JP3042051B2 - Electronic sphygmomanometer - Google Patents

Electronic sphygmomanometer

Info

Publication number
JP3042051B2
JP3042051B2 JP3194286A JP19428691A JP3042051B2 JP 3042051 B2 JP3042051 B2 JP 3042051B2 JP 3194286 A JP3194286 A JP 3194286A JP 19428691 A JP19428691 A JP 19428691A JP 3042051 B2 JP3042051 B2 JP 3042051B2
Authority
JP
Japan
Prior art keywords
pressure
cuff
pulse wave
systolic
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3194286A
Other languages
Japanese (ja)
Other versions
JPH0531082A (en
Inventor
修 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP3194286A priority Critical patent/JP3042051B2/en
Publication of JPH0531082A publication Critical patent/JPH0531082A/en
Application granted granted Critical
Publication of JP3042051B2 publication Critical patent/JP3042051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、オシロメトリック式
血圧計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oscillometric sphygmomanometer.

【0002】[0002]

【従来の技術】オシロメトリック式血圧計には、例えば
カフ圧を時間的に変化させ(図5のa参照)、このカフ
圧上に重畳する脈波の振幅の変化(図5のb参照)から
血圧を算出するものがある。図5の(b)は、このよう
な血圧計のカフ圧の減圧過程における脈波振幅の変化を
示したものであり、P点は最大振幅点(AMAX とする)
を示している。また、D点は、最大振幅点に対して0.
7AMAX の振幅を有する点であり、S点は、最大振幅点
に対して0.5AMAX の振幅を有する点である。そし
て、例えば図5の(b)のS点とD点に対応する図5の
(a)の点より、収縮期血圧(最高血圧)と振幅期血圧
(最低血圧)を決定していた。
2. Description of the Related Art In an oscillometric sphygmomanometer, for example, the cuff pressure is changed with time (see FIG. 5A), and the amplitude of a pulse wave superimposed on the cuff pressure is changed (see FIG. 5B). There is one that calculates the blood pressure from the data. FIG. 5B shows a change in pulse wave amplitude in the process of reducing the cuff pressure of such a sphygmomanometer, where point P is the maximum amplitude point ( AMAX ).
Is shown. The point D is set at 0. 0 relative to the maximum amplitude point.
A point having an amplitude of 7A MAX and an S point having an amplitude of 0.5A MAX with respect to the maximum amplitude point. Then, for example, from the point of view of the FIG. 5 in FIG. 5 corresponding to the S point and the D point (b) (a), systolic blood pressure (the systolic blood pressure) has determined the amplitude period blood pressure (diastolic blood pressure).

【0003】オシロメトリック式血圧計では、以上のよ
うにして血圧値を決定するので、図5(b)のS点が検
出できる程度の加圧が必要であるが、計測前には収縮期
血圧(最高血圧)を予測できないので加圧停止値を適切
な値に設定することは難しく、血圧変動の激しい高血圧
者においては特に困難である。また、加圧停止値を、む
やみに高い値に設定すると被測定者に苦痛を強いること
にもなる。
In the oscillometric sphygmomanometer, the blood pressure value is determined as described above, and therefore, it is necessary to apply a pressure sufficient to detect the point S in FIG. 5 (b). Since it is not possible to predict (systolic blood pressure), it is difficult to set the pressurization stop value to an appropriate value, and it is particularly difficult for a hypertensive subject with severe blood pressure fluctuation. If the pressurization stop value is set to an unnecessarily high value, the subject is forced to suffer.

【0004】そこで、従来は、カフ圧の加圧時におい
て、カフ圧信号を捕捉して、このカフ圧信号に重畳する
脈波の振幅の変化(脈波包絡線)を求めることによっ
て、簡易的に収縮期圧を推定していた。そして、この推
定した収縮期圧を基にして自動的に加圧停止点を設定し
ていた。
Therefore, conventionally, when the cuff pressure is pressurized, the cuff pressure signal is captured, and the change in the amplitude of the pulse wave (pulse wave envelope) superimposed on the cuff pressure signal is obtained, thereby simplifying the operation. The systolic pressure was estimated. And the pressurization stop point was automatically set based on the estimated systolic pressure.

【0005】[0005]

【発明が解決しようとする課題】しかし、脈波の重畳し
たカフ圧信号から脈波を分離する為にハイパスフィルタ
を使用するので、加圧開始時などのように信号が急激に
変化する点で過渡応答と呼ばれる大きな変動が生じてし
まい、収縮期圧を算出する為の包絡線を正常に捕捉でき
ないという問題点があった。具体的には、カフ圧の低圧
領域で異常な隆起が生じる為に、非常に低い値が収縮期
圧と推定されてしまい、この推定値を基にして加圧停止
点を設定すると、加圧不足により血圧測定ができないと
いう問題点があった。
However, since a high-pass filter is used to separate a pulse wave from a cuff pressure signal on which a pulse wave is superimposed, a point at which the signal changes abruptly, such as at the start of pressurization. There is a problem that a large fluctuation called a transient response occurs, and an envelope for calculating the systolic pressure cannot be normally captured. Specifically, since an abnormal bulge occurs in the low pressure region of the cuff pressure, a very low value is estimated as the systolic pressure, and when the pressurization stop point is set based on this estimated value, There was a problem that blood pressure could not be measured due to lack.

