JP3046128B2 - Method for producing hard surface-treated original sheet with excellent workability - Google Patents

Method for producing hard surface-treated original sheet with excellent workability

Info

Publication number
JP3046128B2
JP3046128B2 JP4027471A JP2747192A JP3046128B2 JP 3046128 B2 JP3046128 B2 JP 3046128B2 JP 4027471 A JP4027471 A JP 4027471A JP 2747192 A JP2747192 A JP 2747192A JP 3046128 B2 JP3046128 B2 JP 3046128B2
Authority
JP
Japan
Prior art keywords
strength
present
annealing
steel
original sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4027471A
Other languages
Japanese (ja)
Other versions
JPH05195073A (en
Inventor
輝昭 山田
昌彦 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4027471A priority Critical patent/JP3046128B2/en
Publication of JPH05195073A publication Critical patent/JPH05195073A/en
Application granted granted Critical
Publication of JP3046128B2 publication Critical patent/JP3046128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は錫メッキやクロム酸処理
などの表面処理が施される硬質表面処理原板において、
製缶加工後焼き付け塗装処理がなされた後の鋼板の耐力
が56kgf/mm2以上である加工性に優れた硬質表
面処理用原板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an original hard surface-treated sheet subjected to a surface treatment such as tin plating or chromic acid treatment.
The present invention relates to a method for producing an original plate for hard surface treatment excellent in workability, in which the proof strength of a steel sheet after baking coating processing after can-making processing is 56 kgf / mm 2 or more.

【0002】[0002]

【従来の技術】錫メッキやクロム酸処理などの表面処理
が施される硬質表面処理原板は、20〜40%の調質圧
延を施したままの状態で使用するDR−8,9,10と
称されるいわゆるDCR材がある。この硬質材は絞り
缶、再絞り缶等に使用される。これらの缶の強度(内圧
に対する強度)はDCRによって鋼板の強度を上昇させ
ることによってより薄い板厚でも確保出来るようになっ
ている。市販されているDCR材は、硬度又は耐力規格
が定められており、DR−8,9,10(耐力で56,
63,70kgf/mm2)がある。これらは、連続焼
鈍法や箱焼鈍法で製造された冷延鋼板に20〜40%の
冷間圧延を施し所定の強度に調整されて製造される。こ
の様にして製造されたDR−8,9,10は、20〜4
0%の冷間圧延が施されたままであるので延性が殆ど無
くElで1%未満しかない。従って、加工性が要求され
る用途には使用出来ないという問題がある。又、20〜
40%の調質圧延を施すための特別な調質圧延機も必要
である等の問題がある。
2. Description of the Related Art A hard surface-treated original sheet subjected to a surface treatment such as tin plating or chromic acid treatment is used for DR-8, 9, 10 which is used while being subjected to a temper rolling of 20 to 40%. There is a so-called DCR material. This hard material is used for drawn cans, redrawn cans and the like. The strength (strength against internal pressure) of these cans can be ensured even with a smaller thickness by increasing the strength of the steel sheet by DCR. DCR materials on the market have hardness or proof stress standards, and are DR-8, 9, 10 (56, proof stress,
63, 70 kgf / mm 2 ). These are manufactured by performing cold rolling of 20 to 40% on a cold-rolled steel sheet manufactured by a continuous annealing method or a box annealing method and adjusting the strength to a predetermined strength. DR-8, 9, 10 manufactured in this way are 20 to 4
Since 0% cold rolling is still performed, there is almost no ductility and El is less than 1%. Therefore, there is a problem that it cannot be used for applications requiring workability. Also, 20
There is a problem that a special temper rolling mill for performing a temper rolling of 40% is required.

【0003】この問題を解決する方法としては、本発明
者等は、(A)連続焼鈍時に再結晶焼鈍後の冷却速度を
速くし焼き入れ組織を造り強度を上げ調質圧延率を通常
の範囲とする方法、(B)製缶後の塗装焼き付け時の熱
を利用して固溶のC,Nによる焼付硬化能を利用し強度
上昇を図る方法、(C)両者の組み合わせの方法がある
と考え従来法に付いて調査した。この(A)、(B)、
(C)の方法に関して、連続焼鈍方法が焼鈍時間の20
sec未満の極めてコンパクトで経済性に優れた方法に
付いての従来の方法を調査した結果、(B),(C)の
方法は見つからなかったが、(A)の方法については、
特公昭40−3020号公報、特公昭46−19781
号公報がある。
As a method for solving this problem, the present inventors have proposed (A) to increase the cooling rate after recrystallization annealing during continuous annealing to form a quenched structure, increase the strength, and reduce the temper rolling ratio to a normal range. (B) a method of increasing the strength by using the baking hardening ability of solid solution C and N by using heat at the time of paint baking after can-making, and (C) a method of combining both. The conventional method was investigated. This (A), (B),
Concerning the method (C), the continuous annealing method has an annealing time of 20 hours.
As a result of investigating a conventional method for an extremely compact and economical method in less than sec, the methods (B) and (C) were not found, but for the method (A),
Japanese Patent Publication No. 40-3020, Japanese Patent Publication No. 46-19781
There is an official gazette.

【0004】特公昭40−3020号公報は、コンパク
トな連続焼鈍方法ではないが、740〜850℃に加熱
後この温度から150〜250℃の温度範囲まで急冷し
その温度範囲で過時効処理を施し目的の強度まで硬化さ
せる方法である。明細書によれば200℃で過時効処理
を施す場合は約30分もの過時効処理時間が必要と明記
されており、そのため、連続焼鈍方式では150〜25
0℃の温度内で巻き取ることで過時効処理を行なわしめ
る方法も提案されている。この方式では巻き取り後のコ
イルの最外周近傍と最内周近傍部がコイルの中心部に比
べ冷却速度が速くなる結果過時効処理効果がなくなり強
度が低下するという欠点がある。更に、連続焼鈍方式の
最も大きな長所は、焼鈍工程と他の工程との連続化であ
り、最近の連続焼鈍設備は調質圧延機とも連続化されよ
り高い生産性が得られるようになっているが、この方式
では30分もの過時効処理が必要なため調質圧延機との
連続化が不可能であるという大きな問題もある。
Japanese Patent Publication No. 40-3020 discloses a method which is not a compact continuous annealing method. However, after heating to 740 to 850 ° C., it is rapidly cooled from this temperature to a temperature range of 150 to 250 ° C., and overaged in that temperature range. This is a method of curing to the desired strength. According to the specification, it is specified that when the overaging treatment is performed at 200 ° C., an overaging treatment time of about 30 minutes is required. Therefore, the continuous annealing method requires 150 to 25 minutes.
A method has been proposed in which overaging treatment is performed by winding at a temperature of 0 ° C. This method has a disadvantage that the cooling rate is higher in the vicinity of the outermost periphery and the vicinity of the innermost periphery of the coil after winding than in the center of the coil, so that the effect of overaging treatment is lost and the strength is reduced. Further, the greatest advantage of the continuous annealing method is the continuity of the annealing step and other steps, and the recent continuous annealing equipment is also continuous with the temper rolling mill so that higher productivity can be obtained. However, this method has a serious problem that continuation with a temper rolling mill is impossible because over-aging treatment is required for 30 minutes.

【0005】特公昭46−19781号公報は、焼鈍後
の調質圧延を省略することと、非合金の低炭素ブリキ原
板用の鋼を用い、キンク及びリューダース線の無い硬質
の極薄板を製造することを目的としている。この方法の
問題は、先ず、焼鈍温度が840℃〜900℃のような
鋼板が極めて軟化し連続焼鈍炉内の通板が困難となるよ
うな極めて高い温度域も含んでいること、また、焼き付
け塗装処理後の強度に付いての調査結果が報告されてい
ないが、下記に示すように本発明者等の追跡調査結果で
は強度が未達であり、この方法では本願の発明が目的と
する強度レベルの鋼板が得られないと判断されることで
ある。尚、この方法は、降伏点を低くする事によってキ
ンク及びリューダース線の無い硬質の極薄板を製造する
ことであり本願の方法は強度(塗装焼き付け処理後の
Y.P)を高くすることを目的としており、同公報とは
本質的に思想が異なる発明である。
Japanese Patent Publication No. 46-19781 discloses that a temper rolling after annealing is omitted, and a hard ultra-thin sheet without kink and Ruders wire is produced using a non-alloy steel for a low carbon tin plate. It is intended to be. The problem with this method is that, first, the steel sheet has an extremely high temperature range, such as 840 ° C. to 900 ° C., at which the steel sheet becomes extremely soft and difficult to pass through in a continuous annealing furnace. Although the results of the survey on the strength after the coating treatment have not been reported, the strength has not been reached in the follow-up survey results of the present inventors as shown below, and in this method, the strength intended by the present invention is not achieved. That is, it is determined that a steel sheet of a level cannot be obtained. This method is to produce a hard ultra-thin plate without kink and Luders wire by lowering the yield point, and the method of the present invention is to increase the strength (YP after paint baking). This is an invention whose purpose is essentially different from that of the publication.

【0006】本発明者等の追跡調査は、同公報の明細書
(FIG.2のb)のY.Pが56kgf/mmを越
えるものの代表例に付いて塗装焼き付け後の強度がどの
ようになるかに付いて調査してみた。調査は、特許請求
範囲外として図示されている焼鈍温度が750℃以下の
ものについて、同公報の第2図bの条件と同様に0.0
5%C,0.3%Mn量のA1−K鋼を用い同公報に準
じた条件でラボ実験で試作した鋼板を200℃×10分
の人工時効を行いY.Pを調査した。その結果、同公報
(FIG.2のb)の自然時効結果とは異なり逆に時効
軟化を起こし目的とする56kgf/mm以上の強度
は得られないことがわかった。
[0006] The follow-up survey by the present inventors is described in the specification of the gazette .
(FIG. 2b). Investigation was conducted on the typical strength of P exceeding 56 kgf / mm 2 to determine the strength after baking. Investigations were carried out for those having an annealing temperature of 750 ° C. or lower, which are indicated as out of the claims, in the same manner as in the condition of FIG.
A steel plate prototyped in a laboratory experiment using an A1-K steel having an amount of 5% C and 0.3% Mn under the conditions according to the same publication was subjected to artificial aging at 200 ° C. for 10 minutes, and Y. P was investigated. As a result, it was found that, contrary to the natural aging results of the same publication (FIG. 2b), aging softening occurred conversely, and the desired strength of 56 kgf / mm 2 or more could not be obtained.

【0007】以上のように、特公昭46−19781号
公報は、本発明の方法とは目的も異なるし又思想も異な
る。更に、明細書に記載されている調査結果、実施例か
らも同公報の方法では、本発明が目的とする鋼板の製造
は出来ないことがわかった。
[0007] As described above, Japanese Patent Publication No. 46-19781 has a different purpose and a different idea from the method of the present invention. Further, as a result of the investigation described in the specification, it was found from the examples that the method disclosed in the publication could not produce the steel sheet intended by the present invention.

【0008】尚、このように時効軟化することについ
て、本発明者等が検討した結果、焼鈍後の冷却が250
℃/sと極めて速いために非常に多くの固溶Cが残留し
200℃×10分の人工時効で少し大きめの炭化物とし
て析出する結果いわゆる時効軟化が起こることが、一
方、自然時効では大きな炭化物としては析出せず極めて
微細な不安定析出物が非常に多く析出するので強度UP
が生じ(FIG.2のb)の結果となったものとの考え
に達した。
As a result of studies by the present inventors on such aging softening, cooling after annealing is reduced by 250%.
° C / s, which is extremely fast, so that a large amount of solid solution C remains and precipitates as slightly larger carbides by artificial aging at 200 ° C for 10 minutes, so that so-called aging softening may occur. , And extremely fine unstable precipitates are precipitated in a very large amount.
Occurred (FIG. 2b).

【0009】以上の如く、DCRによる方法では加工性
が悪く、DCRによらない方法では生産性が悪かった
り、塗装焼き付け後の耐圧強度が低いなどの問題があ
り、何れの方法でも、本願の発明の方法が目的とするよ
うな、製缶加工後焼き付け塗装処理がなされた後の鋼板
の耐力が56kgf/mm2以上である加工性に優れた
硬質表面処理用原板を生産性よく製造する方法はまだな
いのである。
As described above, the method using DCR has poor workability, and the method not using DCR has problems such as low productivity and low pressure resistance after baking paint. The method of producing a hard surface treatment original sheet with excellent workability, in which the yield strength of the steel sheet subjected to baking coating after can-making processing is 56 kgf / mm 2 or more, which is the object of the method described above, is high in productivity. Not yet.

【0010】[0010]

【発明が解決しようとする課題】本発明で解決しようと
する課題は、製缶加工後焼き付け塗装処理がなされた後
の鋼板の耐力が56kgf/mm2以上である加工性に
優れた硬質表面処理用原板を生産性よく製造する方法を
提供する事である。
The problem to be solved by the present invention is to provide a hard surface treatment excellent in workability in which the proof strength of the steel sheet after baking coating after can-making is 56 kgf / mm 2 or more. An object of the present invention is to provide a method for manufacturing a master plate with high productivity.

【0011】[0011]

【課題を解決するための手段】本発明者等は、設備費を
大きく軽減し得る極めてコンパクトな連続焼鈍設備で上
記課題を解決する方法に付いて、成分含有量、熱延条
件、連続焼鈍条件について総合的に検討し、加工性の優
れた硬質表面処理原板の製造方法を見いだしたものであ
る。本発明の要旨は下記の通りである。重量%でC:
0.070〜0.200%,Si:≦0.30%,M
n:0.50〜1.50%,P≦0.030%,S:≦
0.025%,solAl:0.002〜0.100
%,N:≦0.0120%,残部不可避的不純物及び鉄
よりなる鋼片を、通常の熱間圧延条件で加熱、熱間圧延
を行い、巻き取り熱延鋼帯とし、冷間圧延を行い、その
後、連続焼鈍にて少なくとも500℃以上の温度域を3
00〜2000℃/sで730〜830℃に加熱しその
温度域で2秒以下滞在せしめ、100〜500℃/sの
冷却速度で冷却し焼鈍した後、0.5〜5.0%の調質
圧延を施す事を特徴とする加工性に優れた硬質表面処理
原板の製造方法
Means for Solving the Problems The inventors of the present invention have proposed a method for solving the above-mentioned problems with an extremely compact continuous annealing equipment capable of greatly reducing equipment costs. Were comprehensively studied, and a method for producing a hard surface-treated original sheet having excellent workability was found. The gist of the present invention is as follows. C in weight%:
0.070 to 0.200%, Si: ≦ 0.30%, M
n: 0.50 to 1.50%, P ≦ 0.030%, S: ≦
0.025%, solAl: 0.002 to 0.100
%, N: ≦ 0.0120%, steel slab consisting of unavoidable impurities and iron is heated and hot-rolled under ordinary hot rolling conditions to form a rolled hot-rolled steel strip and cold-rolled. After that, the temperature range of at least 500 ° C.
Heat at 00-2000 ° C / s to 730-830 ° C, stay in that temperature range for 2 seconds or less, cool at a cooling rate of 100-500 ° C / s, anneal, and adjust to 0.5-5.0% For producing a hard surface-treated original sheet having excellent workability, characterized by performing temper rolling.

【0012】[0012]

【作用】以下に本発明について詳細に述べる。本発明者
等は、製缶加工後焼き付け塗装処理がなされた後の鋼板
の耐力が56kgf/mm2以上である加工性に優れた
硬質表面処理用原板を生産性よく製造する方法につい
て、成分含有量、熱延条件、連続焼鈍条件について総合
的に検討し、鋼の成分の内C含有量を0.070〜
0.200%,Mn含有量を0.50〜2.0%とした
上で、連続焼鈍の加熱に於いて少なくとも500℃以
上の温度域を300〜2000℃/sで730〜830
℃に加熱その温度域で2秒以下滞在せしめること、再
結晶焼鈍後の冷却を100〜500℃/sの冷却速度で
冷却すること、を主ポイントとすることにより、極めて
コンパクトな連続焼鈍設備で、製缶加工後焼き付け塗装
処理がなされた後の鋼板の耐力が56kgf/mm2
上である加工性に優れた硬質表面処理用原板を生産性よ
く製造することが可能となることを見いだしたものであ
る。
The present invention will be described in detail below. The present inventors have studied a method for producing a hard work surface treatment original sheet having excellent yieldability with a yield strength of 56 kgf / mm 2 or more after baking coating treatment after can making processing with good productivity. Amount, hot rolling conditions and continuous annealing conditions were comprehensively studied, and the C content of the steel components was 0.070-
After setting the content of Mn to 0.200% and the Mn content to 0.50 to 2.0%, the temperature range of at least 500 ° C. or more in the continuous annealing heating is 730 to 830 at 300 to 2000 ° C./s.
With the main points of heating to 2 ° C. and staying in that temperature range for 2 seconds or less, and cooling after recrystallization annealing at a cooling rate of 100 to 500 ° C./s, the extremely compact continuous annealing equipment is used. It has been found that it is possible to produce a hard working surface original sheet having excellent workability with a yield strength of 56 kgf / mm 2 or more after baking coating treatment after can-making processing with good productivity. It is.

【0013】図1Aは、本発明のポイント,,の
効果を示した図である。C含有量が0.12%でMn含
有量を変化させたAl−K鋼を、熱間圧延時の巻き取り
温度を550℃とし、本発明の方法で製造した板厚が
0.17mmの冷間圧延後の鋼板を図1Bに示すヒート
サイクルで焼鈍を行い、1.0%の調質圧延を施し、表
面処理原板を製造し、2%の引張り歪を与えた後200
℃×10minのBH処理を行い、BH後のY.Pを調
査し、その結果を図1Aに示した。
FIG. 1A is a diagram showing the effects of the points 1 and 2 of the present invention. An Al-K steel having a C content of 0.12% and a Mn content changed was set to a winding temperature of 550 ° C during hot rolling, and a cold plate having a thickness of 0.17 mm manufactured by the method of the present invention was used. The steel sheet after the cold rolling is annealed by the heat cycle shown in FIG. 1B, subjected to a temper rolling of 1.0% to produce a surface-treated original sheet, and subjected to a tensile strain of 2%.
C. × 10 min. P was investigated and the results are shown in FIG. 1A.

【0014】図1Aから、鋼の成分の内特にMn含有
量を0.50以上とした上で、連続焼鈍の加熱に於い
て1000℃/sのような超急速加熱し、その温度域で
0.1secのような極短時間の保定後、300℃/
sの冷却速度で冷却することによって、比較サイクルの
ような徐加熱し均熱時間の長いサイクルに比べ大幅な強
度上昇が得られるという全く新しい知見が得られた。本
発明者等は、このことに付いて、得られた試料の組織を
調査した結果、本発明の範囲で造られたサンプルは比較
サイクルBに比べ微細で均一な複合組織となっているこ
とが判明し、これが本発明の方法で強度上昇がはかれる
原因であることがわかった。
From FIG. 1A, it is found that, in particular, when the Mn content among the steel components is set to 0.50 or more, ultra-rapid heating such as 1000 ° C./s is performed in the continuous annealing. After holding for a very short time such as 1 sec.
A completely new finding was obtained that by cooling at a cooling rate of s, a large increase in strength was obtained as compared with a cycle in which heating was performed slowly by gradually heating such as a comparative cycle. The present inventors investigated the structure of the obtained sample in connection with this, and as a result, it was found that the sample manufactured within the scope of the present invention had a finer and more uniform composite structure as compared with the comparative cycle B. It has been found that this is the cause of the increase in strength in the method of the present invention.

【0015】このような強度上昇がはかれる組織が得ら
れるメカニズムに付いては必ずしも充分に解明できてい
ないが、Mn量が0.5%以上且つC含有量がある程度
以上ある鋼の場合は、徐加熱焼鈍の場合は、温度が上昇
し2相域にはいるとCが拡散する時間が充分にあるため
α相とγ相の2相分離が充分に進行すると共にα相の粒
成長が起こるその結果、急冷によって強度上昇が可能な
γ相のボリュームが少なくなりサイクルBのように30
0℃/sのような急冷を行っても強度上昇が得られなく
なる。ところが、超急速加熱の場合は、Cが拡散する時
間が殆ど無いので2相分離が進まず粒成長も抑制され均
熱温度に到達した時点では微細均一でγ相のボリューム
も多い2相状態にあり、均熱時間が短ければその状態が
保たれ、その後の急冷によって強度の高い焼き入れ組織
のボリュームも多く微細で均一な複合組織となったと考
えられる。
The mechanism by which such a structure with increased strength is obtained has not been fully elucidated. However, in the case of a steel having an Mn content of 0.5% or more and a C content of at least a certain amount, the steel is gradually reduced. In the case of heat annealing, when the temperature rises and enters the two-phase region, C has sufficient time to diffuse, so that the two-phase separation of the α-phase and the γ-phase sufficiently proceeds and the α-phase grains grow. As a result, the volume of the γ phase, whose strength can be increased by quenching, decreases, and as in cycle B,
Even if rapid cooling such as 0 ° C./s is performed, no increase in strength can be obtained. However, in the case of ultra-rapid heating, there is almost no time for C to diffuse, so that two-phase separation does not proceed and grain growth is suppressed, and when the temperature reaches the soaking temperature, the two-phase state is finely uniform and has a large volume of γ phase. It is considered that if the soaking time is short, the state is maintained, and the quenching after that results in a fine and uniform composite structure with a large volume of a hardened structure having high strength.

【0016】又、図1Aからは、Mn含有量が0.3%
のように低い場合には、例え、連続焼鈍条件が本発明の
条件の方法であっても比較サイクルBとほぼ同等な強度
しか得られず、Mn含有量を0.50%以上にすること
の重要性がよくわかる。尚、図1Aに示す本発明範囲の
鋼の調圧後のElは7〜20%とDCR材の1%未満に
比べて極めて良好な特性値が得られた。
FIG. 1A shows that the Mn content is 0.3%.
When the continuous annealing condition is a method according to the present invention, only a strength approximately equal to that of the comparative cycle B is obtained, and the Mn content is set to 0.50% or more. The importance is clearly understood. In addition, El after pressure regulation of the steel in the range of the present invention shown in FIG. 1A was 7 to 20%, which was an extremely good characteristic value as compared with less than 1% of the DCR material.

【0017】以下に製造条件について詳細に述べる。C
は、前述のように強度を確保する上で重要な元素で、
0.07%未満では目標とする強度が得られなくなるの
で、0.07%を下限とした。又、0.20%超では、
強度が高くなり過ぎ加工性の劣化が著しくなるので0.
20%を上限値とした。
Hereinafter, the manufacturing conditions will be described in detail. C
Is an important element in securing strength as described above,
If it is less than 0.07%, the target strength cannot be obtained, so the lower limit was made 0.07%. If it exceeds 0.20%,
Since the strength becomes too high and the workability deteriorates significantly,
20% was made the upper limit.

【0018】Mn含有量は、前述のように強度を確保す
る上で重要な元素で、0.5%未満では目標とする強度
が得られなくなるので、0.50%を下限とした。又、
1.50%超では、強度が高くなり過ぎ加工性の劣化が
著しくなるので1.50%を上限値とした。
The Mn content is an important element for securing the strength as described above. If the Mn content is less than 0.5%, the desired strength cannot be obtained, so the lower limit is 0.50%. or,
If it exceeds 1.50%, the strength becomes too high and the workability deteriorates significantly, so 1.50% was made the upper limit.

【0019】Si,P,Sは、錫メッキ鋼板等の表面処
理鋼板のメッキ品質特に耐食性に大きく影響を及ぼし、
それぞれ、0.30%,0.03%,0.025%超に
なると耐食性が劣化するようになるのでそれぞれの上限
値を0.30%,0.03%,0.025%とした。
尚、これらの元素は少ないほど良好な耐食性を示すので
特に規制する必要がない。
Si, P, and S greatly affect the plating quality, particularly corrosion resistance, of a surface-treated steel sheet such as a tin-plated steel sheet.
When the content exceeds 0.30%, 0.03%, and 0.025%, respectively, the corrosion resistance deteriorates. Therefore, the respective upper limits are set to 0.30%, 0.03%, and 0.025%.
It should be noted that the smaller these elements are, the better the corrosion resistance is.

【0020】solAlは、脱酸剤として用いられ、
0.002%は残留するので下限値を0.002%とし
た。又、0.100%以上になると鋳造時に溶鋼の空気
酸化が起こり易くなり介在物量が増え、加工性や、メッ
キ品質をも劣化させるようになるので0.100%を上
限値とした。
SolAl is used as a deoxidizing agent,
Since 0.002% remains, the lower limit is set to 0.002%. On the other hand, when the content is 0.100% or more, air oxidation of molten steel tends to occur at the time of casting, the amount of inclusions increases, and the workability and the plating quality also deteriorate, so 0.100% was made the upper limit.

【0021】Nは、強化元素として利用できる有用な元
素であり必要に応じ添加すればよい。しかし、0.01
20%超含有すると鋳片に気泡が生じるようになるので
上限値を0.0120%とした。尚、Nはいくら少なく
とも、材質に悪影響を及ぼすこともなく、強度もC,M
n等で確保できるので特に規制する必要がない。
N is a useful element that can be used as a strengthening element, and may be added as needed. However, 0.01
If the content exceeds 20%, air bubbles will be generated in the slab, so the upper limit value is set to 0.0120%. Incidentally, N does not adversely affect the material at least, and the strength is C, M.
Since it can be secured by n or the like, there is no particular need to regulate.

【0022】熱延条件は、特に規制する必要がなく通常
の熱延条件でよい。尚、巻き取り温度は(以下C.Tと
記す)670℃未満の方が、熱延板のセメンタイト或い
はパーライト組織が細かく均一に分散するので、焼鈍板
の複合組織を均一で微細化するのに好都合となるので、
670℃未満の巻き取り温度の方が好ましい。冷間圧延
は、特に規制する必要がなく、通常表面処理原板を製造
する冷間圧延条件で行えばよい。
The hot rolling conditions do not need to be particularly restricted, and ordinary hot rolling conditions may be used. When the winding temperature is less than 670 ° C. (hereinafter referred to as CT), the cementite or pearlite structure of the hot-rolled sheet is finely and uniformly dispersed, so that the composite structure of the annealed sheet can be made uniform and fine. It will be convenient,
Winding temperatures below 670 ° C. are preferred. The cold rolling does not need to be particularly restricted, and may be performed under cold rolling conditions for producing a surface-treated original sheet.

【0023】連続焼鈍時の再結晶焼鈍の加熱速度は、本
発明の最も重要なポイントで、その効果並びにそのメカ
ニズムは先に推察した通りである。加熱速度が300℃
/s未満では超急速加熱効果が得られず目的とする強度
が得られなくなるので300℃/sを下限値とした。
尚、2000℃/s超の加熱速度ではあまりにも加熱速
度が速すぎるため加熱の到達温度の制御が不安定となり
安定した品質が得難くなるので2000℃/sを上限と
した。尚、この様な超急速加熱の効果は、種々の調査の
結果、少なくとも500℃以上の温度域を300℃/s
以上の加熱速度で行えば超急速加熱の効果が得られるこ
とがわかったので、少なくとも300℃/s以上の超急
速加熱を行う必要がある温度域を500℃以上とした。
The heating rate of the recrystallization annealing during the continuous annealing is the most important point of the present invention, and its effect and mechanism are as presumed above. Heating rate is 300 ℃
If it is less than / s, the ultra-rapid heating effect cannot be obtained and the desired strength cannot be obtained, so 300 ° C / s was set as the lower limit.
It should be noted that the heating rate exceeding 2000 ° C./s is too high, so that the control of the ultimate temperature of heating becomes unstable, and it becomes difficult to obtain stable quality. It should be noted that, as a result of various investigations, such an effect of the ultra-rapid heating can be performed at least in a temperature range of 500 ° C. or more by 300 ° C./s.
Since it was found that the effect of ultra-rapid heating can be obtained by performing the above-mentioned heating rate, the temperature range in which ultra-rapid heating of at least 300 ° C./s or more was required was set to 500 ° C. or more.

【0024】再結晶焼鈍時の焼鈍温度は、730℃未満
では強度確保に必要なγ相のボリュームが得られないの
で730℃を下限値とした。尚、焼鈍温度が830℃超
になると均熱帯を通過する時に鋼板が軟化し延び易くな
り通板性が悪くなるので830℃を上限値とした。
If the annealing temperature during recrystallization annealing is lower than 730 ° C., the volume of the γ phase required for securing the strength cannot be obtained, so the lower limit was set at 730 ° C. If the annealing temperature exceeds 830 ° C., the steel sheet softens and easily elongates when passing through the soaking zone, and the sheet passing property deteriorates. Therefore, 830 ° C. was set as the upper limit.

【0025】再結晶焼鈍時の均熱時間は、2.0sec
超ではαγの2相分離や粒成長が起こり軟質化するので
上限値を2.0secとした。尚、超急速加熱焼鈍では
均熱時間がなくとも再結晶は起き強度も確保できるので
均熱時間の下限値は規制する必要がない。
The soaking time during recrystallization annealing is 2.0 sec.
In the case of exceeding, two phase separation of αγ and grain growth and softening occur, so the upper limit was set to 2.0 sec. In the case of the ultra-rapid heating annealing, recrystallization occurs even if the soaking time is not required, and the strength can be secured. Therefore, it is not necessary to regulate the lower limit of the soaking time.

【0026】再結晶焼鈍後の冷却条件は、均熱時の微細
且つ均質なαγの2相状態から急冷によって強度の高い
微細で均質な複合組織を得るために必須な条件で、10
0℃/s未満では必要な強度が得られなくなるので下限
値を100℃/sとした。尚、500℃/s超では均一
な冷却が困難となりコイルの形状が悪くなるようになる
ので500℃/sを上限値とした。尚、急冷は、少なく
とも400℃まで100℃/s以上の冷却速度で行えば
所定の強度が得られるので必ずしも室温まで急冷する必
要はなく、400℃未満の温度域は放冷でも強制空冷で
も材質に殆ど影響を及ぼさないので特に規制しなかっ
た。
The cooling condition after the recrystallization annealing is an essential condition for obtaining a high-strength, fine and homogeneous composite structure by quenching from the fine and homogeneous αγ two-phase state during soaking.
If it is less than 0 ° C./s, the required strength cannot be obtained, so the lower limit was set to 100 ° C./s. If the temperature exceeds 500 ° C./s, uniform cooling becomes difficult and the shape of the coil becomes worse. The quenching is not necessarily required to be rapidly cooled to room temperature since a predetermined strength can be obtained if the quenching is performed at a cooling rate of 100 ° C./s or more up to at least 400 ° C. Was not particularly regulated as it had little effect on

【0027】調質圧延は、降伏点伸びを消去すると共に
形状を矯正するのに有効な手段で、0.5%以上の調質
圧延率が必要である。又、調質圧延率はY.Pを上昇さ
せるのには効果的な方法であるので必要に応じて調質圧
延率を増やせばよいが、5.0%超ではElの劣化が大
きくなるので上限値を5.0%とした。
Temper rolling is a means effective for eliminating the elongation at the yield point and correcting the shape, and requires a temper rolling ratio of 0.5% or more. The temper rolling rate is Y. Since it is an effective method for increasing P, the temper rolling reduction may be increased as necessary. However, if it exceeds 5.0%, the deterioration of El becomes large, so the upper limit value is set to 5.0%. .

【0028】[0028]

【実施例】以下に本発明の効果を実施例により説明す
る。表1に示す成分、熱延条件で2.0mmの熱延鋼帯
を製造し、冷間圧延した0.17mmの冷延鋼板を図1
Cに示すヒートサイクルで表2に示す条件で連続焼鈍を
行い、1.2%の調質圧延を施し、表面処理原板を得
た。得られた表面処理原板を引張り試験を行いEl値を
測定すると共に、得られた表面処理原板に2%の引張り
歪を与えた後、200℃×10minのBH処理を行
い、鋼板のY.Pを測定し、その結果を表2に示す。
EXAMPLES The effects of the present invention will be described below with reference to examples. A hot rolled steel strip of 2.0 mm was manufactured under the components and hot rolling conditions shown in Table 1 and a cold rolled 0.17 mm cold rolled steel sheet was prepared as shown in FIG.
Continuous annealing was performed under the conditions shown in Table 2 in the heat cycle shown in C, and temper rolling of 1.2% was performed to obtain a surface-treated original sheet. The obtained surface-treated original sheet was subjected to a tensile test to measure the El value, and 2% of tensile strain was applied to the obtained surface-treated original sheet. P was measured, and the results are shown in Table 2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】鋼Aは、Mn量が0.25%と低く外れた
従来例の成分範囲の製造条件のものである。鋼B,C,
D,Eは、本願の発明の方法の範囲内の製造条件のもの
で、鋼B,C,DはC,Mnを変化させた成分例のもの
で、鋼Eは本願の発明の方法の範囲でNを0.0098
%と多く添加した成分例のものである。
The steel A has a production condition in the composition range of the conventional example in which the Mn content is as low as 0.25%. Steel B, C,
D and E are manufacturing conditions within the range of the method of the present invention, steels B, C and D are examples of components in which C and Mn are changed, and steel E is a range of the method of the present invention. At 0.0098
%.

【0032】試料1,2,7,8は従来例又は比較例で
何れも目標とするBH後のY.Pが56kgf/mm2
未満で、本願の発明の方法が狙いとする缶の高い耐圧強
度が要求される用途には使用できない。試料3,4,
5,6は、本発明の方法の実施例で、何れも目標とする
BH後のY.Pが56kgf/mm2以上で且つ、El
も15.2〜20.3%と優れた特性値が得られ、本願
の発明の方法が狙いとする加工性が優れ且つ缶の高い耐
圧強度が要求される用途に適用できる鋼板が製造でき
た。
Samples 1, 2, 7, and 8 are conventional or comparative examples, each of which has a target Y.I. P is 56kgf / mm 2
If it is less than this, it cannot be used for applications requiring high pressure resistance of the can which is targeted by the method of the present invention. Samples 3, 4,
5 and 6 are examples of the method of the present invention. P is 56 kgf / mm 2 or more and El
As a result, an excellent characteristic value of 15.2 to 20.3% was obtained, and a steel sheet having excellent workability aimed at by the method of the present invention and applicable to applications requiring high pressure resistance of the can was produced. .

【0033】試料1は、Mn量が低く外れ且つ連続焼鈍
条件も従来の方法である従来例で、BH後のY.Pが3
8.5kgf/mm2と大幅に低い。試料2は、連続焼
鈍条件は本発明の方法であるが、Mn量が低く外れた比
較例で、BH後のY.Pが48.5kgf/mm2と低
い。この結果から明らかなように、Mn含有量を0.5
%以上に規制する事の重要性がよくわかる。
Sample 1 was a conventional example in which the amount of Mn was low and the continuous annealing condition was the conventional method. P is 3
It is as low as 8.5 kgf / mm 2 . Sample 2 is a comparative example in which the continuous annealing condition is the method of the present invention, but the Mn content is low. P is as low as 48.5 kgf / mm 2 . As is apparent from the results, the Mn content was 0.5
The importance of restricting the percentage to more than% is clearly understood.

【0034】試料3,4,5,6は、本発明の方法の実
施例で、試料3,4,5はC,Mn量を本発明の範囲内
で変化させた実施例で、試料6はN量を増やした実施例
である。何れも目標とするBH後のY.Pが56kgf
/mm2以上で且つ、Elも15.2〜20.3%優れ
た特性値が得られ、本願の発明の方法が狙いとする加工
性が優れ且つ缶の高い耐圧強度が要求される用途に適用
できる鋼板が製造できた。
Samples 3, 4, 5, and 6 are examples of the method of the present invention. Samples 3, 4, 5, and 5 are examples in which the amounts of C and Mn are changed within the range of the present invention. This is an embodiment in which the amount of N is increased. In each case, the target Y. P is 56kgf
/ Mm 2 or more and El is also 15.2 to 20.3% excellent characteristic value, and the method of the present invention is intended for applications requiring excellent workability and high pressure resistance of the can. Applicable steel plate was manufactured.

【0035】試料7,8は、比較例で、何れも供試鋼の
製造条件は本発明内であるが、試料7は連続焼鈍条件が
加熱速度、均熱時間、冷却速度が外れた比較例で、BH
後のY.Pが46.8kgf/mm2と低く、試料8は
連続焼鈍条件が冷却速度は本発明の範囲内であるが、加
熱速度、均熱時間が外れた比較例で、BH後のY.Pが
52.3kgf/mm2と低い。この結果から明らかな
ように、連続焼鈍の条件を本発明の範囲に規制する事の
重要性がよくわかる。以上の実施例から、焼鈍時間が約
3秒程度の極短時間の焼鈍で、加工性の優れ、缶の耐圧
強度の優れた鋼板の製造が可能となることがわかる。
Samples 7 and 8 are comparative examples, in which the production conditions of the test steel are within the present invention, but sample 7 is a comparative example in which the continuous annealing conditions are different from the heating rate, soaking time, and cooling rate. And BH
Later Y. P was as low as 46.8 kgf / mm 2, and Sample 8 was a comparative example in which the cooling rate was within the range of the present invention under the continuous annealing conditions, but the heating rate and soaking time were different. P is as low as 52.3 kgf / mm 2 . As is clear from these results, the importance of restricting the conditions of continuous annealing within the scope of the present invention is clearly understood. From the above examples, it can be seen that an extremely short annealing time of about 3 seconds makes it possible to produce a steel sheet having excellent workability and excellent pressure resistance of a can.

【0036】[0036]

【発明の効果】以上に本発明について詳細に説明した
が、本発明によれば、設備費を大きく軽減し得る極めて
コンパクトな連続焼鈍設備で、製缶加工後焼き付け塗装
処理がなされた後の鋼板の耐力が56kgf/mm2
上である加工性に優れた硬質表面処理用原板を生産性よ
く製造する事が可能となり、その工業的価値は大であ
る。
As described above, the present invention has been described in detail. According to the present invention, a very compact continuous annealing equipment capable of greatly reducing equipment costs, and a steel sheet which has been subjected to baking coating after can-making. It is possible to manufacture a hard surface treatment original plate excellent in workability having a yield strength of 56 kgf / mm 2 or more with high productivity, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】A:BH後のY.Pに及ぼす本発明の効果を示
す図、 B:図1Aの調査実験に用いた連続焼鈍のヒートサイク
ルを示す図、 C:実施例に用いた連続焼鈍のヒートサイクルを示す図
である。
FIG. 1. A: Y. after BH. 1B is a diagram showing the effect of the present invention on P, B: a diagram showing a heat cycle of continuous annealing used in the investigation experiment of FIG. 1A, and C: a diagram showing a heat cycle of continuous annealing used in Examples.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 9/46,8/02 C22C 38/00 - 38/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 9 / 46,8 / 02 C22C 38/00-38/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%でC:0.070〜0.200
%,Si:≦0.30%,Mn:0.50〜1.50
%,P:≦0.030%,S:≦0.025%,sol
Al:0.002〜0.100%,N:≦0.0120
%,残部不可避的不純物及び鉄よりなる鋼片を、通常の
熱間圧延条件で加熱、熱間圧延を行い、巻き取り熱延鋼
帯とし、冷間圧延を行い、その後、連続焼鈍にて少なく
とも500℃以上の温度域を300〜2000℃/sで
730〜830℃に加熱しその温度域で2秒以下滞在せ
しめ、100〜500℃/sの冷却速度で冷却し焼鈍し
た後、0.5〜5.0%の調質圧延を施す事を特徴とす
る加工性に優れた硬質表面処理原板の製造方法
1. C: 0.070 to 0.200% by weight
%, Si: ≦ 0.30%, Mn: 0.50 to 1.50
%, P: 0.030%, S: 0.025%, sol
Al: 0.002 to 0.100%, N: ≦ 0.0120
%, The balance of unavoidable impurities and iron slab is heated and hot-rolled under normal hot-rolling conditions to form a rolled hot-rolled steel strip, cold-rolled, and then continuously annealed at least. A temperature range of 500 ° C. or more is heated to 730 to 830 ° C. at 300 to 2000 ° C./s and kept for 2 seconds or less in the temperature range, cooled at a cooling rate of 100 to 500 ° C./s, and annealed. A method for producing a hard surface-treated original sheet having excellent workability, characterized in that temper rolling of up to 5.0% is performed.
JP4027471A 1992-01-20 1992-01-20 Method for producing hard surface-treated original sheet with excellent workability Expired - Fee Related JP3046128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4027471A JP3046128B2 (en) 1992-01-20 1992-01-20 Method for producing hard surface-treated original sheet with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4027471A JP3046128B2 (en) 1992-01-20 1992-01-20 Method for producing hard surface-treated original sheet with excellent workability

Publications (2)

Publication Number Publication Date
JPH05195073A JPH05195073A (en) 1993-08-03
JP3046128B2 true JP3046128B2 (en) 2000-05-29

Family

ID=12222032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4027471A Expired - Fee Related JP3046128B2 (en) 1992-01-20 1992-01-20 Method for producing hard surface-treated original sheet with excellent workability

Country Status (1)

Country Link
JP (1) JP3046128B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526483B2 (en) 2008-03-19 2014-06-18 Jfeスチール株式会社 Steel plate for high-strength can and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05195073A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JPH0823048B2 (en) Method for producing hot rolled steel sheet with excellent bake hardenability and workability
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP2682351B2 (en) Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging
JP2766693B2 (en) Manufacturing method of high ductility and high strength cold rolled steel sheet with small anisotropy
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JP3383017B2 (en) Method of manufacturing bake hardenable high strength cold rolled steel sheet with excellent workability
JPS583922A (en) Production of class t-3 tin plate of superior aging property
JPS631374B2 (en)
JP3046128B2 (en) Method for producing hard surface-treated original sheet with excellent workability
JPH09227947A (en) Manufacture of dead-soft low carbon steel sheet for can
JPH10130733A (en) Production of steel sheet high in baking hardenability and small in aging deterioration
JP3046145B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JP3369658B2 (en) High-strength and high-workability steel sheet for cans with excellent bake hardenability, aging resistance and non-earring properties, and method for producing the same
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP2745922B2 (en) Non-aging cold-rolled steel sheet for deep drawing with excellent bake hardenability and method for producing the same
CN109321840A (en) A kind of 280MPa level low alloy high-strength steel and its manufacturing method
JP3222239B2 (en) Hard surface-treated original sheet with high BH property and excellent workability
JPS6046167B2 (en) Method for manufacturing high-strength cold-rolled steel sheets for deep scratching that are non-aging and have excellent paint-baking hardenability through continuous annealing
JP2004043884A (en) Thin steel sheet for working having excellent low temperature seizure hardenability and aging resistance
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JP2504219B2 (en) Method for manufacturing alloyed galvanized steel sheet for drawing
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP3369619B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in deep drawability and ductility and method for producing hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees