JP3048806U - Thin laminated heatsink - Google Patents

Thin laminated heatsink

Info

Publication number
JP3048806U
JP3048806U JP1997010004U JP1000497U JP3048806U JP 3048806 U JP3048806 U JP 3048806U JP 1997010004 U JP1997010004 U JP 1997010004U JP 1000497 U JP1000497 U JP 1000497U JP 3048806 U JP3048806 U JP 3048806U
Authority
JP
Japan
Prior art keywords
heat
thin
flakes
dissipating
radiator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1997010004U
Other languages
Japanese (ja)
Inventor
清 松 郭
Original Assignee
郭 清松
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郭 清松 filed Critical 郭 清松
Priority to JP1997010004U priority Critical patent/JP3048806U/en
Application granted granted Critical
Publication of JP3048806U publication Critical patent/JP3048806U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

(57)【要約】 【課題】 構造が簡単で、製造が便利な、抜群に放熱面
積が広く、且つ放熱効率が高い薄片積層式放熱器を提供
する。 【解決手段】 複数の大、小面積異なる平面放熱薄片
(31,32,81,82)を交互に重畳積層してひれ
部(33,83)及び重畳部(34,84)を形成し、
該重畳部(34,84)がその発熱体(4)と接触して
いる箇所より該発熱体(4)の熱を吸収して該ひれ部
(33,83)へ伝導し、該ひれ部(33,83)が該
重畳部(34,84)からの伝導熱を放散するように構
成する。
PROBLEM TO BE SOLVED: To provide a laminated thin-film radiator which has a simple structure, is easy to manufacture, has an extremely large heat radiation area, and has high heat radiation efficiency. SOLUTION: A plurality of large-sized and small-area flat heat-dissipating flakes (31, 32, 81, 82) are alternately stacked and laminated to form fins (33, 83) and overlapped portions (34, 84).
The heat of the heating element (4) is absorbed from a portion where the overlapping portion (34, 84) is in contact with the heating element (4), and is conducted to the fin portions (33, 83). 33, 83) is configured to dissipate the conduction heat from the overlapping portion (34, 84).

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the invention belongs]

本考案は熱伝導型放熱器に関し、特に大、小面積が異なる複数の平面放熱薄片 を交互に接触積層して、ひれ部及び重畳部を形成した薄片積層式放熱器に関する 。 The present invention relates to a heat conduction type radiator, and more particularly, to a lamella and a laminated radiator in which a plurality of planar radiators having different large and small areas are alternately contact-laminated to form a fin portion and a superimposed portion.

【0002】[0002]

【従来の技術】[Prior art]

現在、市場で見受けられる熱伝導型放熱器は、ほとんどがダイキャスト或いは 押出成型によって造られた放熱器1であって(図11に示す如く)、一般に熱伝 導型放熱器の放熱効果の優劣は、材料特性およびその加工構造等の要素と関連が あるほか、主として放熱器の放熱面積の大小によって決まり、簡単に言うと、同 一規格サイズの下では、放熱器の放熱面積が大きければ大きいほどその放熱効果 が高く、逆の場合だと放熱効果が低い。 At present, most heat conduction radiators found on the market are radiators 1 made by die-casting or extrusion molding (as shown in FIG. 11). In addition to being related to factors such as the material characteristics and its processing structure, it is mainly determined by the size of the heat dissipation area of the radiator.In short, under the same standard size, the larger the heat dissipation area of the radiator, the larger The higher the heat radiation effect, the lower the heat radiation effect.

【0003】 そして、上記押出成型、或いはダイキャスト、若しくは機械切削によるアルミ 放熱器も、伝統の金属加工態様の制限を受けて、その増加できる放熱面積に一定 の限度がある。 上述の問題点を解決するために、同一放熱面積の下で、放熱器に扇風機を付設 すれば、より高い放熱効率を図れるが、そうするとコストが増加し、放熱装置全 体の容積が大きくなると共に、扇風機は何れは補修、修理の手間がかかる上、そ の作動に必ず電源を供給しなければならないので、現今の軽い、薄いことが求め られる電子機器としては好ましくない。したがって、もしも放熱器の放熱面積を 増加できれば、扇風機の設置を省ける場合が多くなり、放熱器の大きな問題点が 解決される。[0003] Also, the aluminum radiator formed by the extrusion molding, the die casting, or the mechanical cutting has a certain limit in the heat radiation area which can be increased due to the limitation of the traditional metal working mode. If the fan is attached to the radiator under the same radiating area to solve the above-mentioned problem, higher radiating efficiency can be achieved, but this will increase the cost and increase the volume of the radiating device as a whole. However, electric fans require time and effort to repair and repair, and power must be supplied for their operation, which is not desirable as an electronic device that needs to be light and thin at present. Therefore, if the heat radiation area of the radiator can be increased, the installation of the electric fan can be omitted in many cases, and the major problem of the radiator is solved.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the invention]

上記従来の放熱器における問題点に鑑み、本考案は、構造が簡単で、製造が便 利な、抜群に放熱面積が広く、且つ放熱効率が高い薄片積層式放熱器を提供する ことを目的とする。 In view of the above-mentioned problems of the conventional radiator, an object of the present invention is to provide a thin-layer laminated radiator that has a simple structure, is easy to manufacture, has an extremely large heat radiation area, and has high heat radiation efficiency. I do.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するため、本考案は、複数の大、小面積異なる平面放熱薄片を 交互に重畳積層してひれ部及び重畳部を形成し、該重畳部がその発熱体と接触し ている箇所から該発熱体の熱を吸収して該ひれ部へ伝導し、該ひれ部が該重畳部 からの伝導熱を放散するように構成される。 In order to achieve the above object, the present invention provides a method for forming a fin and a superposed portion by alternately superposing and stacking a plurality of large and small-area planar heat-dissipating flakes, and forming a fin and a superposed portion in contact with the heating element. And the heat of the heating element is absorbed and conducted to the fin, and the fin is configured to dissipate the conduction heat from the overlapping portion.

【0006】 そして、上記複数の平面放熱薄片を直立状、若しくは上、下水平状に重畳積層 してみたり、上記各平面放熱薄片のひれ部にそれぞれ適当な配列に複数の排気孔 を開設して、それぞれの重畳部にそれぞれ通孔を設けたり、或いは、上記平面放 熱薄片をアルミ金属薄片で形成するようにして、上記各平面放熱薄片の重畳部適 所にそれぞれ結合孔を設け、該結合孔に螺締部材或いはリベット部材を通して該 平面放熱薄片を螺締結合或いはリベット結合するようにしたり、または、上記各 平面放熱薄片の重畳部を合金材料により炉内溶接して結合させるようにして、上 記重畳積層して結合完成された平面放熱薄片の積層体両端外側面にそれぞれ固持 部材を取付けて、該固持部材に形成された結合孔に上記螺締部材或いはリベット 部材を同時に通して結合させることにより、上記平面放熱薄片の積層体を堅固に 固持するようにしたりすると一層好ましくなる。[0006] Then, the plurality of planar heat-dissipating flakes are superposed and stacked in an upright shape or in an upper or lower horizontal shape. Then, a through hole is provided in each overlapping portion, or a coupling hole is provided in an appropriate position of the overlapping portion of each of the flat heat dissipation flakes such that the flat heat dissipation flake is formed of an aluminum metal flake. The flat heat-dissipating flakes may be screwed or riveted through a screwing member or a rivet member through the coupling hole, or the superposed portions of the flat heat-dissipating flakes may be welded in a furnace with an alloy material and joined. A fixing member is attached to each of the outer surfaces of both ends of the laminated body of the planar heat-dissipating lamella, which is completed by the above-mentioned superimposed lamination, and the screwing member or the rivet portion is inserted into a coupling hole formed in the fixing member. It is more preferable that the laminate of the planar heat-dissipating lamellas be firmly held by simultaneously passing and joining the members.

【0007】 上記のように構成された本考案は、三片以上の複数の長、短異なる平面放熱薄 片を直立状に、或いは大、小異なる複数の平面放熱薄片を上、下水平状に交互に 重畳積層してひれ部及び重畳部を形成し、該ひれ部が少なくとも一つ以上の放熱 間隙を具えるように構成しているので、限られた一定の利用可能な空間において 、放熱薄片の厚さを薄くしてひれ部のひれ数を多くし、放熱面積を増大させて優 れた放熱効果を得ることができる。また、複数の平面放熱薄片を交互に重畳積層 して組立られることから、簡単に製造することができ、放熱器の造形を変えたい 時は、平面放熱薄片の形状を変えればよいので、迅速便利に設計することができ る。そして、上記のように平面放熱薄片の厚さを薄くして放熱面積を倍増させる ことができるので、発熱体の発生熱量が極めて高い場合以外は、扇風機を付設す る必要がなく、扇風機の付設したことに伴う欠点の生ずるのを避けることができ る。In the present invention configured as described above, a plurality of three or more pieces of different long and short plane heat radiating pieces are arranged in an upright state, or a plurality of large and small different plane heat radiating pieces are formed in an upper and lower horizontal state. The fins and the overlapped portions are alternately superimposed and laminated to form a fin and an overlapped portion, and the fins have at least one heat radiation gap. The thickness of the fins can be reduced to increase the number of fins at the fins, and the heat radiation area can be increased to obtain an excellent heat radiation effect. In addition, it is easy to manufacture because it is assembled by alternately stacking a plurality of plane heat dissipation flakes. If you want to change the shape of the radiator, you can change the shape of the plane heat dissipation flakes, which is quick and convenient. It can be designed as follows. Since the heat dissipation area can be doubled by reducing the thickness of the flat heat dissipation flakes as described above, it is not necessary to install a fan unless the heat generated by the heating element is extremely high. The disadvantages associated with doing so can be avoided.

【0008】[0008]

【考案の実施の形態】[Embodiment of the invention]

以下、本考案を実施の形態に基づいて具体的に説明するが、本考案はこの例の みに限定されない。 本考案の薄片積層式放熱器は、少なくとも三片の平面放熱薄片を具えて、それ ら平面放熱薄片は互いに接触積層してひれ部及び重畳部を形成し、以下にその接 触積層方式、結合方式及び機能等について具体的に説明をする。 Hereinafter, the present invention will be specifically described based on embodiments, but the present invention is not limited to only this example. The laminated radiator of the present invention comprises at least three planar radiating fins, and the planar radiating lamellas are contact-laminated with each other to form a fin and a superposed part. The method and function will be specifically described.

【0009】 先ず、本考案の第1の実施例について述べると、該薄片積層式放熱器の薄片積 層方式は、各薄片を互いに直立状に接触積層して、次に三種の結合方式、例えば 合金材料による炉内溶接結合、螺締結合、及びリベット結合の何れかの方式によ り結合させるのであり、勿論、上記三種の結合方式の他に、その他の結合方式で 結合させるようにしてもよい。First, the first embodiment of the present invention will be described. In the lamella lamination method of the lamella lamination type radiator, the lamellas are stacked in contact with each other in an upright state, and then three types of bonding systems, for example, The connection is made by any of the following methods: furnace welding connection, screw connection, and rivet connection using an alloy material. Of course, in addition to the above three types of connection, other types of connection may be used. Good.

【0010】 図1に示すように、本考案の薄片積層式放熱器3は、セットの長め平面放熱薄 片31及びセットの短め平面放熱薄片32を含み、それら長め、短め平面放熱薄 片31,32を交互に面と面を接触配列させ、図2に示す如く、それらの接触配 列を完成した後に、合金材料による炉内溶接結合(従来技術に属するので、ここ では説明を省略する)により結合して、本考案の薄片積層式放熱器3にひれ部3 3及び重畳部34を形成することができる。したがって、該長め、短め平面放熱 薄片31,32の厚さを変えることにより、本考案の薄片積層式放熱器3のひれ 部33のひれ数を加減して、並びにひれ間の距離を変えることができ、即ち、一 定の規格の下で、上記長め、短め平面放熱薄片31,32の厚さを薄くすればす るほど、そのひれ部33のひれ数が多くなり、放熱面積がより増大して、放熱効 果もより向上するのである。As shown in FIG. 1, the laminated thin radiator 3 of the present invention includes a long flat heat radiating piece 31 and a short flat heat radiating piece 32 of a set. 32 are alternately arranged face-to-face, and as shown in FIG. 2, after the contact arrangement is completed, in-furnace welding connection using an alloy material (because it belongs to the prior art, description thereof is omitted here). In combination, the fins 33 and the overlapping portion 34 can be formed on the laminated radiator 3 of the present invention. Therefore, by changing the thickness of the long and short plane heat radiating thin pieces 31 and 32, it is possible to adjust the number of fins of the fins 33 of the laminated thin radiator 3 of the present invention and change the distance between the fins. That is, under a certain standard, the thinner the longer and shorter plane heat dissipation flakes 31 and 32 are, the greater the number of fins of the fins 33 and the more the heat dissipation area is increased. In addition, the heat dissipation effect is further improved.

【0011】 ここで注意すべきことは、上記長め、短め平面放熱薄片31,32を互いに接 触配列して結合させる際、該重畳部34の底部341を丁度一平面に形成すべき で、本考案の薄片積層式放熱器3を密接に発熱体4に接触させて、発熱体4の発 熱をむらなく該薄片積層式放熱器3を介して放出することができる。 また、本考案の薄片積層式放熱器3の結合方式は上記のように合金材料による 炉内溶接結合方式の他に、螺締部材5により結合することもでき(図3に示す如 く)、各平面放熱薄片31,32の重畳部位にそれぞれ互いに対応連通して該螺 締部材5が貫挿螺締できる結合孔36を貫設する。該螺締部材5はねじロッド5 1及びナット52を含み、該ねじロッド51を該結合孔36に貫挿して、その先 端にナット52を螺合する螺締方式により上記平面放熱薄片31,32を積層重 畳して結合させることができる。当然、螺締方式の他にリベット部材の結合方式 を採用してもよく、図4に示すように、リベット6を上記対応連通した結合孔3 6に貫挿して、上記平面放熱薄片31,32を積層重畳状にリベット結合するこ ともできる。It should be noted here that when the longer and shorter flat heat radiating strips 31 and 32 are brought into contact with each other and joined together, the bottom 341 of the overlapping portion 34 should be formed in one plane. The invented thin laminated radiator 3 can be brought into close contact with the heating element 4 so that the heat generated by the heating element 4 can be uniformly discharged through the laminated thin radiator 3. The joining method of the laminated laminated radiator 3 of the present invention can be joined by a screwing member 5 in addition to the in-furnace welding method using an alloy material as described above (as shown in FIG. 3). Coupling holes 36 through which the screwing members 5 can be inserted and screwed are provided through the overlapping portions of the planar heat radiation flakes 31 and 32 so as to correspond to each other. The screwing member 5 includes a screw rod 51 and a nut 52. The screw rod 51 is inserted through the coupling hole 36, and the nut 52 is screwed to the end of the screw rod 51 by a screwing method. 32 can be stacked and combined. Naturally, in addition to the screwing method, a connecting method of a rivet member may be adopted. As shown in FIG. 4, a rivet 6 is inserted through the corresponding communicating hole 36 to form the flat heat-dissipating flakes 31, 32. Can be rivet-bonded in a stacked manner.

【0012】 さらに、本考案の薄片積層式放熱器3における平面放熱薄片31,32の重畳 結合をより堅固にするため、該薄片積層式放熱器3の両端外側面にそれぞれ固持 部材7を設けてもよく、図5に示すように、各固持部材7は上記平面放熱薄片3 1,32の結合孔36と対応する結合孔71を開設されて、上記ねじロッド51 を順に上記結合孔71,36,71に貫挿し、且つ該ねじロッド51先端にナッ ト52を螺合して、螺締方式(或いはリベット方式)により上記平面放熱薄片3 1,32及び該固持部材7をそれぞれ所定部位に位置付けて結合させることがで きる。Further, in order to make the superimposed connection of the planar heat radiating strips 31 and 32 in the laminated radiator 3 of the present invention more firm, fixing members 7 are provided on both outer surfaces of both ends of the laminated radiator 3. Alternatively, as shown in FIG. 5, each fixing member 7 is provided with a coupling hole 71 corresponding to the coupling hole 36 of the flat heat dissipation lamellas 31 and 32, and the screw rod 51 is sequentially connected to the coupling holes 71 and 36. , 71, and a nut 52 is screwed to the tip of the screw rod 51, and the flat heat dissipating thin plates 31, 32 and the fixing member 7 are respectively positioned at predetermined positions by a screwing method (or a rivet method). Can be combined.

【0013】 上記説明において、すでに長め、短め平面放熱薄片31,32の厚さを加減し て放熱器の放熱面積を増大させる技術に言及したが、本考案の薄片積層式放熱器 3は長め、短め平面放熱薄片31,32を交互に重畳積層して形成しているので 、結合する前に、各長め平面放熱薄片31に適当な高さ範囲内に若干列の排気孔 311(図6に示す如く)を設けてもよく、空気との接触面積が増加するほか、 優れた通気性を具えて、放熱効果がより向上する。勿論、排気孔311を具えた 該薄片積層式放熱器3の両端外側面に接して、それぞれ固持部材7(図7に示す 如く)を装設してよく、それぞれ平面放熱薄片31,32をより牢固に固定させ ることができる。In the above description, the technique of increasing the heat radiation area of the radiator by adjusting the thickness of the longer and shorter planar heat radiation flakes 31 and 32 has been mentioned. Since the short plane heat dissipation flakes 31 and 32 are formed by alternately overlapping and laminating them, a few rows of exhaust holes 311 (shown in FIG. ) May be provided to increase the contact area with the air and to provide excellent air permeability, thereby further improving the heat radiation effect. Of course, fixing members 7 (as shown in FIG. 7) may be provided in contact with the outer surfaces of both ends of the laminated radiator 3 having the exhaust holes 311, respectively. It can be firmly fixed.

【0014】 上記を受けて、本考案の薄片積層式放熱器3は重畳積層方式によって形成され るので、各放熱薄片の形状を実際の必要に応じて改変してもよく、図8に示すよ うに、そのうちの長め平面放熱薄片37を凸字状に形成して、他方の短め平面放 熱薄片38を横長の長方形状に設けることにより、薄片積層式放熱器3の外観を 変化させることができる。In view of the above, the laminated radiator 3 of the present invention is formed by the superimposed laminating method, so that the shape of each radiating thin plate may be modified according to actual needs, as shown in FIG. As described above, by forming the longer flat heat dissipation thin piece 37 in a convex shape and providing the other short flat heat dissipation thin piece 38 in a horizontally long rectangular shape, the external appearance of the laminated thin-film radiator 3 can be changed. .

【0015】 次に、本考案の第2の実施例について述べる。この第2の実施例において、そ れぞれ大、小平面放熱薄片81,82は上、下水平に互いに接触積層して形成さ れ、その結合方式には合金材料による炉内溶接結合、螺締結合及びリベット結合 等の三種の結合方式があり、無論、その他の適当な方式で結合してもよい。上記 三種の結合方式はみな第1の実施例と同様のため、本実施例は平面放熱薄片の重 畳積層方式についてだけ説明をする。Next, a second embodiment of the present invention will be described. In the second embodiment, the large and small planar heat dissipating lamellas 81 and 82 are formed by contacting and laminating the upper and lower horizontal parts, respectively. There are three types of connection methods such as a fastening connection and a rivet connection, and of course, other appropriate methods may be used. Since the above three types of connection are all the same as those in the first embodiment, this embodiment will be described only with respect to the stacking and stacking method of the flat heat radiation thin pieces.

【0016】 図9に示す如く、本実施例の薄片積層式放熱器8における平面放熱薄片81, 82の重畳積層は、上、下水平積層方式を採用しており、即ち、大、小平面放熱 薄片81,82を上、下水平に交互接触積層して形成され、これによって形成さ れた薄片積層式放熱器8は左、右両ひれ部83及び重畳部84を具えて、その最 低重畳部84底面を発熱体4に接触させることにより該発熱体4の発熱を伝導放 熱させるのである。As shown in FIG. 9, the superposed lamination of the planar heat-dissipating lamellas 81 and 82 in the thin-layer laminated radiator 8 of the present embodiment employs an upper and lower horizontal laminating method, that is, a large and small planar heat radiator. The lamellas 81 and 82 are formed by alternately contacting and laminating the lamellas 81 and 82 horizontally in the upper and lower directions. By bringing the bottom surface of the portion 84 into contact with the heating element 4, the heat generated by the heating element 4 is conducted and released.

【0017】 また、図10に示す如く、上記第2の実施例の薄片積層式放熱器8における重 畳部84に、さらに上下向きに通孔85を貫設して、該通孔85内に他形態の発 熱体(図示せず)を収容させるようにしてもよい。 上記各実施例の薄片積層式放熱器3,8のそれぞれ平面放熱薄片をアルミ金属 薄片で形成するのがもっとも好ましく、且つ第2の実施例で採用している平面放 熱薄片81,82は円形状或いは楕円形状であってもよい。As shown in FIG. 10, a through-hole 85 is further vertically formed through the overlapping portion 84 in the thin-layer laminated radiator 8 of the second embodiment, and the inside of the through-hole 85 is formed. Another form of heat generator (not shown) may be accommodated. It is most preferable that each of the planar heat-dissipating flakes of each of the thin-film laminated radiators 3 and 8 of each of the above embodiments is formed of an aluminum metal flake, and the planar heat-dissipating flakes 81 and 82 used in the second embodiment are circular. It may be shaped or elliptical.

【0018】[0018]

【考案の効果】[Effect of the invention]

上記説明から分かるように、本考案は次に述べる利点・効果がある。 1.複数の平面放熱薄片を重畳積層して組立てられたので、平面放熱薄片の厚 さを適当に変えて、ひれ部のひれ数及びひれとひれとの間隙を改変することがで き、即ち、一定の利用可能な空間において、放熱薄片の厚さを薄くしてひれ部の ひれ数を多くすることにより、放熱面積を増大させて優れた放熱効果を得ること ができる。 As can be seen from the above description, the present invention has the following advantages and effects. 1. Since a plurality of plane heat dissipation flakes were assembled by superimposing and stacking, the thickness of the plane heat dissipation flakes can be appropriately changed to modify the number of fins in the fin portion and the gap between the fins, that is, a constant value. In the available space, by increasing the number of fins at the fins by reducing the thickness of the heat radiation flakes, it is possible to increase the heat radiation area and obtain an excellent heat radiation effect.

【0019】 2.上記のように、複数の平面放熱薄片を交互に重畳積層して組立てられるの で、製造が簡単であるゆえ、製造時間を短縮して生産コストを低くすることがで きる。 3.同様に、説明の平面放熱薄片を重畳積層して組立てられるので、放熱器の 造形を変える時は、平面放熱薄片の形状を変えればよいので、設計上、迅速、便 利である。[0019] 2. As described above, since a plurality of planar heat-dissipating flakes can be assembled by alternately superimposing and laminating them, the production is simple, so that the production time can be shortened and the production cost can be reduced. 3. Similarly, since the planar heat radiation flakes described above can be assembled by being superimposed and laminated, when the shape of the radiator is changed, the shape of the plane heat radiation flakes may be changed, which is quick and convenient in design.

【0020】 4.簡単に放熱面積を倍増させることができるので、発熱体の発生熱量が極め て高い場合を除いては、扇風機を付設する必要がなく、扇風機の付設に伴う欠点 が生ずるのを免れることができる。[0020] 4. Since the heat radiation area can be easily doubled, there is no need to provide a fan unless the amount of heat generated by the heating element is extremely high, and it is possible to avoid the drawbacks associated with the provision of the fan.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案における比較的好ましい第1の実施例の
立体分解図である。
FIG. 1 is a three-dimensional exploded view of a first preferred embodiment of the present invention.

【図2】上記第1の実施例における組立結合の立体図で
ある。
FIG. 2 is a three-dimensional view of an assembly connection in the first embodiment.

【図3】上記第1の実施例におけるもう一つの組立結合
の立体図である。
FIG. 3 is a perspective view of another assembly connection in the first embodiment.

【図4】上記第1の実施例における又一つの組立結合の
立体図である。
FIG. 4 is a perspective view of another assembly connection in the first embodiment.

【図5】上記第1の実施例における更にもう一つの組立
結合の立体図である。
FIG. 5 is a three-dimensional view of yet another assembly connection in the first embodiment.

【図6】上記第1の実施例が排気孔を具えた表示図であ
る。
FIG. 6 is a schematic view of the first embodiment having an exhaust hole.

【図7】上記第1の実施例が排気孔を具えて更に固持部
材により牢固に挟持された状態表示図である。
FIG. 7 is a view showing a state in which the first embodiment is provided with an exhaust hole and firmly held by a holding member.

【図8】上記第1の実施例における長め、短め平面放熱
薄片をそれぞれ異なる形状に設けて積層結合した状態表
示図である。
FIG. 8 is a view showing a state in which long and short plane heat-dissipating flakes in the first embodiment are provided in different shapes and laminated and connected.

【図9】本考案における比較的好ましい第2の実施例の
組立態様側視断面図である。
FIG. 9 is a side sectional view showing a second preferred embodiment of the present invention in an assembled state.

【図10】上記第2の実施例におけるもう一つの組立態
様側視断面図である。
FIG. 10 is a side sectional view of another assembling mode in the second embodiment.

【図11】従来のアルミ押出し成型による放熱器の側視
表示図である。
FIG. 11 is a side view of a radiator formed by conventional aluminum extrusion molding.

【符号の説明】[Explanation of symbols]

31,32,81,82 平面放熱薄片 311 排気孔 33,83 ひれ部 34,84 重畳部 36,71 結合孔 7 固持部材 85 通孔 31, 32, 81, 82 Planar heat-dissipating flake 311 Exhaust hole 33, 83 Fin part 34, 84 Superposed part 36, 71 Coupling hole 7 Fixed member 85 Through hole

Claims (9)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】 複数の大、小面積異なる平面放熱薄片を
交互に重畳積層してひれ部及び重畳部を形成し、該重畳
部がその発熱体と接触している箇所より該発熱体の熱を
吸収して該ひれ部へ伝導し、該ひれ部が該重畳部からの
伝導熱を放散するようにしてなる薄片積層式放熱器。
1. A fin portion and an overlap portion are formed by alternately stacking a plurality of large and small area heat-dissipating flakes having different areas, and the heat of the heating element is determined from a position where the overlapping portion is in contact with the heating element. And the fin portion dissipates the conduction heat from the overlapping portion to absorb heat from the fin portion.
【請求項2】 上記複数の平面放熱薄片を直立状に重畳
積層してなる請求項1に記載の薄片積層式放熱器。
2. The thin-film laminated radiator according to claim 1, wherein the plurality of planar heat-radiating thin films are stacked in an upright manner.
【請求項3】 上記複数の平面放熱薄片を上、下水平状
に重畳積層してなる請求項1に記載の薄片積層式放熱
器。
3. The thin-film laminated radiator according to claim 1, wherein the plurality of planar heat-radiating thin films are stacked vertically and horizontally.
【請求項4】 上記各平面放熱薄片のひれ部にそれぞれ
適当な配列に複数の排気孔を開設してなる請求項1に記
載の薄片積層式放熱器。
4. The thin-plate laminated radiator according to claim 1, wherein a plurality of exhaust holes are formed in a fin portion of each of the planar heat-dissipating flakes in an appropriate arrangement.
【請求項5】 上記各平面放熱薄片の重畳部にそれぞれ
通孔を設けてなる請求項1に記載の薄片積層式放熱器。
5. The thin-layer laminated radiator according to claim 1, wherein a through-hole is provided in each of the overlapping portions of the planar heat-dissipating flakes.
【請求項6】 上記平面放熱薄片をアルミ金属薄片で形
成するようにしてなる請求項1に記載の薄片積層式放熱
器。
6. The thin-film laminated radiator according to claim 1, wherein said planar heat-radiating flakes are formed of aluminum metal flakes.
【請求項7】 上記各平面放熱薄片の重畳部の適当部位
にそれぞれ結合孔を設けて、該結合孔に螺締部材或いは
リベット部材を通して該平面放熱薄片を螺締結合或いは
リベット結合するようにしてなる請求項1に記載の薄片
積層式放熱器。
7. A connecting hole is provided at an appropriate portion of the overlapping portion of each of the flat heat radiating strips, and the flat heat radiating strip is screwed or riveted through a screwing member or a rivet member through the connecting hole. The thin-film laminated radiator according to claim 1.
【請求項8】 上記各平面放熱薄片の重畳部を合金材料
により炉内溶接して結合させるようにしてなる請求項1
に記載の薄片積層式放熱器。
8. The superposed portion of each of the planar heat-dissipating flakes is joined by welding in a furnace with an alloy material.
2. The thin-layer laminated radiator according to 1.
【請求項9】 上記重畳積層して結合完成した平面放熱
薄片の積層体両端外側面にそれぞれ固持部材を取付け
て、該固持部材に形成された結合孔に上記螺締部材或い
はリベット部材を同時に通して結合させることにより、
上記平面放熱薄片の積層体を牢固に固持するようにして
なる請求項7または8に記載の薄片積層式放熱器。
9. A fixing member is attached to each of the outer surfaces of both ends of the laminated body of the planar heat-radiating lamella, which is completed by superimposing and joining, and the screwing member or the rivet member is simultaneously passed through the coupling hole formed in the holding member. By combining
9. The thin-layer laminated radiator according to claim 7, wherein the flat heat-dissipating laminate is firmly held.
JP1997010004U 1997-11-12 1997-11-12 Thin laminated heatsink Expired - Lifetime JP3048806U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1997010004U JP3048806U (en) 1997-11-12 1997-11-12 Thin laminated heatsink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1997010004U JP3048806U (en) 1997-11-12 1997-11-12 Thin laminated heatsink

Publications (1)

Publication Number Publication Date
JP3048806U true JP3048806U (en) 1998-05-29

Family

ID=43183075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1997010004U Expired - Lifetime JP3048806U (en) 1997-11-12 1997-11-12 Thin laminated heatsink

Country Status (1)

Country Link
JP (1) JP3048806U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067241A (en) * 2018-10-25 2020-04-30 セイコーエプソン株式会社 Cooling device and projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067241A (en) * 2018-10-25 2020-04-30 セイコーエプソン株式会社 Cooling device and projector

Similar Documents

Publication Publication Date Title
TW201315960A (en) Laminated heat sinks
US6862183B2 (en) Composite fins for heat sinks
US10600721B2 (en) Heat exchanger for dual-sided cooling of electronic modules
JP2011091088A (en) Heat radiation structure of heating element and semiconductor device using the heat radiation structure
JP6299618B2 (en) Power converter and manufacturing method thereof
JP3048806U (en) Thin laminated heatsink
JP5212125B2 (en) Power device heat sink
JP2001102786A (en) Radiator of electronic part and manufacturing method therefor
JP3010602U (en) Electronic component cooler
TWI620497B (en) Folding-type heat dissipation device and method thereof
US6636423B2 (en) Composite fins for heat sinks
CN206539557U (en) A kind of wind cooling oil cooler structure
JP2003234443A (en) Heat sink with fin
JP2584791Y2 (en) Heat sink structure
JP4151265B2 (en) Radiator
JP2012169529A (en) Radiator
CN221468189U (en) Heat radiation module
CN211629080U (en) Double-substrate radiator
CN209642538U (en) Radiator and converter
JP3141344U (en) Junction structure of radiator of electronic equipment
CN110461130B (en) Mosaic type heat dissipation structure and manufacturing method thereof
JP3040058U (en) heatsink
JP2001094022A (en) Plate-type heat pipe
TWI524172B (en) Heat sink assembly and manufacturing method thereof
JPH09113058A (en) Electronic cooling type cooling unit