JP3053081B2 - Copolymer for antifouling coating material - Google Patents

Copolymer for antifouling coating material

Info

Publication number
JP3053081B2
JP3053081B2 JP10116616A JP11661698A JP3053081B2 JP 3053081 B2 JP3053081 B2 JP 3053081B2 JP 10116616 A JP10116616 A JP 10116616A JP 11661698 A JP11661698 A JP 11661698A JP 3053081 B2 JP3053081 B2 JP 3053081B2
Authority
JP
Japan
Prior art keywords
copolymer
group
coating material
antifouling
antifouling coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10116616A
Other languages
Japanese (ja)
Other versions
JPH1143642A (en
Inventor
滋 政岡
誠 坪井
信宏 斉藤
明嗣 栗田
正行 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Marine Paints Ltd
Original Assignee
Chugoku Marine Paints Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14691599&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3053081(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chugoku Marine Paints Ltd filed Critical Chugoku Marine Paints Ltd
Priority to JP10116616A priority Critical patent/JP3053081B2/en
Publication of JPH1143642A publication Critical patent/JPH1143642A/en
Application granted granted Critical
Publication of JP3053081B2 publication Critical patent/JP3053081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、水中構築物、漁
網、船底等への水棲生物の付着を阻止するための防汚コ
ーティング材として有用な共重合体に関する。 【0002】 【従来の技術】水中構築物、漁網、船底をはじめ水中で
長時間使用する物品には、使用中に水棲生物が付着、繁
殖して外観を損ねるばかりでなく、その機能に悪影響を
与えることがある。 【0003】船底の場合においては、水棲生物の付着が
船全体の表面粗度の増加につながり、さらには船速が低
下するとともに燃費が増大する。またこのためドックで
の修復時間が長くなり運航効率が著しく低下する。この
ほか、バクテリア類の繁殖により水中構築物の腐敗、物
性の劣化が起こって著しく寿命が低下する等の莫大な被
害を生ずる。 【0004】従来より、このような被害を回避するため
に使用される防汚剤としては、有機塩素系化合物、亜酸
化銅、有機スズ化合物等が知られている。 【0005】有機スズ化合物や亜酸化銅のような重金属
を含有する生理活性物質は、特に優れた防汚効果を有
し、漁網や船底用の塗料に必須の成分と考えられてい
る。例えば米国特許第3,167,473号明細書に
は、有機スズ化合物を用いた防汚処理剤のなかで「ポリ
マータイプ」といわれているものが記載されている。こ
の防汚処理剤は、共重合体の側鎖に有機スズ含有基を有
し、微アルカリ性の海水中で加水分解されて有機スズ化
合物を放出し、防汚効果を発揮すると同時に、加水分解
された共重合体自身も水溶化して海水中に溶解してゆく
ため、樹脂残渣層を残すことなく、常に活性な表面を保
つことができる。 【0006】また、特開昭60−231771号公報に
は、含有する有機スズ化合物や亜酸化銅等の生理活性物
質の溶出性を促進させる目的で、これに併用する有機含
有共重合体の単量体の一部として、加水分解性のシリル
(メタ)アクリレート、例えばトリブチルシリルアクリ
レートやトリフェニルシリル(メタ)アクリレートを用
いる方法が記載されている。 【0007】しかしながら、これらの防汚処理剤は保存
安定性が悪く、特に亜酸化銅を併用した場合には数日の
内にゲル化してしまうというため問題があった。しかも
これらの防汚処理剤は、重金属や加水分解性の有機スズ
含有基を含有するため、毒性が高く、特に有機スズ化合
物は刺激性が強く、皮膚に触れると炎症を起こす等、安
全衛生面で問題があるのみならず、海水中への流出によ
