JP3053481B2 - Method for controlling slaked lime injection amount in fluorine and calcium containing wastewater treatment and fluorine removal device - Google Patents

Method for controlling slaked lime injection amount in fluorine and calcium containing wastewater treatment and fluorine removal device

Info

Publication number
JP3053481B2
JP3053481B2 JP3331521A JP33152191A JP3053481B2 JP 3053481 B2 JP3053481 B2 JP 3053481B2 JP 3331521 A JP3331521 A JP 3331521A JP 33152191 A JP33152191 A JP 33152191A JP 3053481 B2 JP3053481 B2 JP 3053481B2
Authority
JP
Japan
Prior art keywords
fluorine
wastewater
slaked lime
concentration
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3331521A
Other languages
Japanese (ja)
Other versions
JPH0615278A (en
Inventor
弘 ▲吉▼田
守 鳥屋尾
宗光 ▲浅▼野
▲とき▼男 高田
英俊 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Organo Corp
Original Assignee
Chubu Electric Power Co Inc
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Organo Corp filed Critical Chubu Electric Power Co Inc
Priority to JP3331521A priority Critical patent/JP3053481B2/en
Publication of JPH0615278A publication Critical patent/JPH0615278A/en
Application granted granted Critical
Publication of JP3053481B2 publication Critical patent/JP3053481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、弗素(本明細書では
「弗素イオン」を意味する)及びカルシウム(本明細書
では「カルシウムイオン」を意味する)を含有する廃水
中の弗素分を消石灰により弗化カルシウムとして除去す
る廃水処理方法において、該消石灰の注入量を制御する
方法に関する。
The present invention relates to a fluorine content in the wastewater containing beauty calcium (herein meaning "calcium ions") (which means that the "fluorine ion" herein) fluorine The present invention relates to a wastewater treatment method for removing calcium fluoride by slaked lime and controlling the amount of slaked lime to be injected.

【0002】[0002]

【従来の技術】石炭火力発電所において生ずる排煙脱硫
廃水(以下、「脱硫廃水」と言う)や半導体工場におい
て生ずる廃水(以下、「弗酸廃水」と言う)には、弗素
分が含有されており、消石灰等のカルシウム塩を使用し
て、かかる廃水中の弗素分を弗化カルシウムとして除去
する廃水処理方法が広く行われている。
2. Description of the Related Art Flue gas desulfurization wastewater (hereinafter referred to as "desulfurization wastewater") generated in a coal-fired power plant and wastewater generated in a semiconductor factory (hereinafter referred to as "hydrofluoric acid wastewater") contain fluorine. Wastewater treatment methods for removing fluorine content in such wastewater as calcium fluoride using calcium salts such as slaked lime are widely used.

【0003】しかしながら、例えば、石炭火力発電所に
おける脱硫廃水中の弗素濃度は、発電のために使用する
石炭の種類(炭種)や排煙脱硫装置の方式(スート分離
方式やスート混合方式)、更には例え炭種が同一であっ
ても発電負荷量によって異なるのが一般的である。この
ことは、弗酸廃水についても同様で、半導体の製造工程
での弗酸や水の使用状況によって、一般に弗酸廃水の弗
素濃度は異なってくる。
[0003] However, for example, the fluorine concentration in the desulfurization wastewater in a coal-fired power plant depends on the type of coal (coal type) used for power generation, the type of flue gas desulfurization apparatus (soot separation method or soot mixing method), Furthermore, even if the type of coal is the same, it generally differs depending on the power generation load. The same applies to the hydrofluoric acid wastewater, and the fluorine concentration of the hydrofluoric acid wastewater generally differs depending on the use of hydrofluoric acid and water in the semiconductor manufacturing process.

【0004】従来、このような弗素含有廃水の弗素分除
去装置を用いた処理は、手動により薬品量の調節を行う
のが実情であった。
Heretofore, in the treatment using such a fluorine-removing apparatus for the fluorine-containing wastewater, the actual amount of the chemical has been adjusted manually.

【0005】図4は、一例として、石炭火力発電所の運
転時間の経過に伴う脱硫廃水の弗素濃度の変化をモデル
的に表したグラフ図である。この図の横軸は運転時間を
表し、縦軸は弗素濃度を表す。脱硫廃水中の弗素濃度
は、図4に示されるように、運転時間の経過とともに変
動するが、従来、弗素の分析は時間と労力を要するの
で、予想弗素濃度(A)を基凖にして、一定注入率で消
石灰を注入しつつ弗素分除去装置を運転する場合が多か
った。
FIG. 4 is a graph showing, by way of example, a model representation of the change in the fluorine concentration of the desulfurization wastewater with the elapse of the operation time of a coal-fired power plant. The horizontal axis of this figure represents the operation time, and the vertical axis represents the fluorine concentration. As shown in FIG. 4, the fluorine concentration in the desulfurization wastewater fluctuates with the elapse of the operation time. However, conventionally, the analysis of fluorine requires time and labor, and therefore, based on the expected fluorine concentration (A), In many cases, the fluorine removing device was operated while slaked lime was injected at a constant injection rate.

【0006】[0006]

【発明が解決しようとする問題点】この場合、廃水中の
実際の弗素濃度が予定弗素濃度(A)より低濃度(C)
〔即ち、濃度変動の山が下〕であれば、消石灰の過剰注
入となり、更にこれに伴う炭酸ソーダの注入量が多くな
り、ランニングコストの上昇を招くこととなる。逆に、
実際の弗素濃度が予定弗素濃度(A)より高濃度(B)
〔即ち、濃度変動の山が上〕であれば、消石灰注入量が
不足することとなり、弗素分除去の効率が低下し、処理
水質の悪化を招き、放流基準水質を満足できなくなる。
従来、かかる不都合が多々見られていた。
In this case, the actual fluorine concentration in the wastewater is lower than the expected fluorine concentration (A) (C).
If [the peak of the concentration fluctuation is below], the slaked lime will be excessively injected, and the injection amount of sodium carbonate will be increased accordingly, leading to an increase in running cost. vice versa,
Actual fluorine concentration is higher than expected fluorine concentration (A) (B)
If the peak of the concentration fluctuation is up, the amount of slaked lime will be insufficient, the efficiency of fluorine removal will be reduced, the quality of treated water will be deteriorated, and the discharge standard water quality will not be satisfied.
Conventionally, such inconveniences have been frequently observed.

【0007】また、脱硫廃水中にはカルシウム分(カル
シウムイオン)が存在し、このカルシウム分が弗素除去
に有効利用されうることも明らかとなっている。しかし
ながら、脱硫廃水中のカルシウム濃度も排煙脱硫装置の
運転状況や使用する石炭の種類等によって異なってくる
のが一般的である。
[0007] It has also been clarified that calcium (calcium ion) is present in the desulfurization wastewater, and this calcium can be effectively used for removing fluorine. However, the calcium concentration in the desulfurization wastewater also generally differs depending on the operating conditions of the flue gas desulfurization unit, the type of coal used, and the like.

【0008】このため、脱硫廃水中のカルシウム分を弗
素除去に有効利用する場合は、或る基準の脱硫廃水中含
有カルシウム濃度(通常は、計画値)を想定し、不足分
の消石灰注入量を設定することが一般的である。この方
法では、前述と同様に、消石灰の過不足が生じ、運転経
費の上昇、処理水質の安定化が図れない等の問題が生じ
ていた。
For this reason, when the calcium content in the desulfurization wastewater is effectively used for removing fluorine, a certain standard concentration of calcium contained in the desulfurization wastewater (generally, a planned value) is assumed, and the amount of the slaked lime to be injected is determined. It is common to set. In this method, as in the case described above, excess and deficiency of slaked lime occurs, and there have been problems such as an increase in operating costs and an inability to stabilize the quality of treated water.

