side), and the pressure value when each pulse wave differential amplitude is detected. Similarly, the maximum pulse wave differential amplitude at the time of pressurization, the peak value of the pulse wave differential amplitude immediately after (high-pressure side), and the slope L2 of the straight line from the pressure value when each pulse wave differential amplitude is detected, The slope M2 of the straight line is calculated from the maximum pulse wave differential amplitude, the peak value of the pulse wave differential amplitude immediately before (high-pressure side), and the pressure value when each pulse wave differential amplitude is detected.

L1とM1とを比較して1.5倍(または2倍以上)であるとき近似直線の傾きの大きな差と判断する。同様にL2とM2とを比較して1.5倍(または2倍以上)であるとき近似直線の傾きの大きな差と判断する。
なお、上述の例では最大脈波微分振幅を中心として1脈分(併せて3脈)を対象としたが、最大脈波を中心として前後2脈分(併せて5脈)を対象として近似直線と傾きをそれぞれ計算して比較を行なうことで血圧不安定状態を判断してもよい。
When L1 and M1 are compared and are 1.5 times (or more than 2 times), it is determined that there is a large difference in the slope of the approximate line. Similarly, when L2 and M2 are compared and are 1.5 times (or more than 2 times), it is determined that the inclination of the approximate straight line is large.
In the above example, one pulse (three pulses in total) centered on the maximum pulse wave differential amplitude is used as an object, but an approximate straight line with two pulses before and after the maximum pulse wave (five pulses in total) as a target. The blood pressure instability state may be determined by calculating and comparing the slope and the slope.

また、加圧中最大脈波微分振幅を検出した圧力値と減圧中最大脈波微分振幅を検出した圧力値とを比較して大きな差があった場合でも血圧不安定状態と判断する。
例えば、加圧時と減圧時に最大脈波微分振幅を検出した圧力値の絶対値を比較して20mmHg以上の差があれば血圧不安定状態と判断する。さらに、加圧時と減圧時に最大脈波微分振幅を検出した圧力値の差の絶対値が、加圧時の脈波の1拍分の圧力値以上のである場合でも血圧不安定状態と判断してもよい。
Moreover, even if there is a large difference between the pressure value at which the maximum pulse wave differential amplitude during pressurization is detected and the pressure value at which the maximum pulse wave differential amplitude during decompression is detected, it is determined that the blood pressure is unstable.
For example, the absolute value of the pressure value at which the maximum pulse wave differential amplitude is detected during pressurization and decompression is compared, and if there is a difference of 20 mmHg or more, it is determined that the blood pressure is unstable. Furthermore, even if the absolute value of the difference between the pressure values at which the maximum pulse wave differential amplitude is detected during pressurization and decompression is greater than or equal to the pressure value for one pulse of the pulse wave during pressurization, it is determined that the blood pressure is unstable. May be.

加圧時の脈波の1拍分の圧力値とは、加圧時に連続する2つの脈波微分振幅それぞれを検出した圧力値の差の絶対値である。加圧時に連続する2つの脈波微分振幅を検出した圧力値から算出すればどの脈波微分振幅の圧力値を用いてもよいが、最大脈波微分振幅とその直前(または直後)に検出する脈波微分振幅の圧力値から算出する1拍分の圧力値を用いるとより正確に血圧不安定状態を判断できる。
なお、上述の両条件を満たしたときに血圧不安定状態であると判断することで、確実に血圧不安定状態であると判断できるが、どちらか一方の条件のみで血圧不安定状態と判断してもよい。
The pressure value for one pulse of the pulse wave during pressurization is the absolute value of the difference between the pressure values obtained by detecting each of the two pulse wave differential amplitudes that continue during pressurization. The pressure value of any pulse wave differential amplitude may be used as long as it is calculated from the detected pressure values of two pulse wave differential amplitudes that are continuous during pressurization, but is detected immediately before (or immediately after) the maximum pulse wave differential amplitude. If the pressure value for one beat calculated from the pressure value of the pulse wave differential amplitude is used, the blood pressure unstable state can be determined more accurately.
In addition, it can be determined that the blood pressure is unstable by determining that the blood pressure is unstable when both of the above conditions are satisfied, but it is determined that the blood pressure is unstable only by either one of the conditions. May be.

このような処理は、図1(a)に示したマイクロコンピュータ6によって行われるので、そのマイクロコンピュータ6による血圧測定処理の流れを、図5に示すフローチャートによって説明する。   Since such processing is performed by the microcomputer 6 shown in FIG. 1A, the flow of blood pressure measurement processing by the microcomputer 6 will be described with reference to the flowchart shown in FIG.

操作手段7の測定開始ボタンのONによって測定を開始し、ステップS1でカフ1内の加圧を開始し、ステップS3で加圧終了と判断するまで、すなわち圧力センサ4によって検出される圧力が所定値に達するまで加圧し、その間にステップ2で圧力検出信号の微分波形を監視し、加圧中最大脈波微分振幅(図2に示したh)を検出して記憶する。その場合、前述したように、1番目と2番目に大きい脈波の大小関係によって、いずれか一方を加圧中最大脈波微分振幅hとして選択するようにしてもよい。   The measurement is started by turning on the measurement start button of the operation means 7, the pressurization in the cuff 1 is started in step S1, and the pressure detected by the pressure sensor 4 is predetermined until it is determined that the pressurization is finished in step S3. During the pressurization, the differential waveform of the pressure detection signal is monitored in step 2, and the maximum pulse wave differential amplitude (h shown in FIG. 2) is detected and stored. In that case, as described above, either one may be selected as the maximum pulse wave differential amplitude h during pressurization depending on the magnitude relationship between the first and second largest pulse waves.

その後、ステップS4でカフ1内の減圧を開始し、略一定の速度で減圧しながらステップS5で脈波(図4に示した各脈波開始圧力と脈波高)を検出して記憶する。   Thereafter, pressure reduction in the cuff 1 is started in step S4, and pulse waves (each pulse wave start pressure and pulse wave height shown in FIG. 4) are detected and stored in step S5 while reducing pressure at a substantially constant speed.

次いで、ステップS6で減圧中の脈波微分振幅(図3に示したA)を検出し、ステップS7でh×αと減圧中脈波微分振幅Aとを比較して、A≧h×αのときはステップS8で体動を検出し、そのときの脈波高のデータを除去してステップS9へ進む。ステップS7でA<h×αであれば体動の検出はせずにステップS9へ進む。   Next, the pulse wave differential amplitude during decompression (A shown in FIG. 3) is detected in step S6, and h × α is compared with the pulse wave differential amplitude A during decompression in step S7, and when A ≧ h × α. Detects body movement in step S8, removes the pulse height data at that time, and proceeds to step S9. If A <h × α in step S7, the body movement is not detected and the process proceeds to step S9.

この倍率αの値は任意に設定でき、それによって体動検出の感度を調整することができるが、2〜3程度、例えば2.5程度を標準値にするとよい。   The value of the magnification α can be arbitrarily set, and thereby the sensitivity of body motion detection can be adjusted. However, it is preferable to set a standard value of about 2 to 3, for example, about 2.5.

ステップS9では、ステップS5で測定データとして記憶した波高値から最大波高値Hmax を判定し、ステップS10で図4によって前述したように最高血圧(SYS)と最低血圧(DIA)を算出する。そして、ステップS11で血圧値算出の終了と判断するまで、ステップS5〜S10の処理を繰り返す。   In step S9, the maximum peak value Hmax is determined from the peak value stored as measurement data in step S5, and in step S10, the maximum blood pressure (SYS) and the minimum blood pressure (DIA) are calculated as described above with reference to FIG. Then, the processes in steps S5 to S10 are repeated until it is determined in step S11 that the blood pressure value calculation is finished.

ここで、ステップS11の血圧値算出の終了は、最高血圧と最低血圧の両方が算出できた後に、ステップS5〜S10の処理をさらに繰り返して、数拍分の脈波を取得して、最大波高値Hmaxとなる脈波が検出されるか否かによって判断する。   Here, the end of the blood pressure value calculation in step S11 is that after both the maximum blood pressure and the minimum blood pressure have been calculated, the processing in steps S5 to S10 is further repeated to acquire pulse waves for several beats. Judgment is made based on whether or not a pulse wave having a high value Hmax is detected.

また、ステップS11の血圧値算出の終了は、ステップS10で最高血圧と最低血圧の両方が算出できたか否かのみによって判断してもよい。   The end of the blood pressure value calculation in step S11 may be determined only by whether or not both the maximum blood pressure and the minimum blood pressure have been calculated in step S10.