【0006】この発明は、この問題点に着目してなされ
たものであって、過渡応答の影響を受けずに、カフ圧の
加圧過程で収縮期圧を推定することの出来る血圧計を提
供することを目的とする。
The present invention has been made in view of this problem, and provides a sphygmomanometer capable of estimating a systolic pressure in a process of applying a cuff pressure without being affected by a transient response. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、この発明にかかる血圧計は、生体動脈を圧迫するカ
フと、このカフを加圧する加圧手段と、カフ内の圧力を
検出する圧力センサと、この圧力センサの検出したカフ
圧信号からこのカフ圧信号に重畳する脈波成分を抽出す
る脈波抽出手段と、加圧開始後所定の条件が成立したか
を判定する条件判定手段と、この条件判定手段による条
件成立に応答して、前記脈波抽出手段の動作を開始させ
る動作開始制御手段と、カフ圧の加圧過程において脈波
信号とカフ圧に基づいて収縮期圧を推定する収縮期圧推
定手段と、この収縮期圧推定手段の推定した収縮期圧に
基づいて定まる所定のカフ圧に達すると前記加圧手段の
動作を停止させる加圧停止手段と、加圧停止後にカフ圧
を徐々に減圧する減圧手段と、カフ圧の減圧過程で脈波
信号を抽出し、その脈拍信号とカフ圧に基づいて血圧を
決定する血圧決定手段とで構成されている。条件判定手
段は加圧開始後、カフ圧が所定値を越えたことを検出す
るカフ圧検出手段であり、あるいは加圧開始から所定時
間が経過したことを検出する時間経過検出手段である。
または、その両方を備えるものであってもよい。
To achieve the above object, a sphygmomanometer according to the present invention detects a cuff for compressing a living artery, a pressurizing means for pressurizing the cuff, and a pressure in the cuff. A pressure sensor, pulse wave extracting means for extracting a pulse wave component superimposed on the cuff pressure signal from the cuff pressure signal detected by the pressure sensor, and whether predetermined conditions have been satisfied after the start of pressurization
Condition determining means for determining
Operation start control means for starting the operation of the pulse wave extraction means in response to the establishment of the pulse wave;
A systolic pressure estimating means for estimating the systolic pressure based on the signal and the cuff pressure, and the operation of the pressurizing means when a predetermined cuff pressure determined based on the systolic pressure estimated by the systolic pressure estimating means is reached. Pressure stop means for stopping, pressure reducing means for gradually reducing the cuff pressure after the pressure stop, and a blood pressure for extracting a pulse wave signal in the process of reducing the cuff pressure and determining a blood pressure based on the pulse signal and the cuff pressure. Decision means. Condition judgment
The stage detects that the cuff pressure has exceeded the specified value after the start of pressurization.
Cuff pressure detection means, or at a predetermined time from the start of pressurization
It is a time lapse detecting means for detecting that the time has elapsed.
Alternatively, both of them may be provided.

【0008】[0008]

【作用】加圧手段はカフを加圧し、圧力センサはカフ内
の圧力(脈波の重畳したカフ圧信号)を検出する。そし
て、脈波抽出手段は、加圧時及び減圧時のカフ圧信号よ
りこの信号に重畳する脈波成分を抽出する。条件判定手
段は、加圧開始後所定の条件、例えば加圧開始後カフが
所定値を越えたか、あるいは加圧開始後所定の時間が経
過したかを判定する。動作開始制御手段は、条件成立
応答して脈波抽出手段の動作開始させる。従って、過
渡応答時には脈波が抽出されず、収縮期圧推定手段は正
確に収縮期圧を推定する。加圧停止手段は、前記推定さ
れた収縮期圧の値に基づいて定まる加圧停止点で加圧を
停止し、その後、減圧手段がカフ圧を徐々に減圧する。
血圧決定手段は、このカフ圧減圧過程において、脈波抽
出手段によって抽出された脈波の振幅の変化に基づいて
血圧値を決定する。
The pressurizing means pressurizes the cuff, and the pressure sensor detects the pressure in the cuff (cuff pressure signal on which a pulse wave is superimposed). Then, the pulse wave extracting means extracts a pulse wave component superimposed on this signal from the cuff pressure signals at the time of pressurization and at the time of depressurization. Condition judgment
Steps are performed under predetermined conditions after the start of pressurization, for example, after the start of pressurization.
Either the specified value has been exceeded, or a specified time
Determine if you have missed it. Operation start control means is responsive to the condition satisfied to start the operation of the pulse wave extracting means. Therefore, the pulse wave is not extracted during the transient response, and the systolic pressure estimating means estimates the systolic pressure accurately. The pressurizing stop unit stops pressurizing at a pressurizing stop point determined based on the value of the estimated systolic pressure, and thereafter, the pressure reducing unit gradually reduces the cuff pressure.
The blood pressure determining means determines a blood pressure value based on a change in the amplitude of the pulse wave extracted by the pulse wave extracting means in the cuff pressure reducing process.

【0009】[0009]

【実施例】図1はこの発明の一実施例である電子血圧計
のブロック図である。この電子血圧計は、生体動脈を圧
迫するカフ1と、カフ1を加圧するポンプ2と、カフ1
の圧力(空気圧)を急速排気する急速排気弁3と、カフ
1の空気を徐々にに排気する微速排気弁4と、カフ1の
圧力を検出する圧力センサ5と、ローパスフィルタ6
と、圧力センサ5の出力をデジタル値に変換するA/D
変換器7と、A/D変換器7からの信号を取り込み、後
述する種々の処理を行うMPU8と、測定した血圧値を
表示する表示器9を備えている。尚、ローパスフィルタ
6は加圧途上で脈波を抽出する場合において、カフ圧信
号上に混入する加圧ポンプ2の圧力ノイズを除去する為
に設けている。
1 is a block diagram of an electronic sphygmomanometer according to an embodiment of the present invention. This electronic sphygmomanometer includes a cuff 1 for compressing a living artery, a pump 2 for pressurizing the cuff 1, and a cuff 1
Quick exhaust valve 3 for rapidly exhausting the pressure (air pressure), a slow exhaust valve 4 for gradually exhausting the air of the cuff 1, a pressure sensor 5 for detecting the pressure of the cuff 1, and a low-pass filter 6
A / D for converting the output of the pressure sensor 5 into a digital value
A converter 7, an MPU 8 that takes in signals from the A / D converter 7 and performs various processes described later, and a display 9 that displays a measured blood pressure value are provided. The low-pass filter 6 is provided to remove pressure noise of the pressurizing pump 2 mixed in the cuff pressure signal when extracting a pulse wave during pressurization.

【0010】図2は図1に示す電子血圧計の全体動作を
示すゼェネラルフローチャートである。尚、脈波抽出
処理(ST5,ST12)、脈波振幅算出処理(ST
6,ST13)、血圧推定処理(ST7)および血
圧算出処理(ST14)は、それぞれ以下の処理をする
部分である。 脈波抽出処理:カフ圧データから、カフ圧データに重
畳する脈波成分を抽出する処理である。 脈波振幅算出処理:脈波の起点と終点を1拍ごとに認
識して脈波の振幅を算出する処理である。 血圧推定処理:カフ圧の加圧過程における脈波振幅の
最大値AMAX を求め、この脈波振幅の最大値AMAX に基
づいて収縮期圧の推定値SPを決定するサブルーチンで
ある(図3参照)。 血圧算出処理:脈波振幅による脈波の包短線の変化よ
り、最高血圧(収縮期圧)と最低血圧(拡張期圧)を算
出するサブルーチンである(図4参照)。
FIG. 2 is a general flowchart showing the overall operation of the electronic sphygmomanometer shown in FIG. The pulse wave extraction processing (ST5, ST12) and the pulse wave amplitude calculation processing (ST5)
6, ST13), the blood pressure estimation process (ST7), and the blood pressure calculation process (ST14) are portions that perform the following processes, respectively. Pulse wave extraction processing: This is processing for extracting a pulse wave component superimposed on cuff pressure data from cuff pressure data. Pulse wave amplitude calculation processing: This is processing for calculating the pulse wave amplitude by recognizing the start point and end point of the pulse wave for each beat. Blood pressure estimation process: the maximum value A MAX of the pulse wave amplitude in pressurization process of the cuff pressure, a subroutine for determining an estimated value SP of systolic pressure based on the maximum value A MAX of the pulse wave amplitude (Figure 3 reference). Blood pressure calculation processing: This is a subroutine for calculating the systolic blood pressure (systolic pressure) and the diastolic blood pressure (diastolic pressure) from the change in the pulse wave envelope due to the pulse wave amplitude (see FIG. 4).

【0011】以下、図2のフローチャートに従って、図
1に示す電子血圧計の動作を説明する。スタートスイッ
チなどにより動作が開始されると、MPU8はポンプ2
を駆動して加圧を開始する(ステップST(以下STと
略す)1)。次に、MPU8は圧力センサ5からの信号
を検出して増加してゆく圧力を監視し(ST2)、カフ
圧が所定値に到達したか否かを判断する(ST3)。カ
フ圧が所定値に達していなければST2に戻るが、所定
値に達したら次の処理(ST4)に進む。そして、測定
開始時から所定の時間(τ)だけ経過しているか否か判
定して、所定の時間τを経過していなければST2に戻
って待機する(ST4)。つまり、ST3とST4の処
理があるので、カフ圧が所定値以上になり、かつ所定時
間τを経過した場合のみ次の処理ST5に移ることにな
る。
The operation of the electronic sphygmomanometer shown in FIG. 1 will be described below with reference to the flowchart of FIG. When the operation is started by a start switch or the like, the MPU 8 operates the pump 2
To start pressurization (step ST (hereinafter abbreviated as ST) 1). Next, the MPU 8 detects a signal from the pressure sensor 5 and monitors the increasing pressure (ST2), and determines whether or not the cuff pressure has reached a predetermined value (ST3). If the cuff pressure has not reached the predetermined value, the process returns to ST2, but if the cuff pressure has reached the predetermined value, the process proceeds to the next process (ST4). Then, it is determined whether or not a predetermined time (τ) has elapsed since the start of the measurement. If the predetermined time τ has not elapsed, the process returns to ST2 and waits (ST4). That is, since there are the processes of ST3 and ST4, the process proceeds to the next process ST5 only when the cuff pressure becomes equal to or more than the predetermined value and the predetermined time τ has elapsed.

【0012】カフ圧が所定値を越え、加圧開始から所定
の時間が経過すると、脈波抽出処理に移り、MPU8
は、カフ圧データから脈波成分を抽出する(ST5)。
その後、脈波振幅算出処理に移り1拍ごとの脈波振幅
を算出する(ST6)。そして、血圧推定処理を実行
する(ST7)。この処理では、最大振幅値AMAX が更
新される場合と収縮期圧推定値SPが求まる場合がある
が(詳しくは後述する)、カフ圧の上昇が不十分で未だ
収縮期圧推定値SPが求まっていない場合はST5に戻
ってST5〜ST7を繰り返す(ST8)。
When the cuff pressure exceeds a predetermined value and a predetermined time has elapsed from the start of pressurization, the processing shifts to pulse wave extraction processing, and the MPU 8
Extracts a pulse wave component from the cuff pressure data (ST5).
After that, the process proceeds to the pulse wave amplitude calculation processing to calculate the pulse wave amplitude for each beat (ST6). Then, a blood pressure estimation process is executed (ST7). In this process, the maximum amplitude value A MAX is updated or the systolic pressure estimated value SP is obtained (details will be described later). However, the cuff pressure is not sufficiently increased and the systolic pressure estimated value SP is still not obtained. If not found, the process returns to ST5 and repeats ST5 to ST7 (ST8).

【0013】収縮期圧推定値SPが求まった場合は、求
まった収縮期圧推定値SPを基にして加圧停止点(目標
圧)を計算し、この加圧停止点に達するまで加圧を持続
する(ST9)。なお、この加圧停止点は、収縮期圧の
推定誤差や加圧停止直後から脈波の振幅測定開始時まで
の圧力降下なども考慮して、例えば収縮期圧推定値SP
に30mmHgを加算した値に設定される。加圧停止点
に達したら加圧をストップし(ST10)、微速排気弁
4の動作による減圧を開始する(ST11)。
When the systolic pressure estimated value SP is obtained, a pressurization stop point (target pressure) is calculated based on the obtained systolic pressure estimated value SP, and pressurization is performed until the pressurization stop point is reached. It lasts (ST9). The pressurization stop point is determined by, for example, the systolic pressure estimated value SP in consideration of the estimation error of the systolic pressure and the pressure drop from immediately after the stop of pressurization to the start of the pulse wave amplitude measurement.
Is set to a value obtained by adding 30 mmHg to. When the pressurization stop point is reached, pressurization is stopped (ST10), and pressure reduction by operation of the slow exhaust valve 4 is started (ST11).

【0014】カフ圧の減圧過程に移行すると、先ず脈波
抽出処理によってカフ圧信号に重畳する脈波を抽出す
る(ST12)。そして、脈波振幅算出処理によって
脈波の振幅を算出し(ST13)、血圧算出処理をす
る(ST14)。この血圧算出処理では、拡張期圧DP
の値が求まる場合とそうでない場合があるが(詳しくは
後述する)、カフ圧の減圧が不十分で未だ拡張期圧DP
の値が求まっていない場合はST12に戻ってST12
〜ST15の処理を繰り返す(ST8)。この処理を繰
り返していると、やがて拡張期圧DPが決定できるの
で、その後は急速排気弁3を動作させてカフ内の圧力を
排除して(ST16)、血圧値を表示器9に表示して全
ての処理を終わる。
When the process proceeds to the cuff pressure decreasing process, first, a pulse wave to be superimposed on the cuff pressure signal is extracted by a pulse wave extracting process (ST12). Then, the amplitude of the pulse wave is calculated by the pulse wave amplitude calculation process (ST13), and the blood pressure calculation process is performed (ST14). In this blood pressure calculation process, the diastolic pressure DP
May or may not be determined (details will be described later), but the cuff pressure is not sufficiently reduced and the diastolic pressure DP
If the value of has not been obtained, the process returns to ST12 and returns to ST12.
Steps ST15 to ST15 are repeated (ST8). If this process is repeated, the diastolic pressure DP can be determined in due course. Thereafter, the rapid exhaust valve 3 is operated to eliminate the pressure in the cuff (ST16), and the blood pressure value is displayed on the display 9. All processing ends.

【0015】図3は血圧推定処理(図2のST7)を
更に詳細に示すフローチャートである。なお、図3にお
いてAMP(n)は抽出された脈波振幅を示しており、
nは抽出された脈波の順番を示す脈波番号である。ま
た、各脈波振幅AMP(n)に対する各カフ圧PC
(n)は、この処理の直前に実行される脈波振幅算出処
理(ST6)で算出されている。尚、脈波番号nと、
脈波振幅の最大値を求める為の変数AMAX は、共に0に
初期設定されている。以下、図3に従って血圧推定処理
の内容を説明する。
FIG. 3 is a flowchart showing the blood pressure estimation process (ST7 in FIG. 2) in more detail. In FIG. 3, AMP (n) indicates the extracted pulse wave amplitude.
n is a pulse wave number indicating the order of the extracted pulse waves. Also, each cuff pressure PC for each pulse wave amplitude AMP (n)
(N) is calculated in the pulse wave amplitude calculation process (ST6) executed immediately before this process. In addition, the pulse wave number n,
The variables A MAX for obtaining the maximum value of the pulse wave amplitude are both initially set to 0. Hereinafter, the contents of the blood pressure estimation processing will be described with reference to FIG.

【0016】先ず、脈波の番号nを更新したうえで(S
T21)、脈波振幅AMP(n)を脈波振幅最大値A
MAX と比較する(ST22)。ここでAMP(n)≧A
MAX である場合は、脈波の包絡線が上昇過程にあり、未
だ極大点に達していないと判断してAMAX にAMP
(n)の値を代入して(ST23)、メインルーチンに
戻る。逆に、AMP(n)<AMAX の場合には、脈波振
幅の包絡線が極大点を通過して減少過程にあると判断し
て、脈波振幅AMP(n)を収縮期圧決定の為のしきい
値と比較する(ST24)。この実施例では、収縮期圧
決定の為のしきい値を例えば0.5AMAX に設定してお
り、AMP(n)≦0.5AMAX なら次の処理に移って
収縮期圧の推定値ESPを算出する(ST25)。逆
に、AMP(n)>0.5AMAX なら収縮期圧の推定値
を決定しないでメインルーチンに戻る。尚、加圧期間で
はカフ圧の変化が大きく、脈波間のカフ圧間隔が広い
為、脈波振幅がしきい値以下に減少した時点でのカフ圧
を、そのまま収縮期圧の推定値として採用すると精度が
悪い。そこで、本実施例では、以下の直線補完式を用い
て収縮期圧の推定値ESPを算出している。
First, after updating the pulse wave number n, (S
T21), the pulse wave amplitude AMP (n) is changed to the pulse wave amplitude maximum value A
Compare with MAX (ST22). Where AMP (n) ≧ A
If it is MAX, the envelope of the pulse wave is in the ascent process, AMP to A MAX and does not reach the still maximum point
Substitute the value of (n) (ST23) and return to the main routine. Conversely, when AMP (n) <A MAX , it is determined that the envelope of the pulse wave amplitude is in the process of decreasing after passing through the maximum point, and the pulse wave amplitude AMP (n) is used to determine the systolic pressure. (ST24). In this embodiment, the threshold value for determining the systolic pressure is set to, for example, 0.5 A MAX . If AMP (n) ≦ 0.5 A MAX , the process proceeds to the next process and the estimated value of the systolic pressure ESP Is calculated (ST25). Conversely, if AMP (n)> 0.5A MAX , the process returns to the main routine without determining the estimated value of the systolic pressure. Since the cuff pressure changes greatly during the pressurization period and the cuff pressure interval between pulse waves is wide, the cuff pressure at the time when the pulse wave amplitude decreases below the threshold value is directly used as the estimated value of the systolic pressure. Then the accuracy is poor. Therefore, in the present embodiment, the estimated value ESP of the systolic pressure is calculated using the following linear complementation equation.

【0017】[0017]

【数1】 (Equation 1)

【0018】尚、(数1)におけるTHS は、収縮期圧
決定の為のしきい値である。図4は、血圧算出処理
(図2のST14)を詳細に示すフローチャートであ
る。尚、脈波振幅AMP(n)やカフ圧P(n)は、脈
波抽出処理(ST12)、脈波振幅算出処理(ST1
3)において既に算出されており、また、脈波の番号n
や収縮期圧、拡張期圧の算出の為の変数SP、DP及び
脈波振幅の最大値を求める為の変数AMAX は全て0に初
期設定されている。
TH S in (Expression 1) is a threshold value for determining the systolic pressure. FIG. 4 is a flowchart showing the blood pressure calculation process (ST14 in FIG. 2) in detail. The pulse wave amplitude AMP (n) and the cuff pressure P (n) are calculated based on the pulse wave extraction process (ST12) and the pulse wave amplitude calculation process (ST1).
3) has already been calculated, and the pulse wave number n
And systolic pressure, variable A MAX for obtaining the maximum value of the variable SP, DP and the pulse wave amplitude for calculating the diastolic pressure is initially set to all zeros.

【0019】以下、図4のフローチャートに基づいて、
カフ圧の減圧過程で、どのようにして収縮期圧と拡張期
圧を算出するかを説明する。先ず、脈波の番号nの値が
更新された後(ST31)、脈波振幅AMP(n)が最
大値AMAXと比較される(ST32)。もしAMP
(n)>AMAX であれば脈波振幅の包絡線が未だ極大点
に達していないと判断してST40に移ってAMP
(n)の値をAMAX に代入した後、メインルーチンに戻
る(ST40)。
Hereinafter, based on the flowchart of FIG.
How the systolic pressure and the diastolic pressure are calculated in the process of reducing the cuff pressure will be described. First, the value of the number n of the pulse wave after being updated (ST31), the pulse wave amplitude AMP (n) is compared with the maximum value A MAX (ST32). If AMP
If (n)> A MAX , it is determined that the envelope of the pulse wave amplitude has not yet reached the local maximum point, and the process proceeds to ST40 to perform AMP.
After the value of (n) was substituted for the A MAX, returns to the main routine (ST40).

【0020】一方、AMP(n)≦AMAX である場合に
は、脈波振幅の包絡線は既に極大点を通過して減少過程
にあると判断して、収縮期圧SPが初期値0のままであ
るか否かを判定する(ST33)。ここで、もしSPが
0以外であれば、収縮期圧SPは既に決定されているの
であるからST38にスキップし、逆にSPが0であれ
ば収縮期圧SPを決定する為にST34に移行する(S
T33)。
On the other hand, if AMP (n) ≦ A MAX, it is determined that the envelope of the pulse wave amplitude has already passed through the maximum point and is in a decreasing process, and the systolic pressure SP is set to the initial value 0. It is determined whether or not it is still (ST33). Here, if SP is other than 0, the systolic pressure SP has already been determined, so the process skips to ST38. Conversely, if SP is 0, the process proceeds to ST34 to determine the systolic pressure SP. Do (S
T33).

【0021】すなわち、ST34以降は収縮期圧SPの
決定を行う処理である。まず脈波のカウンタjを現在の
脈波番号nにセットし(ST34)、カウンタjを1つ
づつ減算して(ST35)、jで指定される脈波振幅A
MP(j)を、収縮期圧決定の為のしきい値と比較する
(ST36)。この実施例では、収縮期圧SPを決定す
る為のしきい値を、例えば0.5AMAX に設定している
ので、AMP(j)>0.5AMAX である限りST35
とST36を繰り返す。そして、もしAMP(j)≦
0.5AMAX の関係を満たす脈波番号jが見つかれば、
その番号jに対するカフ圧PC(j)を収縮期圧SPと
して採用する(ST37)。
That is, the process after ST34 is a process for determining the systolic pressure SP. First, the pulse wave counter j is set to the current pulse wave number n (ST34), the counter j is decremented by one (ST35), and the pulse wave amplitude A designated by j is set.
MP (j) is compared with a threshold value for determining systolic pressure (ST36). In this embodiment, since the threshold value for determining the systolic pressure SP is set to, for example, 0.5 A MAX , as long as AMP (j)> 0.5 A MAX , ST35.
And ST36 are repeated. And if AMP (j) ≦
If a pulse wave number j satisfying the relationship of 0.5A MAX is found,
The cuff pressure PC (j) for the number j is adopted as the systolic pressure SP (ST37).

【0022】収縮期圧SPの決定が終わると、次に拡張
期圧DPの決定をする。先ず、AMP(n)の値が拡張期
圧DP決定の為のしきい値以下に減少したか否かを判定
する(ST38)。この実施例では、拡張期圧DP決定の
為のしきい値を0.7AMAX に設定しているのでAMP
(n)>0.7AMAX なら何もしないでメインルーチン
に戻るが、AMP(n)≦0.7AMAX なら、その時の
脈波番号nに対するカフ圧PC(n)を拡張期圧DPと
して採用してメインルーチンに戻る(ST39)。尚、
図4に示す血圧算出処理(ST14)は、拡張期圧を
決定するための変数DPが0である限り、繰り返し処理
されるので(ST15参照)、最大振幅AMAX が決定さ
れた後、脈波抽出処理ST12と脈波振幅算出処理ST
13を何回か繰り返すことによって拡張期圧DP(0.
7AMAX )を決定できる。
When the systolic pressure SP is determined, the diastolic pressure DP is determined. First, it is determined whether or not the value of AMP (n) has decreased below the threshold value for determining the diastolic pressure DP (ST38). In this embodiment, since the threshold value for determining the diastolic pressure DP is set to 0.7 A MAX , AMP
If (n)> 0.7A MAX , the process returns to the main routine without doing anything. However, if AMP (n) ≦ 0.7A MAX , the cuff pressure PC (n) for the pulse number n at that time is adopted as the diastolic pressure DP. And returns to the main routine (ST39). still,
Blood pressure calculation process shown in FIG. 4 (ST14), as long as the variable DP for determining diastolic pressure is zero, (see ST15) because it is repeatedly processed after the maximum amplitude A MAX is determined, the pulse wave Extraction process ST12 and pulse wave amplitude calculation process ST
13 by repeating the diastolic pressure DP (0.
7A MAX ) can be determined.

【0023】[0023]

【発明の効果】以上説明したように、この発明にかかる
電子血圧計では、カフ圧の加圧開始付近では所定の条件
が成立するまで、例えばカフ圧が所定値まであるいは加
圧開始から所定時間が経過するまでは脈波の抽出処理を
しないので、血圧計の動作開始時に生じるノイズや体動
などの影響をより受けにくく、従って確実に、収縮期圧
を推定し、適正な加圧停止点を自動設定できる。
As described above, in the electronic sphygmomanometer according to the present invention, a predetermined condition is set near the start of the cuff pressure application.
Until the cuff pressure reaches a predetermined value or
Since the pressure starts until a predetermined time elapses without the extraction of the pulse wave, the influence of noise or body movement occurring at the start of operation of the sphygmomanometer further less susceptible, thus ensuring, systolic pressure
And an appropriate pressurization stop point can be automatically set.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例である電子血圧計の回路ブ
ロック図である。
FIG. 1 is a circuit block diagram of an electronic sphygmomanometer according to one embodiment of the present invention.

【図2】図1の電子血圧計の全体動作を説明する為のフ
ロー図である。
FIG. 2 is a flowchart for explaining the overall operation of the electronic sphygmomanometer of FIG. 1;

【図3】図1の電子血圧計の血圧推定処理を説明する為
のフロー図である。
FIG. 3 is a flowchart illustrating a blood pressure estimation process of the electronic sphygmomanometer of FIG. 1;

【図4】図1の電子血圧計の血圧算出処理を説明する為
のフロー図である。
FIG. 4 is a flowchart illustrating a blood pressure calculation process of the electronic sphygmomanometer of FIG. 1;

【図5】オシロメトリック方式の電子血圧計における血
圧決定方法を説明する為の図である。
FIG. 5 is a diagram for explaining a blood pressure determination method in an oscillometric electronic sphygmomanometer.

【符号の説明】[Explanation of symbols]

1 カフ 2 ポンプ 3 急速排気弁 4 微速排気弁 5 圧力センサ 8 MPU 1 Cuff 2 Pump 3 Rapid exhaust valve 4 Slow exhaust valve 5 Pressure sensor 8 MPU

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】生体動脈を圧迫するカフと、このカフを加
圧する加圧手段と、カフ内の圧力を検出する圧力センサ
と、この圧力センサの検出したカフ圧信号からこのカフ
圧信号に重畳する脈波成分を抽出する脈波抽出手段と、
加圧開始後所定の条件が成立したかを判定する条件判定
手段と、この条件判定手段による条件成立に応答して、
前記脈波抽出手段の動作を開始させる動作開始制御手段
と、カフ圧の加圧過程において脈波信号とカフ圧に基づ
いて収縮期圧を推定する収縮期圧推定手段と、この収縮
期圧推定手段の推定した収縮期圧に基づいて定まる所定
のカフ圧に達すると前記加圧手段の動作を停止させる加
圧停止手段と、加圧停止後にカフ圧を徐々に減圧する減
圧手段と、カフ圧の減圧過程で脈波信号を抽出し、その
脈拍信号とカフ圧に基づいて血圧を決定する血圧決定手
段とを備えることを特徴とする電子血圧計。
1. A cuff for compressing a living artery, a pressurizing means for pressurizing the cuff, a pressure sensor for detecting a pressure in the cuff, and a cuff pressure signal detected by the pressure sensor superimposed on the cuff pressure signal. Pulse wave extraction means for extracting a pulse wave component
Condition determination to determine whether predetermined conditions have been satisfied after the start of pressurization
Means, and in response to satisfaction of the condition by the condition determining means,
Operation start control means for starting the operation of the pulse wave extraction means; and a pulse wave signal and a cuff pressure
A systolic pressure estimating means for estimating a systolic pressure had pressurized stopping means for stopping the operation of the pressurizing means reaches a predetermined cuff pressure determined based on the estimated systolic pressure of the systolic pressure estimating means And pressure reducing means for gradually reducing the cuff pressure after stopping the pressurization, and blood pressure determining means for extracting a pulse wave signal in the process of reducing the cuff pressure and determining the blood pressure based on the pulse signal and the cuff pressure. An electronic sphygmomanometer characterized by the above.
【請求項2】(2) 生体動脈を圧迫するカフと、このカフを加Add a cuff to compress the living artery and this cuff
圧する加圧手段と、カフ内の圧力を検出する圧力センサPressure means for applying pressure and a pressure sensor for detecting the pressure in the cuff
と、この圧力センサの検出したカフ圧信号からこのカフFrom the cuff pressure signal detected by this pressure sensor.
圧信号に重畳する脈波成分を抽出する脈波抽出手段と、Pulse wave extraction means for extracting a pulse wave component superimposed on the pressure signal,
加圧開始後カフ圧が所定値を越えたことを検出するカフCuff that detects that the cuff pressure exceeds a specified value after the start of pressurization
圧検出手段と、加圧開始から所定時間が経過したことをPressure detection means, and that a predetermined time has elapsed since the start of pressurization.
検出する時間経過検出手段と、前記所定カフ圧及び所定Time elapse detecting means for detecting, the predetermined cuff pressure and the predetermined
時間経過の検出に応答して、前記脈波抽出手段の動作をIn response to the detection of the passage of time, the operation of the pulse wave extracting means
開始させる動作開始制御手段と、カフ圧の加圧過程におOperation start control means to start the
いて脈波信号とカフ圧に基づいて収縮期圧を推定する収To estimate systolic pressure based on pulse wave signal and cuff pressure
縮期圧推定手段と、この収縮期圧推定手段の推定した収Systolic pressure estimating means and the yield estimated by the systolic pressure estimating means.
縮期圧に基づいて定まる所定のカフ圧に達すると前記加When a predetermined cuff pressure determined based on the systolic pressure is reached,
圧手段の動作を停止させる加圧停止手段と、加圧停止後Pressure stop means for stopping the operation of the pressure means, and after the pressure stop
にカフ圧を徐々に減圧する減圧手段と、カフ圧の減圧過Pressure reducing means for gradually reducing the cuff pressure
程で脈波信号を抽出し、その脈拍信号とカフ圧に基づいPulse wave signal is extracted in the process, based on the pulse signal and cuff pressure
て血圧を決定する血圧決定手段とを備えることを特徴とAnd blood pressure determining means for determining blood pressure.
する電子血圧計。Electronic blood pressure monitor.
JP3194286A 1991-08-02 1991-08-02 Electronic sphygmomanometer Expired - Lifetime JP3042051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3194286A JP3042051B2 (en) 1991-08-02 1991-08-02 Electronic sphygmomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3194286A JP3042051B2 (en) 1991-08-02 1991-08-02 Electronic sphygmomanometer

Publications (2)

Publication Number Publication Date
JPH0531082A JPH0531082A (en) 1993-02-09
JP3042051B2 true JP3042051B2 (en) 2000-05-15

Family

ID=16322077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3194286A Expired - Lifetime JP3042051B2 (en) 1991-08-02 1991-08-02 Electronic sphygmomanometer

Country Status (1)

Country Link
JP (1) JP3042051B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149873B2 (en) 1999-09-08 2001-03-26 オムロン株式会社 Electronic sphygmomanometer
JP3621395B2 (en) * 2002-04-17 2005-02-16 コーリンメディカルテクノロジー株式会社 Blood pressure measurement device with waveform analysis function
EP2717823B2 (en) 2011-06-10 2019-04-17 The Procter and Gamble Company Absorbent structure for absorbent articles
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
EP3351225B1 (en) 2013-09-19 2021-12-29 The Procter & Gamble Company Absorbent cores having material free areas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256930A (en) * 1988-04-08 1989-10-13 Nec San-Ei Instr Co Ltd Automatic setting of cuff pressure in tonometer
JPH0763452B2 (en) * 1989-10-05 1995-07-12 テルモ株式会社 Electronic blood pressure monitor

Also Published As

Publication number Publication date
JPH0531082A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
EP1426008B1 (en) Blood pressure measuring apparatus
EP1491136A1 (en) Electronic hemomanometer and blood pressure measuring method of electronic hemomanometer
JP3178195B2 (en) Continuous blood pressure monitor
EP0499289B1 (en) Electronic blood pressure meter
EP0456844A1 (en) Non-invasive automatic blood pressure measuring apparatus
JP3042051B2 (en) Electronic sphygmomanometer
JP2936814B2 (en) Electronic sphygmomanometer
JP3733837B2 (en) Sphygmomanometer
JP2842696B2 (en) Electronic sphygmomanometer
JP3042052B2 (en) Electronic sphygmomanometer
JP3057892B2 (en) Electronic sphygmomanometer
JP2936816B2 (en) Electronic sphygmomanometer
JP2936815B2 (en) Electronic sphygmomanometer
JP3015908B2 (en) Electronic sphygmomanometer
JP2985316B2 (en) Electronic sphygmomanometer
JP3057933B2 (en) Electronic sphygmomanometer
JP3218786B2 (en) Electronic sphygmomanometer
JP3223415B2 (en) Electronic sphygmomanometer
EP0585460B1 (en) Electronic sphygmomanometer and method of controlling performance thereof
JPH0480691B2 (en)
JPH1066679A (en) Blood pressure monitoring device
JPH0557850B2 (en)
JPH05212004A (en) Electronic sphygmometer
JP3211132B2 (en) Electronic sphygmomanometer
JPH0480689B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12