【0009】しかも、上記の場合、脱硫廃水中のカルシ
ウム濃度が弗素濃度と同調して変動するとは限らず、殆
ど相関関係の無い状態で変化することが多い。従って、
廃水中の弗素濃度のみの測定では、適正な消石灰注入量
が決定できない等、脱硫廃水処理装置は従来の総合廃水
処理装置とは異なった運転管理を必要とする。
Moreover, in the above case, the calcium concentration in the desulfurization wastewater does not always fluctuate in synchronism with the fluorine concentration, and often fluctuates with little correlation. Therefore,
The desulfurization wastewater treatment equipment requires different operation management from the conventional integrated wastewater treatment equipment, for example, the measurement of only the fluorine concentration in the wastewater cannot determine an appropriate amount of slaked lime.

【0010】処理水質の安定化を図ろうとすれば、消石
灰の過剰注入を余儀無くされ、消石灰消費量の増加に伴
うコスト増大と廃棄汚泥(弗化カルシウム、炭酸カルシ
ウム、硫酸カルシウム等)の増加に伴う産業廃棄物処理
の問題を生じていた。また、流入廃水の弗素やカルシウ
ムの濃度変動を吸収し、流入廃水の性状を極力均一化さ
せるために、前段に充分大容量の貯留槽とその為の均一
化設備を設ける必要が有った。
[0010] In order to stabilize the quality of treated water, excessive injection of slaked lime is inevitable, resulting in an increase in cost due to an increase in slaked lime consumption and an increase in waste sludge (calcium fluoride, calcium carbonate, calcium sulfate, etc.). This has caused a problem of industrial waste disposal. In addition, in order to absorb fluctuations in the concentration of fluorine and calcium in the inflow wastewater and to make the properties of the inflow wastewater as uniform as possible, it was necessary to provide a storage tank having a sufficiently large capacity and a homogenization facility therefor in the preceding stage.

【0011】従って、本発明は、上記の諸問題を解決せ
んとするものであり、弗素及びカルシウム含有廃水の弗
素分除去処理において、消石灰注入量を必要最小限に留
めることをその主目的とし、更には処理水質の安定化を
も図らんとするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems, and the main object of the present invention is to minimize the amount of slaked lime injection in the fluorine removal treatment of waste water containing fluorine and calcium . Furthermore, it is intended to stabilize the quality of the treated water.

【0012】かかる諸問題の解決に当たっては、弗素分
除去装置へ流入する廃水流量の変動、流入廃水中の弗素
濃度の変動及び流入廃水中のカルシウム濃度の変動に対
応した消石灰注入量の制御手段を案出すること、消石灰
の注入量が過剰とならないように必要最小限とする手段
を案出すること、更には、廃水の弗素イオン及びカルシ
ウムイオンとの各種結合イオン(硫酸イオン、燐酸イオ
ン、珪酸イオン等:これらカルシウムイオンと反応する
各種結合イオンの廃水中の濃度も炭種等により異なって
くる)の成分構成比の変動に伴う処理水質の変動を目標
値と比較してフィードバックするにしても、廃水処理が
少なくとも反応→pH調整→沈澱分離というプロセスを
踏むために制御時定数が桁違いに大きいという問題を解
決する手段を案出することが必要であった。
[0012] In accordance of the problems solved, fluctuations in the wastewater flow entering into the fluorine content removing device, control of hydrated lime injection amount corresponding to the variation of calcium concentration variation及beauty influx wastewater of fluorine concentration in the influent wastewater Inventing means, devising means for minimizing the required amount of slaked lime so as not to be excessive, and further, various binding ions (sulfate ion, phosphate ion) with fluoride ion and calcium ion of wastewater , Silicate ions, etc .: The concentration of various types of binding ions that react with these calcium ions in wastewater also differs depending on the type of coal, etc.). However, in order for wastewater treatment to go through at least the process of reaction → pH adjustment → sedimentation separation, a means to solve the problem that the control time constant is extremely large is devised. Rukoto was necessary.

【0013】[0013]

【問題点を解決するための手段】本発明者等は、かかる
観点から鋭意検討した結果、本発明を完成するに到っ
た。
Means for Solving the Problems The present inventors have made intensive studies from such a viewpoint, and as a result, have completed the present invention.

【0014】[0014]

【0015】[0015]

【0016】発明によれば、流入する廃水の流量を検
出する廃水流量検出器、流入廃水の弗素濃度を検出する
廃水弗素濃度分析計、及び流入廃水のカルシウム濃度を
検出する廃水カルシウム濃度分析計を備えた弗素及びカ
ルシウム含有廃水から弗素分を除去する弗素分除去装置
の制御方法において、前記廃水弗素濃度分析計からの弗
素濃度信号により、弗素分除去に必要なカルシウム濃度
を予め定めた計算式又は乗算係数により算出し、この算
出必要カルシウム濃度から前記廃水カルシウム濃度分析
計からのカルシウム濃度信号を減算し、更に前記廃水流
量検出器からの流入廃水流量信号を乗算する演算回路に
より消石灰注入量を演算出力する弗素及びカルシウム含
有廃水処理における消石灰注入量の制御方法提供され
る。
According to the present invention, a wastewater flow rate detector for detecting the flow rate of inflow wastewater, a wastewater fluorine concentration analyzer for detecting the fluorine concentration of inflow wastewater, and a wastewater calcium concentration analyzer for detecting the calcium concentration of inflow wastewater In a control method of a fluorine content removing apparatus for removing fluorine content from a fluorine and calcium-containing wastewater provided with: a calcium concentration required for fluorine removal by a fluorine concentration signal from the wastewater fluorine concentration analyzer. Or by a multiplication coefficient, subtract the calcium concentration signal from the wastewater calcium concentration analyzer from the calculated necessary calcium concentration, and further calculate the slaked lime injection amount by an arithmetic circuit that multiplies the inflow wastewater flow rate signal from the wastewater flow rate detector. A method for controlling the slaked lime injection amount in the treatment of wastewater containing fluorine and calcium, which is calculated and output, is provided.

【0017】この弗素及びカルシウム含有廃水処理にお
ける消石灰注入量の制御方法において、処理水の目標弗
素濃度値をゼロでは無い排水許容限度内の正の値に設定
し、該目標弗素濃度値と処理水の弗素濃度測定値との偏
差の極性及びその大きさにより消石灰注入量の演算出力
を補正する為の乗算係数を算出する演算回路を設け、流
入廃水流量を積算する積算回路による積算値が前記処理
水の弗素濃度検出位置までの前記弗素分除去装置の実効
滞留容積値に達したと比較回路が判断する毎に、前記補
正乗算係数を演算・修正すると共に前記積算値をリセッ
トする機能を前記弗素分除去装置が備え、前記消石灰注
入量に前記補正乗算係数を乗算した値を消石灰注入量コ
ントローラーのリモート設定値として消石灰注入量を制
御するのが好ましい。
In this method for controlling the amount of slaked lime in the treatment of wastewater containing fluorine and calcium, the target fluorine concentration value of the treated water is set to a non-zero positive value within the allowable limit of drainage, and the target fluorine concentration value and the treated water A calculation circuit for calculating a multiplication coefficient for correcting the calculation output of the slaked lime injection amount based on the polarity of the deviation from the measured fluorine concentration value and the magnitude thereof is provided. Each time the comparison circuit determines that the effective retention volume value of the fluorine removal device has reached the fluorine concentration detection position of water, the correction multiplication coefficient is calculated and corrected, and the integrated value is reset. It is preferable to control the slaked lime injection amount by using a value obtained by multiplying the slaked lime injection amount by the correction multiplication coefficient as a remote setting value of the slaked lime injection amount controller. .