このようにするのは、なるべく早く測定を終了してカフ内を急速排気できるようにするためであり、脈波が取れなくなるまで脈波の検出を続けるのではなく、ステップS5で脈波を検出する度に、それ以前の波高値より大きければステップS9で最大波高値Hmax と判定し、ステップS10でその最大波高値Hmax に基づいて最高血圧と最低血圧を算出できたら、さらに数拍間の脈波を検出して、さらに大きな脈波が検出されればステップS9で最大波高値Hmax を更新して、最高血圧と最低血圧を算出し直す。しかし、最大波高値Hmax が更新されなければ、ステップS11で血圧値算出の終了と判断する。   The reason for this is to finish the measurement as soon as possible so that the cuff can be quickly exhausted. Instead of continuing to detect the pulse wave until the pulse wave can no longer be detected, the pulse wave is detected in step S5. Each time, if it is larger than the previous peak value, it is determined that the maximum peak value Hmax is obtained in step S9, and if the maximum blood pressure and the minimum blood pressure are calculated based on the maximum peak value Hmax in step S10, the pulse between several beats is further obtained. If a wave is detected and a larger pulse wave is detected, the maximum peak value Hmax is updated in step S9, and the maximum blood pressure and the minimum blood pressure are recalculated. However, if the maximum peak value Hmax is not updated, it is determined in step S11 that the blood pressure value calculation is completed.

そして、ステップS11で血圧値算出の終了と判断すると、ステップS12で加圧中脈波検出手段が検出した脈波の最大脈波振幅値の前後で検出した脈波振幅の推移と、減圧中脈波振幅検出手段が検出した脈波の最大脈波振幅値の前後で検出した脈波振幅の推移とを比較する。ステップS12で脈波振幅の推移に変化を検出したときはステップS13で測定した血圧値が不安定状態を検出し、脈波振幅の推移に変化を検出しなかったときは、ステップS14に進む。
ステップS14で測定結果である最高血圧と最低血圧を表示手段8に表示する。その際、ステップS8で体動が検出された場合やステップS13で血圧の不安定状態を検出した場
合には、測定中に被測定者の状態に異常があり血圧算出値の精度が低い場合が多いので、体動マークや測定異常マークなどを表示して測定に異常があったことを報知し、再測定を促すとよい。
When it is determined in step S11 that the blood pressure value calculation is completed, the pulse wave amplitude transition detected before and after the maximum pulse wave amplitude value detected by the pressurizing pulse wave detecting means in step S12, and the pulse wave amplitude during decompression are detected. The transition of the pulse wave amplitude detected before and after the maximum pulse wave amplitude value of the pulse wave detected by the detecting means is compared. When a change is detected in the transition of the pulse wave amplitude in step S12, the blood pressure value measured in step S13 detects an unstable state, and when no change is detected in the transition of the pulse wave amplitude, the process proceeds to step S14.
In step S14, the maximum blood pressure and the minimum blood pressure as measurement results are displayed on the display means 8. At that time, if body movement is detected in step S8 or if an unstable state of blood pressure is detected in step S13, the state of the person being measured may be abnormal during measurement and the accuracy of the blood pressure calculation value may be low. Since there are many, it is good to display a body movement mark, a measurement abnormality mark, etc., to notify that there was an abnormality in the measurement, and to urge remeasurement.

最後に、ステップS15でカフ1内の空気を急速排気させて減圧終了し、測定処理を終了する。     Finally, in step S15, the air in the cuff 1 is rapidly exhausted to finish the pressure reduction, and the measurement process is finished.

なお、体動を報知する場合、上述のように表示手段8を兼用して「体動あり」を文字又は図形(マーク)で表示させるか、あるいは音声、警告音、警告ランプの点灯又は点滅させたり、表示手段8による測定結果の表示を点滅させたり、正常時とは異なる色で表示させるなど、種々の手段を採用することができる。
また、血圧の不安定状態を報知する場合も体動を放置する場合と同様で文字又は図形(マーク)で表示させるか、あるいは音声、警告音、警告ランプの点灯又は点滅させたり、表示手段8による測定結果の表示を点滅させたり、正常時とは異なる色で表示させるなど、種々の手段を採用することができる。
上述した実施形態においては、体動の検出と血圧不安定状態の判断に、加圧中の脈波微分振幅とその時点の圧力値を用いているが、脈波微分振幅ではなく、脈波振幅値とその時点の圧力値を用いてもよい。
When notifying body movement, as described above, the display means 8 is also used to display “with body movement” in characters or figures (marks), or sound, warning sound, warning lamp is lit or blinked. Various means such as blinking the display of the measurement result by the display means 8 or displaying the measurement result in a color different from the normal time can be adopted.
Further, when an unstable state of blood pressure is notified, it is displayed as characters or figures (marks) as in the case of leaving the body movement, or voice, warning sound, warning lamp is turned on or blinking, or display means 8 Various means can be employed, such as blinking the display of the measurement result by, or displaying the measurement result in a color different from the normal state.
In the above-described embodiment, the pulse wave differential amplitude during pressurization and the pressure value at that time are used for detection of body motion and determination of an unstable blood pressure, but the pulse wave amplitude is not the pulse wave differential amplitude. The value and the pressure value at that time may be used.