る海洋汚染、奇形魚の発生、生態濃縮による人体への蓄
積性等、重大な問題を抱えていた。 【0008】 【発明が解決しようとする課題】上述したような問題に
対処するものとして、例えば特表昭60−500452
号公報には、有機スズ含有共重合体を用いることなく、
防汚効果を示す船底塗料が記載されている。この船底塗
料は毒物および自己研磨型ポリマーより構成されてお
り、該ポリマー単量体としてはトリス(4−メチル−2
−ペントキシ)シリルアクリレートのような加水分解性
のシリル(メタ)アクリレートが記載されている。 【0009】しかしながらこの船底塗料において、自己
研磨ポリマーは、毒物供給系(del-ivery system) とし
て働くのみで、これ自身には防汚性能はないため、毒物
成分が必須のものである。この船底塗料においても、毒
物によって付着した水棲生物を殺すという防汚を果たす
基本的な原理は、従来の防汚処理剤と変わっておらず、
重大な環境問題を回避することはできなかった。しかも
毒物として亜酸化銅を使用した場合には、保全安定性が
悪く、数日の内にゲル化してしまうという問題もあっ
た。 【0010】さらに、ここに挙げられているトリス(4
−メチル−2−ペントキシ)シリルアクリレートは、ケ
イ素原子とアルコキシ基結合の間およびケイ素原子とエ
ステル結合の間の2種類の結合がいずれも加水分解性を
もつので、加水分解による共重合体の水への溶解度の制
御が困難になるという問題もあった。 【0011】 【発明の目的】本発明は、有機スズ含有重合体を含ま
ず、海洋の生態系に悪影響を与えることのない防汚コー
ティング材用共重合体を提供することを目的とする。 【0012】 【課題を解決するための手段と作用】本発明者らは、下
記特定の式で規定される共重合体の自己研磨性に注目
し、これを用いたコーティング材は、毒物の併用がなく
とも優れた防汚性を有し、しかも保存安定性の良好な共
重合体を見出して本発明をなすに至った。 【0013】すなわち本発明の防汚コーティング材用共
重合体は、下記一般式で表される共重合体側鎖のシリル
基が加水分解によって放出され、次いで共重合体自身も
水溶化する自己研磨作用で防汚性を発揮するものであ
り、 一般式: (式中、R1 は水素原子またはメチル基、R2 、R3
4 はそれぞれ炭素数1〜18のアルキル基、シクロア
ルキル基およびフェニル基からなる群より選ばれる1価
の炭化水素基を示す)で表される少なくとも1種の不飽
和トリオルガノシリル単量体と、(メタ)アクリル系お
よびビニル系化合物から選ばれる少なくとも1種の有機
単量体とを重合させて得られる重合度が190を超えな
いスズを含有しない共重合体からなることを特徴として
いる。 【0014】本発明に用いられる共重合体は、本発明に
おいて特徴的な成分であり、トリオルガノシリル基のケ
イ素原子に結合した有機基を選択することによって適度
の加水分解性を示し、水中で徐々に加水分解して親水性
を増すため、水に対して制御された溶解特性を示す。こ
のような共重合体は、1種または2種以上のトリオルガ
ノシリル単量体と、1種または2種以上の有機単量体と
を重合度が190を超えない程度に重合させることによ
って得られる。 【0015】不飽和トリオルガノシリル単量体と有機単
量体との構成比は、特に限定されるものではないが、好
ましくは不飽和トリオルガノシリル単量体の量が10〜
95重量%、さらに好ましくは20〜70重量%の範囲
である。不飽和トリオルガノシリル単量体の量を上記の
範囲とすることで、特に良好な加水分解速度と塗膜特性
とが得られ、良好な防汚力を長期間にわたって持続する
ことができる。 【0016】共重合体の一方の出発原料である不飽和ト
リオルガノシリル単量体において、R1 は水素原子また
はメチル基であり、R2 、R3 、R4 はそれぞれ炭素数
1〜18の独立した1価の炭化水素基で、直鎖状または
分岐状のアルキル基、シクロアルキル基およびフェニル
基から選ばれるものである。このアルキル基としては、
メチル基、エチル基、プロピル基、ブチル基、ヘキシル
基、オクチル基、デシル基、ドデシル基、ミリスチル
基、ステアリル基等が例示され、シクロアルキル基とし
ては、シクロペンチル基、シクロヘキシル基等が例示さ
れる。適度な加水分解性を持ち、そのことによってコー
ティング材の水に対する徐溶性を制御するには、R2
3 、R4 のうち少なくとも1個が炭素数4以上のもの
であることが好ましい。 【0017】このような不飽和トリオルガノシリル単量
体としては、ジメチルブチルシリルアクリレート、ジメ
チルヘキシルシリルアクリレート、ジメチルオクチルシ
リルアクリレート、ジメチルデシルシリルアクリレー
ト、ジメチルドデシルシリルアクリレート、ジメチルシ
クロヘキシルシリルアクリレート、ジメチルフェニルシ
リルアクリレート、ジメチルジブチルシリルアクリレー
ト、エチルジブチルシリルアクリレート、ジブチルヘキ
シルシリルアクリレート、ジブチルフェニルシリルアク
リレート、トリブチルシリルアクリレート、トリフェニ
ルシリルアクリレート等;およびこれらに対応するメタ
クリレートが例示される。 【0018】これらのうち、加水分解速度が遅く、合成
の容易なことと、造膜性の良いことでは、ジメチルヘキ
シルシリル(メタ)アクリレート、ジメチルデシルシリ
ル(メタ)アクリレートのような、R2 、R3 、R4
うち2個がメチル基で残余が炭素数6以上の長鎖アルキ
ル基であるものが優れているが、水中で制御された加水
分解速度を持ち、適度の徐溶性を得るためには、トリブ
チルシリル(メタ)アクリレートが好ましい。 【0019】共重合体の他方の出発原料である有機単量
体は、(メタ)アクリル系およびビニル系化合物から選
ばれるものである。この(メタ)アクリル系化合物とし
ては、メチルアクリレート、エチルアクリレート、ブチ
ルアクリレート、ヘキシルアクリレート、オクチルアク
リレート(以上のアルキル基は直鎖でも分岐状でもよ
い)、2−ヒドロキシエチルアクリレート、2−ヒドロ
キシプロピルアクリレート、ジメチルアミノエチルアク
リレート、アクリルアミド、アクリルニトリル等;およ
びこれらに対応するメタクリル化合物が例示され、ビニ
ル系化合物としては、酢酸ビニル、塩化ビニル、ビニル
メチルエーテル、ビニルプロピルエーテル、ビニルイソ
ブチルエーテル、ビニルピロリドリン等が例示される。 【0020】重合は、例えば有機溶剤の存在下で不飽和
トリオルガノシリル単量体と有機単量体とを混合し、重
合開始剤を用いて行われる。 【0021】有機溶剤は、重合の制御と反応中のゲルの
形成防止のためのものであり、ベンゼン、トルエン、キ
シレンのような炭化水素系溶剤;酢酸エチル、酢酸ブチ
ルのようなエステル系溶剤;メタノール、エタノールの
ようなアルコール系溶剤;メチルエチルケトン、メチル
イソブチルケトンのようなケトン系溶剤;およびジメチ
ルホルムアミド、ジメチルスルホキシドのような非プロ
トン系極性溶剤が例示される。 【0022】有機溶剤の量は、単量体の合計100重量
部に対して20〜1000重量部が好ましく、さらに好
ましくは50〜500重量部である。有機溶剤の量を上
記範囲とすることにより、特に良好な反応の制御性や製
造工程の簡易化が図れる。 【0023】重合開始剤としては、ベンゾイルパーオキ
サイド、t−ブチルパーベンゾエート、メチルエチルケ
トンパーオキサイド、クメンヒドロパーオキサイド等の
有機過酸化物およびアゾビスイソブチロニトリル等のア
ゾ化合物が例示される。重合開始剤の量は単量体の合計
量100重量部に対して0.01〜10重量部が一般的
である。重合条件は特に限定されないが、窒素気流中で
行うことが好ましく、また一般に重合開始剤が有機過酸
化物の場合には60〜120℃、アゾ化合物の場合には
45〜100℃の温度で行われる。 【0024】本発明の上記特定の共重合体を用いたコー
ティング材は、前述の共重合体単独か必要に応じて顔
料、有機溶剤、揺変剤等を配合することによって得られ
る。防汚処理の対象が水中構築物、漁網、船底等と多岐
にわたるため、配合割合は特に限定できないが、共重合
体の配合量を上記の範囲とすることにより、特に良好な
塗膜形成性と作業性が得られる。 【0025】顔料としては、べんがら、チタン白、タル
ク、シリカ、炭酸カルシウム、硫酸バリウムのような海
水不活性顔料や、酸化亜鉛、酸化カルシウムのような海
水反応性顔料が例示されれ1種でも2種以上の併用でも
差し支えない。有機溶剤としては、前述した共重合体を
得るための重合工程で用いたものと同様なものが用いら
れる。揺変材としては、ベントナイト、酸化ポリエチレ
ンおよびアミド化合物が例示される。 【0026】 【実施例】以下、本発明を実施例および比較例によって
説明する。なお、以下の実施例中の部は重量部を示す。 【0027】<共重合体の合成> 冷却器、攪拌器および温度計を備えた反応器にキシレン
300部を仕込み、これにジメチルヘキシルシリルメタ
クリレート120部、メチルメタクリレート180部、
およびアゾビスイソブチロニトリル2部を加え、80℃
で8時間加熱攪拌することによって重合を行った。室温
に冷却後、酢酸エチル66部を追加して淡黄色透明の共
重合体溶液V−1を得た。V−1の25℃における粘度
は480cP、固形分濃度は44.8%であった。 【0028】V−1と重合後の有機溶剤の追加を行わな
い以外は同様にして、表1に示す有機溶剤、単量体およ
び反応開始剤から、淡黄色透明共重合体溶液V−2〜V
−7を得た。得られた共重合体溶液の粘度と固形分濃度
は表1に示す通りである。なお、表中の配合量を示す数
字は部を表す(以下同じ)。 【0029】また、低重合度の共重合体(H−1)およ
び高重合度の共重合体(H−2)を以下のように合成し
た。まず、冷却器、攪拌器および温度計を備えた反応容
器にキシレン300部を仕込み、これにトリブチルシリ
ルメタクリレート144部、メチルメタクリレート15
6部、n−オクチルメルカプタン6部およびアゾビスイ
ソブチロニトリル6部を加え、95℃で8時間加熱撹拌
することによって重合を行った後、室温に冷却して無色
透明の低重合度共重合体溶液H−1を得た。H−1の2
5℃における粘度は48cP,固形分濃度は47.4%
であった。 【0030】さらに、冷却器、攪拌器および温度計を備
えた反応容器にキシレン300部を仕込み、これにトリ
ブチルシリルメタクリレート144部、メチルメタクリ
レート156部およびアゾビスイソブチロニトリル0.
6部を加え、80℃で8時間加熱撹拌することによって
重合を行った後、室温に冷却して無色透明の高重合度共
重合体溶液H−2を得た。H−2の25℃における粘度
は1760cP,固形分濃度は49.9%であった。各
単量体の仕込み量と共重合体収量とから実質的に全量の
各単量体が重合していることを確認した。 【0031】また、表1には上記各共重合体のGPC法
(カラム:東洋ソー(株)製、商品名TSK-GEL G4000HXL
-G2000HXL、溶媒:テトラヒドロフラン、ポリスチレン換
算)により求めた数平均分子量(Mn)、およびGPC法に
より求めたMnと共重合体合成時の単量体の仕込み組成
から計算した重合度を併せて示す。 【0032】 【表1】【0033】<実施例1〜10、参考例1〜2、比較例
1〜4および比較例6〜7> 以上のようにして得た共重合体溶液を用いて、防汚性コ
ーティング材を表2に示す配合により調製した。また、
比較例1および2として、亜酸化銅とトリブチルスズメ
タクリレートとメチルメタクリレートとの共重合体から
なる表3に示すワニスAおよびBを用いた防汚塗料を表
4に示す配合により調製した。さらに比較例3および4
として、従来型の亜酸化銅を用いた防汚塗料を表4に示
す配合により調製した。またさらに、参考例1〜2とし
て、共重合体溶液H−1を用いて、表2に示す配合によ
り防汚性コーティング材を調製した。また、比較例6〜
7として、共重合体溶液H−2を用いて、表2に示す配
合により防汚性コーティング材を調製した。 【0034】 【表2】【0035】 【表3】 【0036】 【表4】以上のように調製した各防汚性コーティング材と防汚塗
料とを用いて、下記の要領で塗膜の消耗度と水棲生物の
付着性の試験を行った。 【0037】<塗膜の消耗度> 実施例1〜10、参考例1〜2、比較例1〜4および比
較例6〜7の各防汚性コーティング材と防汚塗料を、そ
れぞれ70× 150×2mm の硬質塩化ビニル板に、乾燥膜厚
が100 μmになるようにアプリケーターで塗布し、海水
中に設置した回転ドラムに取付け、周速10ノットで回転
させて1か月間の消耗膜厚を測定した。その結果を表5
に示す。 【0038】<水棲生物の付着性> 実施例1〜10、参考例1〜2、比較例1〜4および比
較例6〜7の各防汚性コーティング材と防汚塗料を、そ
れぞれ防錆塗料を塗布した100 ×300 ×3mm 銅板に、乾
燥膜厚が150 〜200 μm になるように塗布して試料を作
製した。これらの試料と比較例5として無処理の試料と
をそれぞれ広島湾宮島沖の海中に沈め、6か月ごとに水
棲生物の付着面積を調べた。各々の試料の付着面積を百
分率で表6に示す。 【0039】 【表5】【0040】 【表6】 【0041】<水棲生物の付着性> 実施例1および5と比較例1および4の各防汚性コーテ
ィング材と防汚塗料を、それぞれ50×50cmのポリ塩化ビ
ニル樹脂製フレームに取り付けた、網目の大きさが7節
のポリエステル製の漁網に浸漬塗布して試料を作製し
た。これらの試料と比較例5として無処理の試料とをそ
れぞれ富山湾の海中に沈め、2か月ごとに水棲生物の付
着状態を調べた。その結果を表7に示す。 【0042】 【表7】各試験結果が示すように、本発明の共重合体を用いた防
汚性コーティング材は、長期にわたって安定した防汚性
を発揮する。 【0043】 【発明の効果】本発明の防汚性コーティング材用共重合
体は、側鎖のトリオルガノシリル基が加水分解して親水
性を増し、水中で制御された溶解性、すなわち自己研磨
性を示すので、環境に影響を及ぼす有機スズ化合物や有
機スズ含有共重合体を用いることなく優れた防汚効果を
発揮することができる。したがって、本発明の防汚性コ
ーティング材用共重合体は、水中構築物、漁網、船底等
の水棲生物の付着による汚染を防止するのに有効であ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copolymer useful as an antifouling coating material for preventing aquatic organisms from adhering to underwater structures, fishing nets, ship bottoms, and the like. . 2. Description of the Related Art Aquatic organisms adhere to and propagate on underwater structures, fishing nets, boat bottoms, and other articles that are used for a long time in water, as well as impair the appearance thereof, and adversely affect their functions. Sometimes. [0003] In the case of a ship bottom, the attachment of aquatic organisms leads to an increase in the surface roughness of the whole ship, and furthermore, the ship speed decreases and the fuel efficiency increases. In addition, the repair time at the dock is prolonged, and the operating efficiency is significantly reduced. In addition, proliferation of bacteria causes enormous damage such as spoilage of underwater structures, deterioration of physical properties, and remarkable reduction in life. Heretofore, as antifouling agents used to avoid such damage, organic chlorine compounds, cuprous oxide, organic tin compounds and the like have been known. [0005] Physiologically active substances containing heavy metals such as organic tin compounds and cuprous oxide have particularly excellent antifouling effects and are considered to be essential components for paints for fishing nets and ship bottoms. For example, U.S. Pat. No. 3,167,473 describes an antifouling agent using an organotin compound, which is called "polymer type". This antifouling agent has an organotin-containing group in the side chain of the copolymer, and is hydrolyzed in slightly alkaline seawater to release an organotin compound, exhibiting an antifouling effect and being hydrolyzed at the same time. Since the copolymer itself becomes water-soluble and dissolves in seawater, an active surface can always be maintained without leaving a resin residue layer. Japanese Patent Application Laid-Open No. 60-231771 discloses an organic-containing copolymer used in combination with an organic tin compound or a cuprous oxide for the purpose of promoting the dissolution of a physiologically active substance. A method using a hydrolyzable silyl (meth) acrylate such as tributylsilyl acrylate or triphenylsilyl (meth) acrylate as a part of the monomer is described. [0007] However, these antifouling agents have a problem in that they have poor storage stability and, particularly when used in combination with cuprous oxide, will gel within a few days. Moreover, these antifouling agents contain heavy metals and hydrolyzable organotin-containing groups, and are therefore highly toxic. In particular, organotin compounds are highly irritating and cause inflammation when touching the skin. In addition, there were serious problems such as marine pollution due to runoff into seawater, generation of malformed fish, and accumulation in the human body due to ecological enrichment. [0008] To cope with the above-mentioned problems, for example, Japanese Patent Application Laid-Open No. Sho.
In the publication, without using an organotin-containing copolymer,
A bottom paint exhibiting an antifouling effect is described. This hull bottom paint is composed of a poison and a self-polishing polymer, and the polymer monomer is tris (4-methyl-2).
Hydrolyzable silyl (meth) acrylates, such as -pentoxy) silyl acrylate, are described. However, in this hull bottom paint, the self-polishing polymer only acts as a poisonous supply system (del-ivery system) and has no antifouling property itself, so that a poisonous component is essential. In this ship bottom paint, the basic principle of antifouling of killing aquatic organisms attached by poison is the same as the conventional antifouling agent,
Serious environmental problems could not be avoided. In addition, when cuprous oxide is used as a poison, there is a problem that the preservation stability is poor and gelation occurs within a few days. [0010] Furthermore, the tris (4
-Methyl-2-pentoxy) silyl acrylate has a hydrolyzable property in both of the two bonds between the silicon atom and the alkoxy bond and between the silicon atom and the ester bond. There was also a problem that it became difficult to control the solubility of the compound. It is an object of the present invention to provide a copolymer for an antifouling coating material which does not contain an organotin-containing polymer and does not adversely affect marine ecosystems. The present inventors have focused on the self-polishing property of a copolymer defined by the following specific formula. The present invention has been accomplished by finding a copolymer having excellent antifouling property and good storage stability even without the above. That is, the copolymer for an antifouling coating material of the present invention has a self-polishing effect in which the silyl group of the side chain of the copolymer represented by the following general formula is released by hydrolysis, and then the copolymer itself becomes water-soluble. And exhibits an antifouling property. (Wherein, R 1 is a hydrogen atom or a methyl group, R 2 , R 3 ,
R 4 represents a monovalent hydrocarbon group selected from the group consisting of an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group, and a phenyl group), at least one unsaturated triorganosilyl monomer represented by the following formula: And a tin-free copolymer obtained by polymerizing at least one organic monomer selected from (meth) acrylic and vinyl compounds and having a degree of polymerization not exceeding 190. . The copolymer used in the present invention is a characteristic component in the present invention, and exhibits an appropriate hydrolyzability by selecting an organic group bonded to a silicon atom of a triorganosilyl group, and exhibits a water-soluble property in water. Since it gradually hydrolyzes to increase its hydrophilicity, it shows a controlled solubility property in water. Such a copolymer can be obtained by polymerizing one or more triorganosilyl monomers and one or more organic monomers to a degree of polymerization not exceeding 190. Can be The composition ratio of the unsaturated triorganosilyl monomer and the organic monomer is not particularly limited, but preferably the amount of the unsaturated triorganosilyl monomer is 10 to 10.
It is in the range of 95% by weight, more preferably 20-70% by weight. By setting the amount of the unsaturated triorganosilyl monomer in the above range, particularly good hydrolysis rate and coating film properties can be obtained, and good antifouling power can be maintained for a long period of time. In the unsaturated triorganosilyl monomer which is one of the starting materials of the copolymer, R 1 is a hydrogen atom or a methyl group, and R 2 , R 3 and R 4 each have 1 to 18 carbon atoms. An independent monovalent hydrocarbon group selected from a linear or branched alkyl group, a cycloalkyl group and a phenyl group. As this alkyl group,
Examples of a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a myristyl group, a stearyl group and the like, and examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group. . In order to have moderate hydrolyzability and thereby control the slow solubility of the coating material in water, R 2 ,
It is preferable that at least one of R 3 and R 4 has 4 or more carbon atoms. Such unsaturated triorganosilyl monomers include dimethylbutylsilyl acrylate, dimethylhexylsilyl acrylate, dimethyloctylsilyl acrylate, dimethyldecylsilyl acrylate, dimethyldodecylsilyl acrylate, dimethylcyclohexylsilyl acrylate and dimethylphenylsilyl. Acrylate, dimethyldibutylsilyl acrylate, ethyldibutylsilyl acrylate, dibutylhexylsilyl acrylate, dibutylphenylsilyl acrylate, tributylsilyl acrylate, triphenylsilyl acrylate, and the like; and methacrylate corresponding thereto are exemplified. Among them, the hydrolysis rate is slow, the synthesis is easy, and the film-forming property is good, because R 2 , such as dimethylhexylsilyl (meth) acrylate and dimethyldecylsilyl (meth) acrylate, R 3 and R 4 in which two are methyl groups and the remainder is a long-chain alkyl group having 6 or more carbon atoms are excellent, but have a controlled hydrolysis rate in water and obtain a moderate slow solubility. For this purpose, tributylsilyl (meth) acrylate is preferred. The organic monomer as the other starting material of the copolymer is selected from (meth) acrylic and vinyl compounds. Examples of the (meth) acrylic compound include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate (the above alkyl group may be linear or branched), 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate Dimethylaminoethyl acrylate, acrylamide, acrylonitrile, and the like; and methacrylic compounds corresponding thereto. Examples of the vinyl compound include vinyl acetate, vinyl chloride, vinyl methyl ether, vinyl propyl ether, vinyl isobutyl ether, and vinyl pyrrolidrin. Etc. are exemplified. The polymerization is carried out, for example, by mixing an unsaturated triorganosilyl monomer and an organic monomer in the presence of an organic solvent and using a polymerization initiator. The organic solvent is for controlling the polymerization and preventing the formation of a gel during the reaction, and includes a hydrocarbon solvent such as benzene, toluene and xylene; an ester solvent such as ethyl acetate and butyl acetate; Examples thereof include alcohol solvents such as methanol and ethanol; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; and aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide. The amount of the organic solvent is preferably from 20 to 1,000 parts by weight, more preferably from 50 to 500 parts by weight, based on 100 parts by weight of the total of the monomers. By setting the amount of the organic solvent within the above range, particularly good controllability of the reaction and simplification of the production process can be achieved. Examples of the polymerization initiator include organic peroxides such as benzoyl peroxide, t-butyl perbenzoate, methyl ethyl ketone peroxide and cumene hydroperoxide, and azo compounds such as azobisisobutyronitrile. The amount of the polymerization initiator is generally 0.01 to 10 parts by weight based on 100 parts by weight of the total amount of the monomers. The polymerization conditions are not particularly limited, but it is preferably carried out in a nitrogen stream. In general, the polymerization is carried out at a temperature of 60 to 120 ° C when the polymerization initiator is an organic peroxide, and at 45 to 100 ° C when the polymerization initiator is an azo compound. Will be The coating material using the above specific copolymer of the present invention can be obtained by mixing the above copolymer alone or, if necessary, a pigment, an organic solvent, a thixotropic agent and the like. Since the target of the antifouling treatment is as diverse as underwater structures, fishing nets, ship bottoms, etc., the blending ratio is not particularly limited, but by setting the blending amount of the copolymer within the above range, particularly good coating film forming property and workability are achieved. Property is obtained. Examples of the pigment include seawater inactive pigments such as red iron oxide, titanium white, talc, silica, calcium carbonate and barium sulfate, and seawater reactive pigments such as zinc oxide and calcium oxide. Combinations of more than one species are acceptable. As the organic solvent, those similar to those used in the polymerization step for obtaining the copolymer described above are used. Examples of the thixotropic material include bentonite, polyethylene oxide and amide compounds. The present invention will be described below with reference to examples and comparative examples. The parts in the following examples indicate parts by weight. <Synthesis of Copolymer> A reactor equipped with a cooler, a stirrer, and a thermometer was charged with 300 parts of xylene, and 120 parts of dimethylhexylsilyl methacrylate, 180 parts of methyl methacrylate were added thereto.
And 2 parts of azobisisobutyronitrile,
And the mixture was heated and stirred for 8 hours to carry out polymerization. After cooling to room temperature, 66 parts of ethyl acetate was added to obtain a pale yellow transparent copolymer solution V-1. V-1 had a viscosity at 25 ° C. of 480 cP and a solid content of 44.8%. In the same manner except that V-1 and the organic solvent after polymerization were not added, the light yellow transparent copolymer solutions V-2 to V-2 were prepared from the organic solvents, monomers and reaction initiators shown in Table 1. V
-7 was obtained. The viscosity and solid content of the obtained copolymer solution are as shown in Table 1. In addition, the number which shows the compounding quantity in a table | surface represents a part (the same hereafter). Further, a copolymer having a low polymerization degree (H-1) and a copolymer having a high polymerization degree (H-2) were synthesized as follows. First, 300 parts of xylene was charged into a reaction vessel equipped with a cooler, a stirrer, and a thermometer, and 144 parts of tributylsilyl methacrylate and 15 parts of methyl methacrylate were added thereto.
6 parts, 6 parts of n-octylmercaptan and 6 parts of azobisisobutyronitrile were added, and the mixture was heated and stirred at 95 ° C. for 8 hours, and then cooled to room temperature to obtain a colorless and transparent polymer having a low polymerization degree. A combined solution H-1 was obtained. H-1 of 2
The viscosity at 5 ° C. is 48 cP, and the solid concentration is 47.4%.
Met. Further, 300 parts of xylene was charged into a reaction vessel equipped with a condenser, a stirrer and a thermometer, and 144 parts of tributylsilyl methacrylate, 156 parts of methyl methacrylate and 0.1 part of azobisisobutyronitrile were added.
6 parts were added, polymerization was carried out by heating and stirring at 80 ° C. for 8 hours, and then cooled to room temperature to obtain a colorless and transparent high-polymerization degree copolymer solution H-2. H-2 had a viscosity at 25 ° C. of 1760 cP and a solid content of 49.9%. From the amount of each monomer charged and the yield of the copolymer, it was confirmed that substantially all of the monomers had been polymerized. Table 1 shows the GPC method of each of the above copolymers (column: TSK-GEL G4000HXL, manufactured by Toyoso Co., Ltd.).
-G2000HXL, solvent: tetrahydrofuran, converted to polystyrene) (number average molecular weight (Mn)), and the degree of polymerization calculated from Mn and the charged composition of the monomer at the time of copolymer synthesis obtained by the GPC method. [Table 1] <Examples 1 to 10, Reference Examples 1 to 2, Comparative Examples 1 to 4 and Comparative Examples 6 to 7> Using the copolymer solution obtained as described above, a stain-resistant coating material was prepared. 2 was prepared. Also,
As Comparative Examples 1 and 2, antifouling paints using varnishes A and B shown in Table 3 consisting of a copolymer of cuprous oxide, tributyltin methacrylate and methyl methacrylate were prepared according to the formulations shown in Table 4. Comparative Examples 3 and 4
The antifouling paint using the conventional cuprous oxide was prepared according to the formulation shown in Table 4. Further, as Reference Examples 1 and 2, antifouling coating materials were prepared using the copolymer solution H-1 according to the formulation shown in Table 2. Comparative Examples 6 to
As No. 7, an antifouling coating material was prepared using the copolymer solution H-2 according to the formulation shown in Table 2. [Table 2] [Table 3] [Table 4] Using the antifouling coating materials and the antifouling paints prepared as described above, a test of the degree of wear of the coating film and the adhesion of aquatic organisms was performed in the following manner. <Degree of Consumption of Coating Film> Each of the antifouling coating materials and antifouling paints of Examples 1 to 10, Reference Examples 1 to 2, Comparative Examples 1 to 4 and Comparative Examples 6 to 7 were respectively 70 × 150 Apply to a × 2mm rigid vinyl chloride plate with an applicator so that the dry film thickness becomes 100 μm, attach it to a rotating drum placed in seawater, and rotate at a peripheral speed of 10 knots to reduce the consumable film thickness for one month. It was measured. Table 5 shows the results.
Shown in <Adhesiveness of aquatic organisms> The antifouling coating materials and antifouling paints of Examples 1 to 10, Reference Examples 1 to 2, Comparative Examples 1 to 4 and Comparative Examples 6 to 7 were respectively used as antirust paints. A sample was prepared by applying the resulting composition to a 100 × 300 × 3 mm copper plate coated with such that the dry film thickness was 150 to 200 μm. Each of these samples and an untreated sample as Comparative Example 5 were submerged in the sea off Hiroshima Bay and Miyajima, and the area of attachment of aquatic organisms was examined every six months. Table 6 shows the adhesion area of each sample in percentage. [Table 5] [Table 6] <Adhesiveness of aquatic organisms> A mesh in which the antifouling coating materials and the antifouling paints of Examples 1 and 5 and Comparative Examples 1 and 4 were respectively attached to a 50 × 50 cm polyvinyl chloride resin frame. A sample was prepared by dip coating a polyester fishing net having a size of 7 knots. These samples and an untreated sample as Comparative Example 5 were each submerged in the sea of Toyama Bay, and the state of attachment of aquatic organisms was checked every two months. Table 7 shows the results. [Table 7] As shown by the results of each test, the antifouling coating material using the copolymer of the present invention exhibits stable antifouling properties over a long period of time. The copolymer for an antifouling coating material of the present invention has an improved hydrophilicity by hydrolyzing a triorganosilyl group in a side chain, and has a controlled solubility in water, that is, self-polishing. As a result, excellent antifouling effect can be exhibited without using an organic tin compound or an organic tin-containing copolymer which affects the environment. Therefore, the copolymer for an antifouling coating material of the present invention is effective in preventing contamination by aquatic organisms such as underwater structures, fishing nets, and ship bottoms.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 信宏 群馬県太田市西新町133番地 東芝シリ コーン株式会社内 (72)発明者 栗田 明嗣 群馬県太田市西新町133番地 東芝シリ コーン株式会社内 (72)発明者 畑中 正行 群馬県太田市西新町133番地 東芝シリ コーン株式会社内 (56)参考文献 特表 昭60−500452(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09D 143/04 C08F 220/10 C08F 230/08 C09D 5/14 C09D 133/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuhiro Saito 133 Nishishinmachi, Ota City, Gunma Prefecture Toshiba Siri Cone Co., Ltd. 72) Inventor Masayuki Hatanaka 133 Nishishinmachi, Ota-shi, Gunma Toshiba Silicon Cone Co., Ltd. (56) References Tables Sho 60-500452 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) C09D 143/04 C08F 220/10 C08F 230/08 C09D 5/14 C09D 133/04

Claims (1)

(57)【特許請求の範囲】 1.下記一般式 (式中、R1 は水素原子またはメチル基、R2 、R3
4 はそれぞれ炭素数1〜18のアルキル基、シクロア
ルキル基およびフェニル基からなる群より選ばれる1価
の炭化水素基を示す)で表される少なくとも1種の不飽
和トリオルガノシリル単量体と、(メタ)アクリル系お
よびビニル系化合物から選ばれる少なくとも1種の有機
単量体とを重合させて得られる重合度が190を超えな
いスズを含有しない共重合体からなる防汚コーティング
材用共重合体。 2.R2 、R3 、R4 がいずれもがブチル基である請求
項1記載の防汚コーティング材用共重合体。 3.R2 、R3 、R4 のうち2個がメチル基で、残余が
炭素数6以上のアルキル基である請求項1記載の防汚コ
ーティング材用共重合体。 4.共重合体の単量体のうち不飽和トリオルガノシリル
単量体の量が10〜95重量%である請求項1ないし請
求項3のいずれか1項記載の防汚コーティング材用共重
合体。
(57) [Claims] The following general formula (Wherein, R 1 is a hydrogen atom or a methyl group, R 2 , R 3 ,
R 4 represents a monovalent hydrocarbon group selected from the group consisting of an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group, and a phenyl group), at least one unsaturated triorganosilyl monomer represented by the following formula: And a polymer containing at least one organic monomer selected from (meth) acrylic and vinyl compounds and having a degree of polymerization of not more than 190 and containing no tin-containing copolymer for an antifouling coating material. Copolymer. 2. 2. The copolymer for an antifouling coating material according to claim 1, wherein R 2 , R 3 and R 4 are all butyl groups. 3. 2. The copolymer for an antifouling coating material according to claim 1, wherein two of R 2 , R 3 and R 4 are methyl groups, and the remainder is an alkyl group having 6 or more carbon atoms. 4. The copolymer for an antifouling coating material according to any one of claims 1 to 3, wherein the amount of the unsaturated triorganosilyl monomer among the monomers of the copolymer is 10 to 95% by weight.
JP10116616A 1998-04-27 1998-04-27 Copolymer for antifouling coating material Expired - Lifetime JP3053081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10116616A JP3053081B2 (en) 1998-04-27 1998-04-27 Copolymer for antifouling coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10116616A JP3053081B2 (en) 1998-04-27 1998-04-27 Copolymer for antifouling coating material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6258168A Division JP2833493B2 (en) 1994-10-24 1994-10-24 Antifouling coating material

Publications (2)

Publication Number Publication Date
JPH1143642A JPH1143642A (en) 1999-02-16
JP3053081B2 true JP3053081B2 (en) 2000-06-19

Family

ID=14691599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10116616A Expired - Lifetime JP3053081B2 (en) 1998-04-27 1998-04-27 Copolymer for antifouling coating material

Country Status (1)

Country Link
JP (1) JP3053081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498264B2 (en) 2001-03-06 2002-12-24 Shin-Etsu Chemical Co., Ltd. Silyl (meth)acrylates having bulky substituent group and preparation thereof
EP2182000A1 (en) 2008-10-29 2010-05-05 Shin-Etsu Chemical Co., Ltd. Silyl (meth)acrylate compound containing a siloxy group having a bulky substituent and its production method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227111A1 (en) * 1999-07-21 2002-07-31 Yoshitomi Fine Chemicals, Ltd. Triphenylboron-containing polymers and use thereof
FR2836473B1 (en) * 2002-02-26 2004-07-30 Atofina PROCESS FOR THE MANUFACTURE OF ORGANOACYLOXYSILANES
JP5278040B2 (en) * 2009-02-27 2013-09-04 信越化学工業株式会社 Siloxy group-containing silyl (meth) acrylate compound having bulky substituent and method for producing the same
KR20220152341A (en) 2017-01-25 2022-11-15 닛토 가세이 가부시끼 가이샤 Copolymer for antifouling coating composition, antifouling coating composition, antifouling coating film formed from said composition, coated object having said coating film in surface, and antifouling treatment method for forming said coating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498264B2 (en) 2001-03-06 2002-12-24 Shin-Etsu Chemical Co., Ltd. Silyl (meth)acrylates having bulky substituent group and preparation thereof
EP2182000A1 (en) 2008-10-29 2010-05-05 Shin-Etsu Chemical Co., Ltd. Silyl (meth)acrylate compound containing a siloxy group having a bulky substituent and its production method

Also Published As

Publication number Publication date
JPH1143642A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
JP3282904B2 (en) Antifouling paint composition
JPH10168350A (en) Antifouling coating composition
WO2015012148A1 (en) Antifouling coating composition, copolymer for antifouling coating composition, antifouling coating film formed using the composition, coated object having the coating film on surface, and method of antifouling treatment for forming the coating film
JP3053081B2 (en) Copolymer for antifouling coating material
JPH0768467B2 (en) Antifouling paint
JP3483524B2 (en) Metal-containing resin composition and antifouling paint composition
JP3396349B2 (en) Biofouling prevention coating composition
JPH0582865B2 (en)
JP2833493B2 (en) Antifouling coating material
JP4154344B2 (en) Coating composition and copolymer
JPH11116857A (en) Coating materiel composition
JP2606692B2 (en) Antifouling paint
JP2651167B2 (en) Antifouling paint
JP3455671B2 (en) Antifouling paint composition
JP3273039B2 (en) Antifouling paint composition
JP3282905B2 (en) Antifouling paint composition
JP2009256471A (en) Coating composition and copolymer
JP2514217B2 (en) Antifouling coating material
JP4846093B2 (en) Method for producing metal-containing copolymer
JP4154345B2 (en) Coating composition and copolymer
JPH0781101B2 (en) Water repellent antifouling paint composition
JPH073190A (en) Antifouling coating composition
JPH0711175A (en) Antifouling coating composition
JPH06346002A (en) Composition for antifouling coating
JP2001026729A (en) Antifouling coating material composition, antifouling coating film formed from the composition, antifouling using the composition and hull of ship or underwater structure coated with the coating film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000321

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term