【0018】更に、本発明によれば、消石灰を注入する
反応槽を有する一次処理装置及び二次処理装置を包含す
る弗素分除去装置であって、前記反応槽の上流に流入廃
水流量検出器並びに廃水弗素濃度分析計及び廃水カルシ
ウム濃度分析計を備え、前記一次処理装置と前記二次処
理装置の間か前記二次処理装置の下流に処理水弗素濃度
分析計を所要に応じて備えており、前記した本発明の消
石灰注入量の制御方法の各態様のいづれかに従った制御
を行うための演算手段を備え、更に、前記演算手段によ
る演算結果に応じて消石灰を前記反応槽に注入するため
の消石灰注入手段を備えていることを特徴とする弗素分
除去装置も提供される。
Furthermore, according to the present invention, there is provided a fluorine removing device including a primary treatment device and a secondary treatment device having a reaction tank for injecting slaked lime, wherein an inflow wastewater flow rate detector and an upstream wastewater flow detector are arranged upstream of the reaction tank. in comprising a waste water fluorine concentration analyzer and wastewater calcium concentration analyzer, comprising accordance treated water fluorine concentration analyzer to a required downstream of the secondary treatment device or between the primary processor the secondary processor cage, an arithmetic means for performing control in accordance with any of the state-like control method of slaked lime injection quantity of the present invention described above, further, injecting slaked lime according to the calculation result by the calculating means to the reaction vessel Is provided with a slaked lime injection means for performing the removal.

【0019】以下、本発明を具体的且つ詳細に説明す
る。脱硫廃水の場合を中心的に説明を行うが、これは、
弗酸廃水の場合には、廃水中にカルシウム分が含有され
ていないのが一般的であるからであるが、カルシウム分
が含有されている場合は同様である。
Hereinafter, the present invention will be described specifically and in detail. The explanation will focus on the case of desulfurization wastewater.
This is because, in the case of hydrofluoric acid wastewater, it is common that the wastewater does not contain calcium.
The same is true when is contained .

【0020】先ず、弗素分除去装置へ流入する廃水の弗
素濃度(F)を測定し、弗素除去に必要なカルシウム濃
度(即ち、カルシウム量、これを仮に「全カルシウム
量」とする)を実機の運転で得られた計算式〔F
(x)〕又は簡易な乗算係数(α)により、上記弗素濃
度に応じて算出し、更に流入廃水中のカルシウム濃度
(Ca’、これを仮に「含有カルシウム量」とする)を
測定し、この値を前記全カルシウム量から減算して、注
入すべき「不足分カルシウム量」を算出し、更にこの
「不足分カルシウム量」を消石灰量に換算する。
First, the fluorine concentration (F) of the wastewater flowing into the fluorine removal device is measured, and the calcium concentration required for fluorine removal (that is, the amount of calcium, which is tentatively referred to as “total calcium amount”) is measured in the actual machine. The calculation formula [F
By (x)] or simple multiplier coefficient (alpha), is calculated in accordance with the fluorine concentration, the calcium concentration in the further flow into the waste water (Ca ', which assumed as "calcium-containing amount") is measured, This value is subtracted from the total calcium amount to calculate the “deficient calcium amount” to be injected, and the “deficient calcium amount” is further converted to slaked lime amount.

【0021】また、流入廃水量も変動するため、前記消
石灰量に廃水流量検出器による流入廃水流量信号(Q)
を乗算して、その時点の流入廃水に対する消石灰注入量
を求め、これによって消石灰注入量の制御を行う。
Since the amount of inflow wastewater also fluctuates, the inflow wastewater flow signal (Q) obtained by the wastewater flow detector is added to the amount of slaked lime.
To calculate the slaked lime injection amount for the inflow wastewater at that time, thereby controlling the slaked lime injection amount.

【0022】この消石灰注入量に、好ましくは、注入結
果としてのフィードバック修正用の係数(β)を乗算し
て、得られる値を消石灰注入流量コントローラーのリモ
ート設定値として利用し、消石灰注入量を制御する。
The slaked lime injection amount is preferably controlled by multiplying the slaked lime injection amount by a coefficient (β) for feedback correction as an injection result, and using the obtained value as a remote setting value of the slaked lime injection flow rate controller. I do.

【0023】また、消石灰の過剰注入防止のため、処理
水の目標弗素濃度(f)を許容されるゼロでは無い正の
値と設定し、これと処理水弗素濃度測定値(F’)との
偏差の大きさ(F’−f)及び極性(±)により、乗算
係数(β)をフィードバック修正するのが好ましい。
Further, in order to prevent excessive injection of slaked lime, the target fluorine concentration (f) of the treated water is set to an allowable non-zero positive value, and the target fluorine concentration (f ') is compared with the measured fluorine concentration (F') of the treated water. It is preferable that the multiplication coefficient (β) is feedback-corrected according to the magnitude of the deviation (F′−f) and the polarity (±).

【0024】しかしながら、前述したように、消石灰を
注入された廃水は、処理水として流出してくるまでに相
当の時間遅れを要するだけでなく、この時間遅れが流入
廃水流量によっても大きく変動するため、過去の制御時
点に対応するフィードバックを確実とするように、通常
のフィードバック制御を用いる代わりに、前記処理水の
弗素濃度検出位置までの弗素分除去装置系統内の実効滞
留容積(Qs )を求め、流入廃水量の積算値(Q T )が
該実効滞留容積(Qs )に達する毎に、乗算係数(β)
を修正する演算を行わしめることとするのが好ましい。
なお、実効滞留容積とは、前記弗素分除去装置内におけ
る処理水(以下の実施例においては一次処理水と二次処
理水がある)の弗素濃度検出位置までの実際に水が通過
して行く部分の容積である。
However, as described above, the wastewater into which slaked lime is injected not only requires a considerable time delay before flowing out as treated water, but this time delay varies greatly depending on the flow rate of the inflowing wastewater. Instead of using the normal feedback control to ensure the feedback corresponding to the past control time, instead of using the normal feedback control, the effective retention volume (Q s ) in the fluorine removing device system up to the fluorine concentration detection position of the treated water is determined. Every time the integrated value (Q T ) of the inflow wastewater amount reaches the effective retention volume (Q s ), a multiplication coefficient (β)
Is preferably calculated.
Note that the effective retention volume refers to the actual passage of the treated water (the primary treated water and the secondary treated water in the following embodiments) up to the fluorine concentration detection position in the fluorine content removing device. The volume of the part.

【0025】以上を纏めると、以下の式のいづれかに従
い消石灰注入量(Ca)を演算することになる。なお、
以下の式において、Kは装置固有の定数を表し、γは実
際に注入する消石灰スラリーの濃度(あるいは密度)を
表す。
In summary, the slaked lime injection amount (Ca) is calculated according to one of the following equations. In addition,
In the following equation, K represents a constant peculiar to the apparatus, and γ represents the concentration (or density) of the slaked lime slurry actually injected.

【0026】[0026]

【数1】〔詳細式〕 Ca = K・〔F(x)−Ca’〕・Q・β・1/γ[Detailed expression] Ca = K · [F (x) −Ca ′] · Q · β · 1 / γ

【0027】[0027]

【数2】〔簡易式〕 Ca = K・〔F・α −Ca’〕・Q・β・1/γ[Simplified formula] Ca = K · [F · α−Ca ′] · Q · β · 1 / γ

【0028】[0028]

【作用】上記の様に構成された弗素分除去装置の消石灰
注入量制御方法においては、脱硫廃水の発電負荷の変動
に伴う弗素濃度や含有カルシウム濃度の変動及び廃水流
量の変動に対して実機で得られた正確な計算式〔F
(x)〕や乗算係数(α)により最適量の消石灰の注入
が直ちに自動的に行えるため、負荷変動の大きな中間負
荷の石炭火力発電所においては、従来に比べて大幅な消
石灰等の薬品の費用を節減できるようになる。
According to the method for controlling the slaked lime injection amount of the fluorine removing apparatus configured as described above, the fluctuation of the fluorine concentration and the calcium concentration and the fluctuation of the flow rate of the wastewater due to the fluctuation of the power generation load of the desulfurization wastewater are measured by an actual machine. The obtained exact formula [F
(X)] and the multiplication coefficient (α), the optimum amount of slaked lime can be immediately and automatically injected. Therefore, in a medium-load coal-fired power plant with large load fluctuations, a large amount of slaked lime You can save money.