加圧が急速であり、単なる脈波成分が検出しにくい場合は微分脈波を用いた方が振幅を検出し易いが、脈波成分が取れる場合は微分脈波ではなく単なる脈波を用いることができる。脈波も微分脈波も最大脈波となる圧力値はほぼ同じである。   When pressurization is rapid and it is difficult to detect a simple pulse wave component, it is easier to detect the amplitude by using the differential pulse wave, but when the pulse wave component can be taken, use a simple pulse wave instead of the differential pulse wave. Can do. The pressure values at which the pulse wave and the differential pulse wave become the maximum pulse wave are substantially the same.

この発明による電子血圧計によれば、カフ圧の加圧中に短時間で被測定者に適した体動の判定基準となる閾値を決め、減圧時には直ちに体動の検出と正常な脈波データによる血圧測定を開始でき、体動による脈波の異常を正確かつ効率よく検出できる。また、加圧中と減圧中の脈波の推移を比較することにより血圧の不安定状態を検出することができる。その結果、測定中の被測定者の状態の異常を検出し報知することできるので、血圧測定を精度よく行うことが可能になる。   According to the electronic sphygmomanometer according to the present invention, a threshold value serving as a determination criterion of body motion suitable for the measurement subject is determined in a short time during the pressurization of the cuff pressure. Blood pressure measurement can be started, and abnormal pulse waves due to body motion can be detected accurately and efficiently. Moreover, an unstable state of blood pressure can be detected by comparing the transition of pulse waves during pressurization and decompression. As a result, an abnormality in the state of the person being measured can be detected and notified, so that blood pressure can be measured with high accuracy.

この発明による電子血圧計は、家庭用のオシロメトリック法による各種電子血圧計や携帯型の電子血圧計等に広く適用することができ、その信頼性を高めることができる。   The electronic sphygmomanometer according to the present invention can be widely applied to various electronic sphygmomanometers based on the oscillometric method for home use, portable electronic sphygmomanometers, and the like, and the reliability thereof can be improved.

1:カフ 2:加圧手段 3:減圧手段 4:圧力センサ
5:A/Dコンバータ 6:マイクロコンピュータ 7:操作手段
8:表示手段 10:記憶・演算手段 11:制御手段
12:チューブ 13:加圧中脈波微分振幅検出手段
14:減圧中脈波検出手段 15:減圧中脈波微分振幅検出手段
16:体動検出手段 17:血圧算出手段
1: Cuff 2: Pressurizing means 3: Pressure reducing means 4: Pressure sensor 5: A / D converter 6: Microcomputer 7: Operating means 8: Display means 10: Storage / calculating means 11: Control means 12: Tube 13: Addition Pressure pulse wave differential amplitude detection means 14: Pressure reduction pulse wave detection means 15: Pulse pressure differential amplitude detection means during pressure reduction 16: Body motion detection means 17: Blood pressure calculation means

Claims (3)

カフと、
該カフ内の圧力を加圧する加圧手段と、
前記カフ内の圧力を減圧する減圧手段と、
前記加圧と減圧とを制御する制御手段と、
前記カフ内の圧力を検出する圧力センサと、
前記カフ内の加圧中に前記圧力センサの出力信号から、加圧中の脈波振幅である前記圧力センサによる圧力検出信号の微分波形の振幅を検出する加圧中脈波微分振幅検出手段と、
前記カフ内の減圧中に前記圧力センサの出力信号から、減圧中の脈波振幅を検出する減圧中脈波振幅検出手段と、
前記減圧中の脈波振幅である前記圧力センサによる圧力検出信号の微分波形の振幅を検出する減圧中脈波微分振幅検出手段と、
前記減圧中脈波振幅検出手段が検出する前記脈波振幅に基づいて血圧値を算出する血圧算出手段と、
を備え、
前記加圧中脈波微分振幅検出手段が検出した最大脈波振幅値と、前記減圧中脈波微分振幅検出手段が検出した最大脈波振幅値とを比較して、所定倍した値以上であったときに体動として検出する体動検出手段を有し、前記体動検出手段による体動の検出により被測定者の測定状態が異常であると判定し、
前記加圧中脈波微分振幅検出手段が検出する最大脈波振幅値は、前記カフ内の加圧中で前記微分波形の1番目に大きな振幅と2番目に大きな振幅との差が所定値未満の場合は前記1番目に大きな振幅を、所定値以上の場合は前記2番目に大きな振幅を採用することを特徴とする電子血圧計。
With cuff,
A pressurizing means for pressurizing the pressure in the cuff;
Pressure reducing means for reducing the pressure in the cuff;
Control means for controlling the pressurization and decompression;
A pressure sensor for detecting the pressure in the cuff;
During the pressurization in the cuff, from the output signal of the pressure sensor, the pulse wave differential amplitude detection means during pressurization for detecting the amplitude of the differential waveform of the pressure detection signal by the pressure sensor, which is the pulse wave amplitude during pressurization,
Depressurizing pulse wave amplitude detecting means for detecting the pulse wave amplitude during depressurization from the output signal of the pressure sensor during depressurization in the cuff;
Depressurizing pulse wave differential amplitude detecting means for detecting the amplitude of the differential waveform of the pressure detection signal by the pressure sensor which is the pulse wave amplitude during the depressurization;
And blood pressure calculating means for calculating a blood pressure value based on the pulse wave amplitude which said vacuum in pulse wave amplitude detecting means for detecting,
With
When the maximum pulse wave amplitude value detected by the pressurizing pulse wave differential amplitude detecting means and the maximum pulse wave amplitude value detected by the depressurizing pulse wave differential amplitude detecting means are equal to or greater than a predetermined value A body motion detecting means for detecting as body motion, and determining that the measurement state of the measurement subject is abnormal by detecting the body motion by the body motion detecting means,
The maximum pulse wave amplitude value detected by the pulse wave differential amplitude detecting means during pressurization is such that the difference between the first and second largest amplitudes of the differential waveform during pressurization in the cuff is less than a predetermined value. The electronic sphygmomanometer is characterized in that the first largest amplitude is adopted in the case, and the second largest amplitude is adopted in the case where it is equal to or greater than a predetermined value .
前記所定倍した値は、2〜3倍であることを特徴とする請求項に記載の電子血圧計。 The electronic sphygmomanometer according to claim 1 , wherein the predetermined multiplied value is 2 to 3 times. 被測定者の測定状態が異常であると判定されたときに測定状態が異常であることを報知する報知手段を有することを特徴とする請求項に記載の電子血圧計。
The electronic sphygmomanometer according to claim 1 , further comprising notification means for notifying that the measurement state is abnormal when it is determined that the measurement state of the measurement subject is abnormal.
JP2010072724A 2010-03-26 2010-03-26 Electronic blood pressure monitor Active JP5026542B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010072724A JP5026542B2 (en) 2010-03-26 2010-03-26 Electronic blood pressure monitor
CN 201110073520 CN102198001B (en) 2010-03-26 2011-03-25 Electronic blood pressure instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072724A JP5026542B2 (en) 2010-03-26 2010-03-26 Electronic blood pressure monitor

Publications (2)

Publication Number Publication Date
JP2011200576A JP2011200576A (en) 2011-10-13
JP5026542B2 true JP5026542B2 (en) 2012-09-12

Family

ID=44659167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072724A Active JP5026542B2 (en) 2010-03-26 2010-03-26 Electronic blood pressure monitor

Country Status (2)

Country Link
JP (1) JP5026542B2 (en)
CN (1) CN102198001B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104068839B (en) * 2014-06-27 2016-09-14 广州视源电子科技股份有限公司 Sphygomanometer
JP6226828B2 (en) * 2014-06-30 2017-11-08 日本光電工業株式会社 Biological information measuring device, biological information measuring method, and program
CN106562779B (en) * 2015-10-12 2021-06-08 深圳迈瑞生物医疗电子股份有限公司 Device and method for graphically displaying ventricular ejection fraction change and monitoring system
JP6859154B2 (en) 2017-03-29 2021-04-14 日本光電工業株式会社 Blood pressure measuring device
JP7222610B2 (en) * 2018-05-09 2023-02-15 日本光電工業株式会社 Biological information processing device, biological information processing method, program and storage medium
CN110833403A (en) * 2018-08-16 2020-02-25 佳纶生技股份有限公司 Blood pressure measuring system, method and device
CN113349747B (en) * 2020-03-04 2023-02-03 华为技术有限公司 Blood pressure measuring method and device and blood pressure measuring equipment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214831A (en) * 1985-07-12 1987-01-23 松下電工株式会社 Electronic hemomanometer
JPS6272316A (en) * 1985-09-25 1987-04-02 松下電工株式会社 Electronic hemomanometer
JPH084574B2 (en) * 1987-05-13 1996-01-24 オムロン株式会社 Electronic blood pressure monitor
JPH0747021B2 (en) * 1987-06-15 1995-05-24 オムロン株式会社 Electronic blood pressure monitor
JPH0751123B2 (en) * 1987-06-25 1995-06-05 オムロン株式会社 Electronic blood pressure monitor for fingers
JP2506119B2 (en) * 1987-07-28 1996-06-12 オムロン株式会社 Electronic blood pressure monitor
US5522395A (en) * 1991-05-01 1996-06-04 Omron Corporation Electronic sphygmomanometer and method of controlling operation of same
JP3057892B2 (en) * 1991-05-01 2000-07-04 オムロン株式会社 Electronic sphygmomanometer
JPH05207979A (en) * 1992-01-30 1993-08-20 Sharp Corp Blood pressure measuring instrument
JP3147256B2 (en) * 1992-11-20 2001-03-19 フクダ電子株式会社 Non-invasive blood pressure measurement device
JPH0739529A (en) * 1993-07-27 1995-02-10 Matsushita Electric Works Ltd Electronic sphygmomanometer
EP1254629B1 (en) * 2000-11-14 2006-03-22 Omron Healthcare Co., Ltd. Electronic sphygmomanometer
WO2006124768A1 (en) * 2005-05-12 2006-11-23 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Method and apparatus for blood pressure measurement and analysis
JP4047898B1 (en) * 2006-09-29 2008-02-13 シチズンホールディングス株式会社 Electronic blood pressure monitor
JP4213188B2 (en) * 2007-02-06 2009-01-21 シチズンホールディングス株式会社 Electronic blood pressure monitor
CN101568298B (en) * 2007-02-21 2011-04-13 西铁城控股株式会社 Electronic blood pressure meter
JP5169631B2 (en) * 2008-08-29 2013-03-27 オムロンヘルスケア株式会社 Blood pressure information measuring device

Also Published As

Publication number Publication date
JP2011200576A (en) 2011-10-13
CN102198001A (en) 2011-09-28
CN102198001B (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5026541B2 (en) Electronic blood pressure monitor
JP5026542B2 (en) Electronic blood pressure monitor
JP5152153B2 (en) Electronic blood pressure monitor
US6969355B2 (en) Arteriostenosis diagnosing apparatus
EP1808123B1 (en) Blood pressure measuring device and blood pressure measuring method
JPH07136136A (en) Continuous blood pressure monitoring system
JP5309921B2 (en) Electronic blood pressure monitor
JP2008188303A (en) Electronic sphygmometer
US6561985B2 (en) Automatic blood-pressure measuring apparatus
JP5041155B2 (en) Blood pressure measurement device
JP5208150B2 (en) Electronic blood pressure monitor
US20110092827A1 (en) Blood pressure monitor and method for calculating blood pressure thereof
JP3162113U (en) Sphygmomanometer
CN113080912A (en) Electronic sphygmomanometer and blood pressure measuring method
US7056291B2 (en) Arteriosclerosis evaluating apparatus
JP2010194202A (en) Data processor of automatic sphygmomanometer
US6730039B2 (en) Arteriosclerosis-degree evaluating apparatus
JP2019017553A (en) Blood pressure measuring device
JP4648510B2 (en) Electronic blood pressure monitor
US6482164B2 (en) Automatic blood pressure measuring apparatus
US9022943B2 (en) Method for detecting vascular sclerosis
WO2022244810A1 (en) Circulating blood volume status determination apparatus, program and method
JP7127571B2 (en) Blood pressure level change detection device, blood pressure level change detection method, and program
JPH09201341A (en) Electronic hemodynamometer
JP2007020749A (en) Blood pressure measuring method and blood pressure measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5026542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250