【0029】また、炭種の変動や炭種のブレンド比の変
更に伴う廃水の成分構成比の変動に対しても処理水の弗
素濃度による消石灰注入量補正機構による制御を有効に
作用させることも可能なので、従来の様に処理水質を安
全側に確保するために消石灰を過剰に注入する必要が無
くなるのみならず、発電負荷の変動に合わせて運転員が
消石灰注入量の設定変更をその都度行う必要も無くなっ
た。
Further, the control by the slaked lime injection amount correction mechanism based on the fluorine concentration of the treated water can be effectively applied to the fluctuation of the composition ratio of the wastewater due to the change of the coal type and the change of the blend ratio of the coal type. As it is possible, the operator does not need to inject too much slaked lime in order to ensure the treated water quality on the safe side as before, and the operator changes the slaked lime injection amount every time according to the fluctuation of the power generation load. There is no need.

【0030】以上の様な作用とそれに伴う効果は、脱硫
廃水だけでなく弗酸廃水がカルシウムを含む場合は同様
である。
The above-described functions and the accompanying effects are the same when not only the desulfurization wastewater but also the hydrofluoric acid wastewater contains calcium .

【0031】[0031]

【実施例】以下、図面を参照しつつ、本発明を実施例で
更に詳細に説明するが、本発明は実施例に限定されるも
のでは無い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of embodiments with reference to the drawings, but the present invention is not limited to the embodiments.

【0032】図1は、本発明に使用する弗素分除去装置
である廃水処理装置の一例における各処理工程と信号系
統を示すフローチャートである。
FIG. 1 is a flowchart showing each processing step and a signal system in an example of a wastewater treatment apparatus which is a fluorine removal apparatus used in the present invention.

【0033】この装置は、脱硫廃水処理用装置であり、
図1において一次処理水16が流出する位置より左側は
一次処理装置であり、右側は二次処理装置(軟化装置)
である。
This device is a desulfurization wastewater treatment device,
In FIG. 1, the left side from the position where the primary treatment water 16 flows out is a primary treatment unit, and the right side is a secondary treatment unit (softening unit).
It is.

【0034】この一次処理装置は、反応槽5(消石灰を
注入)、pH調整槽6(例えば、苛性ソーダを注入、p
H値を約6〜約8に調整)、第一凝集槽7(例えば、ア
ニオン系高分子凝集剤を助剤として使用)、第一沈澱槽
15を有し、更に附帯設備として、消石灰溶解槽12、
消石灰注入ポンプ13、消石灰注入コントロール弁9、
pH調整剤注入バルブ18、pH調整剤貯槽(図示され
ていない)を備えている。第一沈澱槽15には、汚泥引
抜きポンプ17が備えられ、pH調整槽6には、pH検
出器19が備えられている。
This primary treatment apparatus includes a reaction tank 5 (injected slaked lime), a pH adjustment tank 6 (injected caustic soda, p.
It has an H value of about 6 to about 8, a first flocculation tank 7 (for example, using an anionic polymer flocculant as an auxiliary agent), a first precipitation tank 15, and as ancillary equipment, a slaked lime dissolution tank 12,
Slaked lime injection pump 13, slaked lime injection control valve 9,
A pH adjusting agent injection valve 18 and a pH adjusting agent storage tank (not shown) are provided. The first sedimentation tank 15 is provided with a sludge extraction pump 17, and the pH adjustment tank 6 is provided with a pH detector 19.

【0035】二次処理装置は、軟化槽31(例えば、炭
酸ソーダ、苛性ソーダを注入)、第二凝集槽32(例え
ば、アニオン系高分子凝集剤を助剤として使用)、第二
沈澱槽33を有する。軟化槽31には、pH検出器36
が備えられ、第二沈澱槽33には、汚泥引抜きポンプ3
5が備えられている。
The secondary treatment apparatus includes a softening tank 31 (for example, injecting sodium carbonate and caustic soda), a second flocculation tank 32 (for example, using an anionic polymer flocculant as an auxiliary), and a second precipitation tank 33. Have. In the softening tank 31, a pH detector 36 is provided.
The second settling tank 33 is provided with a sludge pulling pump 3
5 are provided.

【0036】脱硫廃水には一般にマグネシウム分(マグ
ネシウムイオン)が含まれており、例えば、軟化槽31
に炭酸ソーダに加えると共に苛性ソーダを注入してpH
が10を越えるように(例えば、約10.5)pH調整
すると、水酸化マグネシウムの沈澱が生成するが、恐ら
くこれに吸着される形で一次処理水に残存する弗素分の
かなりの部分が同時に沈澱(共沈)し、従って、二次処
理水中の弗素濃度は更に低くなる。
The desulfurization wastewater generally contains a magnesium component (magnesium ion).
To sodium carbonate and inject caustic soda to pH
If the pH is adjusted to exceed 10 (eg, about 10.5), a precipitate of magnesium hydroxide will form, but a significant portion of the fluorine remaining in the primary effluent will probably be absorbed at the same time. Precipitation (co-precipitation), and therefore, the fluorine concentration in the secondary treatment water is further reduced.

【0037】上記の弗素分除去装置において、流入廃水
2の弗素イオン濃度を連続又は短時間の間隔で測定する
廃水弗素濃度自動分析計3(例えば、イオン電極法を利
用、特開平3−51754号公報参照)により廃水の弗
素濃度Fを測定し、このFの信号を演算手段としての例
えばコンピューター100に入力し、必要な全カルシウ
ム量を下記の式に従いコンピューターのCPUで計算す
る。
In the above-described fluorine removing apparatus, an automatic analyzer 3 for measuring the fluorine ion concentration of the inflowing waste water 2 continuously or at short intervals (for example, utilizing the ion electrode method, Japanese Patent Application Laid-Open No. 3-51754). The fluorine concentration F of the wastewater is measured according to the publication, and a signal of this F is input to, for example, a computer 100 as arithmetic means, and the required total calcium amount is calculated by the CPU of the computer according to the following equation.

【0038】[0038]

【数3】 F(x)=a・logF2 +b・logF+C 〔但し、a、b、Cは定数〕F (x) = a · logF 2 + b · logF + C [where a, b, and C are constants]

【0039】しかし、この演算が複雑なため、下記の係
数αを使うのが便利である。係数αは、実機及び各種フ
ィールドテストの結果より求めるもので、簡便に使用で
き、F×αとして、必要な全カルシウム量を求めること
ができる。なお、αはコンピューター100のメモリー
部に格納されており、その値は2.5ないし5.0の範
囲に存在する。
However, since this calculation is complicated, it is convenient to use the following coefficient α. The coefficient α is obtained from the results of actual equipment and various field tests, and can be used easily. The required total calcium amount can be obtained as F × α. Here, α is stored in the memory unit of the computer 100, and its value is in the range of 2.5 to 5.0.

【0040】流入廃水2の含有カルシウムイオン濃度を
連続又は短時間の間隔で測定する廃水カルシウム濃度自
動分析計4(例えば、発光プラズマ法を利用、実開平2
−118856、2−118857、2−11885
8、2−120057号公報参照)により含有カルシウ
ム濃度Ca’を測定し、このCa’の信号をコンピュー
ター100に入力し、CPUで〔(F(x)−Ca’〕
又は〔F・α−Ca’〕の減算を行い、注入により増加
すべきカルシウム濃度を算出する。
A waste water calcium concentration automatic analyzer 4 for measuring the concentration of calcium ions contained in the inflow waste water 2 continuously or at short time intervals (for example, using a light-emitting plasma method;
-118856, 2-118857, 2-1885
8, 2-120057), the calcium content Ca ′ is measured, a signal of the Ca ′ is input to the computer 100, and [(F (x) −Ca ′]) is input by the CPU.
Alternatively, [F · α-Ca ′] is subtracted, and the calcium concentration to be increased by injection is calculated.

【0041】この値に流入廃水2の流量を検出する流量
検出器1よりの瞬時流量信号QをCPUで乗算し、更に
本装置に使用されている分析機器や測定機器等の各種機
器類の測定レンジ、制御レンジ及び使用単位によって決
まる装置固有の定数K(メモリー部に格納されている)
を乗算して、消石灰濃度100%とした場合の瞬時の消
石灰注入量が算出される。
This value is multiplied by an instantaneous flow rate signal Q from a flow rate detector 1 for detecting the flow rate of the inflow wastewater 2 by a CPU, and the measured values of various instruments such as analytical instruments and measuring instruments used in the present apparatus are measured. Device-specific constant K determined by range, control range and unit of use (stored in memory)
And the instantaneous slaked lime injection amount when the slaked lime concentration is 100% is calculated.

【0042】更に、実際の消石灰スラリー濃度を測定す
る消石灰濃度検出器11の濃度信号γをコンピューター
100に入力し、CPUで上記の消石灰濃度100%と
した場合の瞬時の消石灰注入量に1/γを乗算すること
により実液濃度における消石灰注入流量が算出される。
Further, the concentration signal γ of the slaked lime concentration detector 11 for measuring the actual slaked lime slurry concentration is input to the computer 100 and the instantaneous slaked lime injection amount when the slaked lime concentration is set to 100% by the CPU is 1 / γ. , The slaked lime injection flow rate at the actual liquid concentration is calculated.

【0043】なお、消石灰濃度を常時一定制御可能な自
動溶解設備が用意されている場合は、1/γを演算器の
内部定数に含めて取扱い、消石灰濃度検出器11を省略
することもできる。
When an automatic melting facility capable of constantly controlling the concentration of slaked lime is prepared, 1 / γ is included in the internal constant of the arithmetic unit, and the slaked lime concentration detector 11 can be omitted.

【0044】次に、上記「数1」又は「数2」の式にお
ける注入量補正乗算係数βを使用する好ましい態様の場
合については、例えば、図2のプログラム処理手順を示
すフローチャートで説明されている。
Next, a preferred embodiment using the injection amount correction multiplication coefficient β in the above formulas (Equation 1) or (Equation 2) will be described with reference to, for example, a flowchart showing a program processing procedure in FIG. I have.

【0045】βは、下記の式で表される。Β is expressed by the following equation.

【0046】[0046]

【数4】β=1+RV(tn-1)+ΔRV(tn) 〔但し、ΔRV(tn)=k(F’−f)(tn)である。〕## EQU4 ## β = 1 + RV (tn-1) +. DELTA.RV (tn) [where, .DELTA.RV (tn) = k (F'-f) (tn) . ]

【0047】この式で、一次処理水16の弗素イオン濃
度を測定する一次処理水弗素濃度分析計14からの弗素
濃度信号F’と一次処理水16の弗素濃度目標値fとの
偏差(F’−f)による今回の補正値が、ΔRV(tn)
k(F’−f)(tn)である。kは、1回毎の補正値に対
する比例係数である。前回までの補正値の累積値が、R
(tn-1)である。
In this equation, the deviation (F ') between the fluorine concentration signal F' from the primary treatment water fluorine concentration analyzer 14 for measuring the fluorine ion concentration of the primary treatment water 16 and the fluorine concentration target value f of the primary treatment water 16 is obtained. −f) is ΔRV (tn) =
k (F'-f) (tn) . k is a proportional coefficient for each correction value. The cumulative value of the correction values up to the previous time is R
V (tn-1) .

【0048】「数1」や「数2」の式が常時演算される
のに対し、「数4」の式は流入廃水量の積算値QT が実
効滞留容積QS (この場合、図1の弗素分除去装置にお
いて弗素濃度分析計14の位置までの実効滞留容積であ
る)に達する毎に演算される。即ち、QT ≧QS となっ
た時に係数βが新しい値に修正され、次回まで固定され
る。また、同時に流入廃水量積算値QT もゼロにリセッ
トされ、積算を再開する。
While the formulas (1) and (2) are always calculated, the formula (4) is that the integrated value Q T of the inflowing wastewater amount is the effective accumulated volume Q S (in this case, FIG. Is calculated every time the amount reaches the position of the fluorine concentration analyzer 14). In other words, the coefficient β is modified to a new value when it becomes a Q T ≧ Q S, is fixed until the next time. Further, the reset to zero inflow wastewater amount integrated value Q T at the same time, restarts the integration.

【0049】次に、図2のフローチャートに従って、コ
ンピューター100で行われるプログラム処理手順を説
明する。ある時点で、装置運転中と検知されると〔ステ
ップ(1)〕、次に前回のサイクルまでの流入廃水量の
積算回路による積算値が処理水の弗素濃度検出位置まで
の弗素分除去装置の実効滞留容積の値に達したか否かを
比較回路で判断し〔ステップ(2)〕、まだ達していな
ければ前回のサイクルと同じ記憶β値を用い、「数2」
(「数1」でもよい)の式の演算を演算回路で行い〔ス
テップ(3)〕、この結果に基づいて消石灰が反応槽5
に注入される。次に今回の流入廃水流量を前回までの同
積算値に加算する〔ステップ(4)〕。
Next, a program processing procedure performed by the computer 100 will be described with reference to the flowchart of FIG. At some point, when it is detected that the apparatus is in operation [Step (1)], the integrated value of the inflowing wastewater amount up to the previous cycle by the integrating circuit is used by the fluorine removing apparatus to reach the fluorine concentration detecting position of the treated water. The comparison circuit determines whether or not the value of the effective retention volume has been reached [step (2)]. If the value has not yet reached, the same stored β value as in the previous cycle is used, and "expression 2"
The calculation of the expression ("Equation 1") is performed by an arithmetic circuit [step (3)], and based on the result, slaked lime is formed in the reaction tank 5
Is injected into. Next, the current inflow wastewater flow rate is added to the same integrated value up to the previous time (step (4)).

【0050】かかるサイクルを繰り返し、ステップ
(2)でQT ≧QS の条件を満足することとなったら、
「数4」の式の演算を演算回路で行い〔ステップ
(5)〕、新しい注入量補正乗算係数βを求め、これを
次回サイクルからのステップ(3)の演算に用いる。こ
の場合、流入廃水流量の前記積算回路の積算値をゼロに
リセットする〔ステップ(6)〕。そこから、新たな
「β」を用いてステップ(2)→ステップ(3)→ステ
ップ(4)のサイクルを繰り返し、再度QT ≧QS の条
件を満足したらステップ(5)→ステップ(6)と進
む。かかる処理手順が繰り返される訳である。
[0050] repeat such a cycle, if it decided to satisfy the conditions of Q T ≧ Q S in step (2),
The calculation of Expression 4 is performed by a calculation circuit [Step (5)], and a new injection amount correction multiplication coefficient β is obtained, and this is used for the calculation of Step (3) from the next cycle. In this case, the integrated value of the inflow wastewater flow rate in the integrating circuit is reset to zero [step (6)]. From there, step by using the new "β" (2) → step (3) → step repeating the cycle of (4), If you are satisfied with the conditions of re-Q T ≧ Q S step (5) → step (6) And proceed. That is, the processing procedure is repeated.

【0051】上述の場合には、注入量乗算係数βを求め
るための弗素濃度の測定を一次処理水16を用いて行う
フィードバック制御であるが、代わりに二次処理水37
を用いて二次処理水弗素濃度分析計34により処理水の
弗素イオン濃度を測定して、これをF’としてフィード
バックしても全く同様に制御することができる。後者の
場合、実効滞留容積QS は、図1の弗素分除去装置にお
ける二次処理水弗素濃度分析計34の位置までの実効滞
留容積である。
In the above-described case, the feedback control is performed using the primary treated water 16 to measure the fluorine concentration for obtaining the injection amount multiplication coefficient β.
Can be controlled in exactly the same way by measuring the fluoride ion concentration of the treated water with the secondary treated water fluorine concentration analyzer 34 and feeding it back as F '. In the latter case, the effective residence volume Q S is the effective retention volume to the position of the secondary treated water fluorine concentration analyzer 34 in the fluorine content removing device of FIG.

【0052】また、一次処理水弗素濃度分析計14と二
次処理水弗素濃度分析計34の両方を設けてもよい。こ
の場合、例えば、流入廃水流量や流入廃水の弗素イオン
濃度の単位時間当りの変動が或る値を越えた時は一次処
理水弗素濃度分析計14による一次処理水弗素イオン濃
度信号を注入量乗算係数βを求めるために用い、それ以
外の時は二次処理水弗素濃度分析計34による二次処理
水弗素イオン濃度信号を注入量乗算係数βを求めるため
に用いるようにしてもよい。こうすれば、前者の場合は
後者の場合に比して実効滞留容積が小さいので、流入廃
水流量や流入廃水弗素イオン濃度の急激な変動に対しよ
り短時間で対応できるという利点が有り、一方、流入廃
水流量や流入廃水弗素イオン濃度の変動がそれ程大きく
ない時は、所望の処理水質により密接に関係する二次処
理水弗素イオン濃度信号でより精密にフィードバック制
御できるという利点も確保できる。また、この目的のた
めに処理水弗素濃度分析計を共用とし、サンプルライン
を交互に切り換え可能とし、一次処理水弗素イオン濃度
も二次処理水弗素イオン濃度も一つの処理水弗素濃度分
析計で測定できるようにしてもよい。
Further, both the primary treatment water fluorine concentration analyzer 14 and the secondary treatment water fluorine concentration analyzer 34 may be provided. In this case, for example, when the variation per unit time of the inflow wastewater flow rate and the influent wastewater fluoride ion concentration exceeds a certain value, the primary treatment water fluorine concentration signal from the primary treatment water fluorine concentration analyzer 14 is multiplied by the injection amount. The coefficient β may be used to determine the coefficient β, and in other cases, the secondary treatment water fluoride ion concentration signal from the secondary treatment water fluorine concentration analyzer 34 may be used to determine the injection amount multiplication coefficient β. In this case, since the former case has a smaller effective retention volume than the latter case, there is an advantage that it can respond to a rapid change in the inflow wastewater flow rate and the influent wastewater fluoride ion concentration in a shorter time, while When the fluctuation of the inflow wastewater flow rate and the inflow wastewater fluoride ion concentration is not so large, the advantage that the feedback control can be more precisely performed with the secondary treatment water fluoride ion concentration signal which is more closely related to the desired treatment water quality can be secured. Also, for this purpose, the treated water fluorine concentration analyzer is shared, and the sample line can be switched alternately, so that the primary treated water fluoride ion concentration and the secondary treated water fluoride ion concentration can be one treated water fluoride concentration analyzer. The measurement may be performed.

【0053】処理水弗素濃度目標値fをゼロではない排
水許容限度内の正の値に設定するとは、具体的には、弗
素濃度分析計14又は34の測定限界値(下限)より高
く、測定誤差値より大きな値で且つ排出許容限度内の値
に設定することを意味し、これは消石灰の過剰注入を避
ける制御を行うためである。なぜならば、弗素濃度分析
計14又は34の測定限界値+測定誤差値の値以下にf
値を設定すると、過剰注入によってF’が弗素濃度分析
計14又は34の測定限界値+測定誤差値の値以下にな
った時には、過剰注入かどうか、その過剰注入度合いも
判別できなくなるからである。
To set the treated water fluorine concentration target value f to a positive value within the allowable limit of drainage which is not zero, specifically, is set higher than the measurement limit value (lower limit) of the fluorine concentration analyzer 14 or 34, This means that the value is set to a value larger than the error value and within the allowable discharge limit, in order to perform control to avoid excessive injection of slaked lime. The reason is that f is equal to or less than the measurement limit value of the fluorine concentration analyzer 14 or 34 plus the measurement error value.
When the value is set, if F ′ becomes equal to or less than the value of the measurement limit value plus the measurement error value of the fluorine concentration analyzer 14 or 34 due to the excessive injection, it is not possible to determine whether the injection is excessive or not and the degree of the excessive injection. .

【0054】この様にして求められた「数1」又は「数
2」の式による消石灰注入量Caは、消石灰注入流量コ
ントローラー10のリモート設定値として設定され、消
石灰注入流量検出器8により実測された注入量とコンピ
ューター100で比較調整され、注入量コントロール弁
9への開度指令MV値(操作出力値、manipulating val
ue)として出力される。なお、注入量を制御する駆動部
のコントロール弁9については、必ずしもコントロール
弁でなくても良く、例えば、コントロール弁を無くして
消石灰注入ポンプ13としてプランジャー型定量ポンプ
を使用し、このプランジャー型定量ポンプにストローク
制御や回転数制御を組み合わせたものでも良い。
The slaked lime injection amount Ca obtained by the equation (Equation 1) or (Equation 2) thus obtained is set as a remote set value of the slaked lime injection flow controller 10 and is actually measured by the slaked lime injection flow detector 8. The injection amount is compared with and adjusted by the computer 100, and the opening command MV value (operation output value, manipulating val
ue). Note that the control valve 9 of the drive unit for controlling the injection amount is not necessarily a control valve. For example, a plunger-type metering pump may be used as the slaked lime injection pump 13 without the control valve. A combination of stroke control and rotation speed control with the metering pump may be used.

【0055】図3は、一例として、脱硫廃水中の弗素濃
度とカルシウム濃度、第一沈澱槽から得られる一次処理
水中の弗素濃度、第二沈澱槽から得られる二次処理水の
弗素濃度(「フィードバック無」の場合と二次処理水の
弗素濃度による「フィードバック有」の場合)の経時変
動を表すグラフ図である。この図3において、横軸は運
転時間を表し、縦軸は濃度を表す。このグラフは、セミ
ロググラフで、縦軸の濃度目盛は対数目盛である。
FIG. 3 shows, as examples, the fluorine concentration and calcium concentration in the desulfurization wastewater, the fluorine concentration in the primary treatment water obtained from the first precipitation tank, and the fluorine concentration in the secondary treatment water obtained from the second precipitation tank (" FIG. 7 is a graph showing temporal changes in the case of “no feedback” and the case of “with feedback” due to the fluorine concentration of the secondary treatment water). In FIG. 3, the horizontal axis represents the operation time, and the vertical axis represents the concentration. This graph is a semi-log graph, and the density scale on the vertical axis is a logarithmic scale.

【0056】図3において、曲線(a)は廃水のカルシ
ウム濃度であり、曲線(b)は廃水の弗素濃度であり、
曲線(c)は一次処理水の弗素濃度であり、曲線(d)
は「フィードバック無」の場合の二次処理水の弗素濃度
であり、曲線(e)は「フィードバック有」の場合の二
次処理水の弗素濃度である。
In FIG. 3, curve (a) is the concentration of calcium in the wastewater, curve (b) is the concentration of fluorine in the wastewater,
Curve (c) is the fluorine concentration of the primary treated water, and curve (d)
Is the fluorine concentration of the secondary treatment water in the case of "no feedback", and the curve (e) is the fluorine concentration of the secondary treatment water in the case of "with feedback".

【0057】「フィードバック有」の制御を行った方
が、「フィードバック無」の場合と比べて、二次処理水
の弗素濃度の変動巾が小さくなり、好ましいことが分か
る。
It can be seen that the control of "with feedback" has a smaller fluctuation range of the fluorine concentration of the secondary treatment water than the case of "without feedback", which is preferable.

【0058】なお、本発明における「数1」又は「数
2」の式の演算は、専用の演算器の他に、制御用コンピ
ューターでも、市販品で上記演算が可能なワンループ・
コントローラーでも、パソコンやシーケンサーの演算回
路でも使用できる。
In the present invention, the calculation of the formulas (1) and (2) can be performed not only by a dedicated computing unit but also by a control computer using a one-loop control which is commercially available and can perform the above calculations.
It can be used as a controller, or as an arithmetic circuit for a personal computer or sequencer.

【0059】上述の実施例では、脱硫廃水を例として本
発明を説明してきたが、カルシウムを含む弗酸廃水につ
いて同じである。
[0059] In the above embodiment, although the invention has been described desulfurization waste water as an example, the same for hydrofluoric acid wastewater containing calcium.

【0060】[0060]

【発明の効果】以上説明してきたように、本発明によれ
ば、弗素及びカルシウム含有廃水の性状変動、廃水流量
変動に対して、ほぼリアルタイムで消石灰の適正量の注
入ができ、更に、必要に応じて微妙な補正修正機構によ
り消石灰の過剰注入の防止ができるため、特に負荷変動
の大きな中間負荷石炭火力発電所の脱硫廃水や時間帯に
よって弗酸の使用量が大幅に変動するプロセスを行う半
導体工場の弗酸廃水では、消石灰やその他の薬品の使用
量が大幅に低減可能となる。
As described above, according to the present invention, an appropriate amount of slaked lime can be injected almost in real time with respect to fluctuations in the properties of waste water containing fluorine and calcium and fluctuations in the flow rate of waste water. A semiconductor that performs a process in which the amount of hydrofluoric acid used fluctuates significantly depending on the desulfurization wastewater and the time of day, especially in intermediate-load coal-fired thermal power plants with large load fluctuations, because it can prevent excessive injection of slaked lime with a subtle correction correction mechanism The use of slaked lime and other chemicals in factory hydrofluoric acid wastewater can be greatly reduced.

【0061】また、廃棄物としての炭酸カルシウム等の
量も低減され、汚泥処理設備も小さくすることができ、
産業廃棄物の問題を軽減化するにも役立つ。
Further, the amount of calcium carbonate and the like as waste is reduced, and the sludge treatment equipment can be reduced.
It also helps to reduce the problem of industrial waste.

【0062】流入廃水の流量・性状等の変動に対する自
動追従が従来に比較して格段に改善されるため、運転員
の負担も軽減される。
Automatic follow-up to fluctuations in the flow rate and properties of inflow wastewater is remarkably improved as compared with the related art, so that the burden on operators is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用する弗素分除去装置を含む廃水処
理装置の一例における各処理工程と信号系統を示すフロ
ーチャートである。
FIG. 1 is a flowchart showing each processing step and a signal system in an example of a wastewater treatment apparatus including a fluorine content removing apparatus used in the present invention.

【図2】注入量補正乗算係数βによる制御系のプログラ
ム処理手順を示すフローチャートである。
FIG. 2 is a flowchart showing a program processing procedure of a control system based on an injection amount correction multiplication coefficient β.

【図3】本発明の制御方法に従った場合の廃水処理効果
を説明する図で、脱硫廃水中の弗素濃度とカルシウム濃
度、第一沈澱槽から得られる一次処理水中の弗素濃度、
第二沈澱槽から得られる二次処理水の弗素濃度(フィー
ドバック無の場合とフィードバック有の場合)の経時変
動を表すグラフ図である。
FIG. 3 is a diagram for explaining the wastewater treatment effect when the control method according to the present invention is used, and shows the fluorine concentration and the calcium concentration in the desulfurization wastewater, the fluorine concentration in the primary treatment water obtained from the first precipitation tank,
FIG. 7 is a graph showing a temporal change in the fluorine concentration of the secondary treatment water obtained from the second precipitation tank (without feedback and with feedback).

【図4】石炭火力発電所の運転時間の経過に伴う脱硫廃
水の弗素濃度の変化をモデル的に表したグラフ図であ
る。
FIG. 4 is a graph schematically showing a change in the fluorine concentration of the desulfurization wastewater with the elapse of the operation time of the coal-fired power plant.

【符号の説明】[Explanation of symbols]

1 廃水流量検出器 2 流入廃水 3 廃水弗素濃度分析計 4 廃水カルシウム濃度分析計 5 反応槽 6 pH調整槽 7 第一凝集槽 8 消石灰流量検出器 9 消石灰注入コントロール弁 10 消石灰注入コントローラー 11 消石灰濃度検出器 12 消石灰溶解槽 13 消石灰注入ポンプ 14 一次処理水弗素濃度分析計 15 第一沈澱槽 16 一次処理水 17 汚泥引抜きポンプ 18 pH調整剤注入バルブ 19 pH検出器 31 軟化槽 32 第二凝集槽 33 第二沈澱槽 34 二次処理水弗素濃度分析計 35 汚泥引抜きポンプ 36 pH検出器 37 二次処理水 100 コンピューター Reference Signs List 1 wastewater flow detector 2 inflow wastewater 3 wastewater fluorine concentration analyzer 4 wastewater calcium concentration analyzer 5 reaction tank 6 pH adjustment tank 7 first flocculation tank 8 slaked lime flow detector 9 slaked lime injection control valve 10 slaked lime injection controller 11 slaked lime concentration detection 12 Slaked lime dissolving tank 13 Slaked lime injection pump 14 Primary treated water fluorine concentration analyzer 15 First sedimentation tank 16 Primary treated water 17 Sludge extraction pump 18 pH adjusting agent injection valve 19 pH detector 31 Softening tank 32 Second flocculation tank 33 No. Secondary sedimentation tank 34 Secondary treatment water fluorine concentration analyzer 35 Sludge extraction pump 36 pH detector 37 Secondary treatment water 100 Computer

フロントページの続き (72)発明者 鳥屋尾 守 愛知県名古屋市緑区大高町字北関山20番 地の1 中部電力株式会社 電力技術研 究所内 (72)発明者 ▲浅▼野 宗光 愛知県名古屋市緑区大高町字北関山20番 地の1 中部電力株式会社 電力技術研 究所内 (72)発明者 高田 ▲とき▼男 東京都文京区本郷5丁目5番16号 オル ガノ株式会社内 (72)発明者 高見 英俊 東京都文京区本郷5丁目5番16号 オル ガノ株式会社内 (56)参考文献 特開 昭60−202788(JP,A) 特開 昭58−143878(JP,A) 実開 昭52−24762(JP,U) (58)調査した分野(Int.Cl.7,DB名) C02F 1/00 - 1/78 Continued on the front page (72) Inventor Mamoru Toriyao 1 at 20 Kitakanyama, Odaka-cho, Midori-ku, Nagoya-shi, Aichi Prefecture Electric Power Engineering Laboratory, Chubu Electric Power Co., Inc. (72) Inventor In the Power Technology Research Institute, Chubu Electric Power Co., Inc., 20-20 Kita-Sanzan, Odaka-cho, Midori-ku, City (72) Inventor Takada ▲ Toki ▼ 5-5-16-1 Hongo, Bunkyo-ku, Tokyo Organo Corporation ( 72) Inventor Hidetoshi Takami 5-16, Hongo, Bunkyo-ku, Tokyo Organo Co., Ltd. (56) References JP-A-60-202788 (JP, A) JP-A-58-1443878 (JP, A) Kaikai 52-24762 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/00-1/78

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流入する廃水の流量を検出する廃水流量
検出器、流入廃水の弗素濃度を検出する廃水弗素濃度分
析計、及び流入廃水のカルシウム濃度を検出する廃水カ
ルシウム濃度分析計を備えた弗素及びカルシウム含有廃
水から弗素分を除去する弗素分除去装置の制御方法にお
いて、前記廃水弗素濃度分析計からの弗素濃度信号によ
り、弗素分除去に必要なカルシウム濃度を予め定めた計
算式又は乗算係数により算出し、この算出必要カルシウ
ム濃度から前記廃水カルシウム濃度分析計からのカルシ
ウム濃度信号を減算し、更に前記廃水流量検出器からの
流入廃水流量信号を乗算する演算回路により消石灰注入
量を演算出力する弗素及びカルシウム含有廃水処理にお
ける消石灰注入量の制御方法。
1. A wastewater flow rate detector for detecting the flow rate of inflowing wastewater, a wastewater fluorine concentration analyzer for detecting the fluorine concentration of the inflowing wastewater, and a fluorine having a wastewater calcium concentration analyzer for detecting the calcium concentration of the inflowing wastewater. And a control method of a fluorine removing device for removing fluorine from waste water containing calcium, wherein a calcium concentration necessary for removing fluorine is determined by a predetermined calculation formula or a multiplication coefficient according to a fluorine concentration signal from the waste water fluorine concentration analyzer. Calculate and subtract the calcium concentration signal from the wastewater calcium concentration analyzer from the calculated required calcium concentration, and further calculate and output the slaked lime injection amount by a calculation circuit that multiplies the inflow wastewater flow rate signal from the wastewater flow rate detector. And control method of slaked lime injection amount in treatment of wastewater containing calcium and calcium.
【請求項2】 処理水の目標弗素濃度値をゼロでは無い
排水許容限度内の正の値に設定し、該目標弗素濃度値と
処理水の弗素濃度測定値との偏差の極性及びその大きさ
により前記消石灰注入量の演算出力を補正する為の補正
乗算係数を算出する演算回路を設け、流入廃水流量を積
算する積算回路による積算値が前記処理水の弗素濃度検
出位置までの前記弗素分除去装置の実効滞留容積値に達
したと比較回路が判断する毎に、前記補正乗算係数を演
算・修正すると共に前記積算値をリセットする機能を前
記弗素分除去装置が備え、前記消石灰注入量に前記補正
乗算係数を乗算した値を消石灰注入量コントローラーの
リモート設定値として消石灰注入量を制御することを特
徴とする請求項1に記載の弗素及びカルシウム含有廃水
処理における消石灰注入量の制御方法。
2. The target fluorine concentration value of the treated water is set to a positive value within the allowable limit of drainage which is not zero, and the polarity and magnitude of the deviation between the target fluorine concentration value and the measured fluorine concentration value of the treated water are set. A calculation circuit for calculating a correction multiplication coefficient for correcting the calculation output of the slaked lime injection amount, and the integrated value obtained by the integration circuit for integrating the flow rate of inflow wastewater is used to remove the fluorine content up to the fluorine concentration detection position of the treated water. Each time the comparison circuit determines that the effective retention volume value of the device has been reached, the fluorine removing device has a function of calculating and correcting the correction multiplication coefficient and resetting the integrated value, and the amount of slaked lime is added to the slaked lime injection amount. The slaked lime in the treatment of waste water containing fluorine and calcium according to claim 1, wherein the slaked lime injection amount is controlled by using a value multiplied by the correction multiplication coefficient as a remote setting value of the slaked lime injection amount controller. How to control the injection volume.
【請求項3】 消石灰を注入する反応槽を有する一次処
理装置及び二次処理装置を包含する弗素分除去装置であ
って、前記反応槽の上流に流入廃水流量検出器並びに廃
水弗素濃度分析計及び廃水カルシウム濃度分析計を備
え、前記一次処理装置と前記二次処理装置の間か前記二
次処理装置の下流かあるいは双方に処理水弗素濃度分析
計を所要に応じて備えており、請求項1又は2に記載の
消石灰注入量の制御方法を行うための演算手段を備え、
更に、前記演算手段による演算結果に応じて消石灰を前
記反応槽に注入するための消石灰注入手段を備えている
ことを特徴とする弗素分除去装置。
3. A fluorine content removing device including a primary processing device and a secondary processing apparatus having a reaction vessel for injecting slaked lime, waste <br/> the inlet waste water flow sensors arranged in an upstream of the reactor A water fluorine concentration analyzer and a wastewater calcium concentration analyzer are provided, and a treated water fluorine concentration analyzer is provided as required between the primary treatment device and the secondary treatment device, downstream of the secondary treatment device, or both. Computing means for performing the method for controlling the amount of slaked lime according to claim 1 or 2 ,
The apparatus for removing fluorine content further comprises slaked lime injection means for injecting slaked lime into the reaction tank according to the calculation result by the calculation means.
JP3331521A 1991-11-21 1991-11-21 Method for controlling slaked lime injection amount in fluorine and calcium containing wastewater treatment and fluorine removal device Expired - Fee Related JP3053481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3331521A JP3053481B2 (en) 1991-11-21 1991-11-21 Method for controlling slaked lime injection amount in fluorine and calcium containing wastewater treatment and fluorine removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3331521A JP3053481B2 (en) 1991-11-21 1991-11-21 Method for controlling slaked lime injection amount in fluorine and calcium containing wastewater treatment and fluorine removal device

Publications (2)

Publication Number Publication Date
JPH0615278A JPH0615278A (en) 1994-01-25
JP3053481B2 true JP3053481B2 (en) 2000-06-19

Family

ID=18244583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3331521A Expired - Fee Related JP3053481B2 (en) 1991-11-21 1991-11-21 Method for controlling slaked lime injection amount in fluorine and calcium containing wastewater treatment and fluorine removal device

Country Status (1)

Country Link
JP (1) JP3053481B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170049570A (en) * 2014-09-05 2017-05-10 에코랍 유에스에이 인코퍼레이티드 Addition of aluminum reagents to oxoanion-containing water streams

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765373B2 (en) * 2005-03-31 2011-09-07 栗田工業株式会社 Method and apparatus for treating fluorine-containing wastewater
JP5005225B2 (en) * 2006-01-30 2012-08-22 新日鐵住金ステンレス株式会社 Treatment method of fluorine-containing waste liquid
JP4647640B2 (en) * 2007-06-29 2011-03-09 オルガノ株式会社 Crystallization reactor and crystallization reaction method
JP5532017B2 (en) * 2011-06-07 2014-06-25 富士電機株式会社 Industrial wastewater treatment method and treatment equipment
JP5692278B2 (en) * 2013-04-25 2015-04-01 栗田工業株式会社 Method and apparatus for treating fluoride-containing water
JP5949673B2 (en) * 2013-06-10 2016-07-13 Jfeスチール株式会社 Cyan-containing waste liquid treatment method and cyan-containing waste liquid treatment apparatus
WO2015198438A1 (en) * 2014-06-26 2015-12-30 栗田工業株式会社 Method and device for treating fluoride-containing water
JP2016043341A (en) * 2014-08-26 2016-04-04 オルガノ株式会社 Method and apparatus for treating waste water
KR102129942B1 (en) * 2019-09-27 2020-08-05 삼성엔지니어링 주식회사 Wastewater treatment apparatus and wastewater treatment method
JP2023030521A (en) * 2021-08-23 2023-03-08 栗田工業株式会社 Processing method of fluorine-containing water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170049570A (en) * 2014-09-05 2017-05-10 에코랍 유에스에이 인코퍼레이티드 Addition of aluminum reagents to oxoanion-containing water streams
KR102340262B1 (en) * 2014-09-05 2021-12-15 에코랍 유에스에이 인코퍼레이티드 Addition of aluminum reagents to oxoanion-containing water streams

Also Published As

Publication number Publication date
JPH0615278A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
JP3053481B2 (en) Method for controlling slaked lime injection amount in fluorine and calcium containing wastewater treatment and fluorine removal device
US20130213895A1 (en) Wastewater treatment system
CN101717143A (en) Method for controlling automatic flocculant addition
CN101659462A (en) Automatic dosing control system of coagulant and operation method
WO2008067723A1 (en) Method and device for treating waste water congtaining fluorine by using limestone
JP3150182B2 (en) Method for controlling injection amount of sodium carbonate in softening treatment of calcium-containing treated water of fluorine-containing wastewater and fluorine removing device
CN105540801A (en) Fluoride-containing wastewater treatment system and method
CN201749385U (en) Water plant dosage control system for feedforward-feedback composite control
JP3053482B2 (en) Method for controlling injection amount of aluminum compound in treatment of wastewater containing fluorine and aluminum and fluorine removing device
CN117125856A (en) Intelligent wastewater treatment system, wastewater treatment method and readable storage medium
CN107092186B (en) Furnace water dosing method and system
JPH06102195B2 (en) Method for controlling phosphorus concentration in wastewater
JP3091247B2 (en) Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit
JP4789017B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP5532017B2 (en) Industrial wastewater treatment method and treatment equipment
JP2738750B2 (en) Control method of exhaust gas desulfurization equipment
JPH034987A (en) Defluorination of flue gas desulfurizing waste water
JP4248043B2 (en) Biological phosphorus removal equipment
JP6982759B2 (en) Water treatment system
JP2740537B2 (en) Cooling tower drainage control device for desulfurization equipment
JP2001129561A (en) Apparatus and method for controlling injection of carbonate in water treatment installation
JP2607871B2 (en) Wet flue gas desulfurization equipment
JPH1057970A (en) Fluorine-containing waste water treating device and its treatment
JP2001017825A (en) Flue gas desulfurization method and apparatus
KR19980073145A (en) Automatic control device of flocculant using gauss-fuzzy logic

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees