JP3031724B2 - Multi-element radiation detector and manufacturing method thereof - Google Patents

Multi-element radiation detector and manufacturing method thereof

Info

Publication number
JP3031724B2
JP3031724B2 JP41540790A JP41540790A JP3031724B2 JP 3031724 B2 JP3031724 B2 JP 3031724B2 JP 41540790 A JP41540790 A JP 41540790A JP 41540790 A JP41540790 A JP 41540790A JP 3031724 B2 JP3031724 B2 JP 3031724B2
Authority
JP
Japan
Prior art keywords
light receiving
dead zone
radiation detector
receiving elements
photodiode array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP41540790A
Other languages
Japanese (ja)
Other versions
JPH04232889A (en
Inventor
孝之 早川
智恒 吉岡
紘一 加藤
学 中河
稔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP41540790A priority Critical patent/JP3031724B2/en
Publication of JPH04232889A publication Critical patent/JPH04232889A/en
Application granted granted Critical
Publication of JP3031724B2 publication Critical patent/JP3031724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、基板上に複数の受光素
子を配列したホトダイオードアレイと、シンチレータと
を互いに接着して固定したX線CT装置等に使用される
多素子放射線検出器およびその製作方法に係わり、特
に、ホトダイオードアレイの各受光素子間の感度を、該
各受光素子間を分離する溝の加工精度を向上して均一化
するのに好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-element radiation detector for use in an X-ray CT apparatus or the like in which a photodiode array in which a plurality of light receiving elements are arranged on a substrate and a scintillator are fixed to each other by bonding. The present invention relates to a manufacturing method, and is particularly suitable for improving sensitivity of each light receiving element of a photodiode array and improving the processing accuracy of a groove separating the light receiving elements to make it uniform.

【0002】[0002]

【従来の技術】X線CT装置やX線手荷物検査装置等に
使用される多素子放射線検出器において、該検出器の各
受光素子間の感度のばらつきは、X線CT画像の画質の
優劣を直接左右するため極力少なく押さえる必要があ
り、特に、X線CT装置においては、各受光素子自体の
厚さ方向の感度分布のばらつきでも画質にアーチファク
ト等の悪影響を及ぼすため、ばらつきのない感度の均一
化が要請されている。
2. Description of the Related Art In a multi-element radiation detector used in an X-ray CT apparatus, an X-ray baggage inspection apparatus, etc., the variation in sensitivity among the respective light receiving elements of the detector causes the quality of an X-ray CT image to be superior. In order to directly influence the sensitivity, it is necessary to keep the sensitivity as low as possible. In particular, in the X-ray CT apparatus, even if the sensitivity distribution of each light receiving element itself varies in the thickness direction, it adversely affects the image quality, such as artifacts. Has been requested.

【0003】従来の多素子放射線検出器として、多チャ
ンネル型ホトダイオードのクロストーク量の減少や、チ
ャンネル間の電気的絶縁性を向上させる等の目的から、
同一ピッチで配列したシンチレータ素子と、半導体基板
上の長手方向に所定間隔で配列、形成した各受光素子と
を接合してなる放射線検出器の各受光素子の受光面積
を、対応するシンチレータ素子の光出力面積より小さく
した構成のもの(例えば、特開昭60−42671号公
報)、また、X線検出素子の感度分布一様性を向上さ
せ、X線CT装置の画質を向上させる目的で、光電変換
素子の有感部より大きい面積の蛍光体素子と光電変換素
子とを結合して構成したX線検出器を有するX線CT装
置(例えば、特開昭63−154158号公報)、さら
に、単純な製造工程により、高精度で隣接するチャンネ
ル間での光漏洩を極めて少なくすることができるよう
に、光電変換素子が形成されている基板に前記光漏洩を
防止する仕切板挿入用の溝を形成し、仕切板を各シンチ
レータ素子間を貫通してその先端が前記光電変換素子を
形成する基板内部まで達している構成にしたX線CT装
置用の多素子放射線検出器(例えば、特開平1−191
085号公報)等が提案されている。
As a conventional multi-element radiation detector, in order to reduce the amount of crosstalk of a multi-channel photodiode and to improve the electrical insulation between channels,
The light receiving area of each light receiving element of the radiation detector formed by joining the scintillator elements arranged at the same pitch and the light receiving elements arranged and formed at predetermined intervals in the longitudinal direction on the semiconductor substrate is determined by the light of the corresponding scintillator element. A configuration in which the output area is smaller than the output area (for example, Japanese Patent Application Laid-Open No. Sho 60-42671). Also, in order to improve the uniformity of the sensitivity distribution of the X-ray detection element and improve the image quality of the X-ray CT apparatus, An X-ray CT apparatus having an X-ray detector configured by combining a phosphor element having a larger area than the sensitive part of the conversion element and a photoelectric conversion element (for example, JP-A-63-154158); By a simple manufacturing process, it is possible to extremely reduce light leakage between adjacent channels with high accuracy, and to insert a partition plate for preventing the light leakage on a substrate on which photoelectric conversion elements are formed. And a multi-element radiation detector for an X-ray CT apparatus having a configuration in which a partition plate penetrates between each scintillator element and its tip reaches the inside of the substrate on which the photoelectric conversion element is formed (for example, Japanese Patent Laid-Open No. 1-191
No. 085) has been proposed.

【0004】一方、各シンチレータを、所定間隔を保っ
て容易かつ精度良くホトダイオードに接着することがで
きる従来の多素子放射線検出器の製作方法として、治具
に板状のシンチレータを接着して複数のシンチレータに
切断加工して分割し、分割された各シンチレータを治具
に固定したまま各シンチレータの間に光遮蔽性接着剤を
充填して相互に接着し、接着した各シンチレータを治具
から剥離し、表面を研磨した後、ホトダイオードに接着
して検出器を形成する工程からなるX線CT装置用のシ
ンチレーション方式検出器の製造方法(例えば、特開昭
60−6889号公報)が提案されている。
On the other hand, as a conventional method of manufacturing a multi-element radiation detector in which each scintillator can be easily and accurately adhered to a photodiode at a predetermined interval, a plate-like scintillator is adhered to a jig and a plurality of scintillators are attached. A scintillator is cut and divided, and each of the divided scintillators is fixed to a jig, and a light shielding adhesive is filled between the scintillators and adhered to each other, and the bonded scintillators are peeled off from the jig. A method of manufacturing a scintillation-type detector for an X-ray CT apparatus comprising a step of forming a detector by polishing the surface and then bonding the same to a photodiode (for example, Japanese Patent Application Laid-Open No. Sho 60-6889). .

【0005】[0005]

【発明が解決しようとする課題】前記放射線検出器の各
受光素子間の感度のばらつきは、シンチレータの光放出
面とホトダイオードアレイの各受光素子の有感部との位
置の対応がばらつく結果発生するもので、感度のばらつ
きを防止するためには前記位置の対応のばらつきを解消
する必要がある。しかし、上記従来の多素子放射線検出
器においては、シンチレータ素子と各受光素子とを一定
の関係が成り立つように適切に定めることにより感度の
劣化が生じなくなるとの提案や、仕切板を挿入する溝
を、ホトダイオードの受光面の間にある不感帯の中心位
置に形成するとの提案等はあるが、前記一定の関係を定
める具体的な方法、あるいは前記溝を不感帯の中心位置
に形成する具体的な構成等の提案がなされていない。そ
して、いずれもホトダイオードにシンチレータを接着す
る直前および接着後は、前記有感部の形状および寸法を
目視することができないから、前記位置の対応を正確に
一致させることは極めて困難であり、ホトダイオードア
レイ上にシンチレータ板を接着後に、前記溝を不感帯の
中心位置に形成する場合においても、不感帯の中心位置
が目視できないことから溝を不感帯の中心位置に正確に
加工形成することは困難である。したがって、各受光素
子自体の厚さ方向の感度分布のばらつきは勿論、各受光
素子間の感度のばらつきが解消されず均一化されない問
題点を有していた。
The variation in sensitivity between the respective light receiving elements of the radiation detector is caused as a result of a variation in the correspondence between the position of the light emitting surface of the scintillator and the sensitive part of each light receiving element of the photodiode array. However, in order to prevent variations in sensitivity, it is necessary to eliminate variations in the corresponding positions. However, in the above-mentioned conventional multi-element radiation detector, there is a proposal that deterioration of sensitivity does not occur by appropriately setting the scintillator element and each light receiving element so that a certain relationship is established, and a groove for inserting a partition plate. Is formed at the center position of the dead zone between the light receiving surfaces of the photodiodes, etc., but there is a specific method for determining the fixed relationship, or a specific configuration for forming the groove at the center position of the dead zone. No proposal has been made. In any case, immediately before and after bonding the scintillator to the photodiode, the shape and dimensions of the sensitive portion cannot be visually checked, so that it is extremely difficult to accurately match the correspondence of the positions, and the photodiode array Even when the groove is formed at the center position of the dead zone after the scintillator plate is bonded thereon, it is difficult to accurately process and form the groove at the center position of the dead zone because the center position of the dead zone is not visible. Therefore, there is a problem that the sensitivity distribution among the respective light receiving elements is not eliminated and uniform, as well as the sensitivity distribution in the thickness direction of each light receiving element itself.

【0006】本発明は、上記従来技術の問題点に鑑み、
ホトダイオードアレイの各受光素子間の感度を、該各受
光素子間を分離する溝の加工精度を向上して均一化する
ことができる多素子放射線検出器およびその製作方法を
提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art,
It is an object of the present invention to provide a multi-element radiation detector capable of uniformizing the sensitivity between light receiving elements of a photodiode array by improving the processing accuracy of a groove separating the light receiving elements, and a method of manufacturing the same. .

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の多素子放射線検出器は、複数の受光素子を
基板上に所定のピッチで平行に配列したホトダイオード
アレイと、該ホトダイオードアレイの各受光素子の有感
部および該有感部間に存在する不感帯を覆う面積を有し
放射線を吸収して発光するシンチレータとを、互いに接
着して固定してなる多素子放射線検出器において、前記
各受光素子の不感帯の延長上で、かつ前記有感部から外
れた位置のホトダイオードアレイの面上に、前記各受光
素子間を分離する溝加工用の有感部と不感帯との境界線
を示すマークを設ける構成にしたものである。
In order to achieve the above object, a multi-element radiation detector according to the present invention comprises: a photodiode array in which a plurality of light receiving elements are arranged in parallel on a substrate at a predetermined pitch; In a multi-element radiation detector in which a sensitive portion of each light receiving element and a scintillator which has an area covering a dead zone existing between the sensitive portions and absorbs and emits radiation and emits light are bonded and fixed to each other, On the extension of the dead zone of each light receiving element, and on the surface of the photodiode array at a position deviated from the sensitive part, a boundary line between the sensitive part for groove processing separating the light receiving elements and the dead zone is shown. The mark is provided.

【0008】また、本発明の多素子放射線検出器の製作
方法は、複数の受光素子を基板上に所定のピッチで平行
に配列したホトダイオードアレイと、該ホトダイオード
アレイの各受光素子の有感部および該有感部間に存在す
る不感帯を覆う面積を有し放射線を吸収して発光するシ
ンチレータとを互いに接着して固定し、該接着固定され
たシンチレータ側から前記不感帯に沿って溝を加工して
前記各受光素子間を分離する多素子放射線検出器の製作
方法において、前記各受光素子の不感帯の延長上で、か
つ前記有感部から外れた位置のホトダイオードアレイの
面上に設けられた有感部と不感帯との境界線を示すマー
クを基準にして加工する構成にしたものである。
Further, the method of manufacturing a multi-element radiation detector according to the present invention is directed to a photodiode array in which a plurality of light receiving elements are arranged in parallel on a substrate at a predetermined pitch, a sensitive portion of each light receiving element of the photodiode array, and A scintillator having an area covering the dead zone existing between the sensitive parts and absorbing and emitting radiation is bonded and fixed to each other, and a groove is formed along the dead zone from the bonded and fixed scintillator side. In the method of manufacturing a multi-element radiation detector that separates the light receiving elements, a sensitive element provided on a surface of the photodiode array at a position deviating from the sensitive part on an extension of a dead zone of each light receiving element. The processing is performed with reference to the mark indicating the boundary between the section and the dead zone.

【0009】[0009]

【作用】上記構成としたことにより、ホトダイオードア
レイの有感部と該有感部間の不感帯とを覆う面積のシン
チレータを、ホトダイオードアレイ上に接着固定する場
合に、予め、ホトダイオードアレイの不感帯の延長上
で、かつ前記有感部から外れた位置に、有感部と不感帯
との境界線を示すマークが設けられているから、接着す
る場合は勿論のこと、接着した後でもシンチレータに覆
われて目視不能になる前記有感部と不感帯とのパターン
形状を目視により確認することが可能になる。このた
め、各受光素子間を分離する溝を前記マークを基準にし
て加工することができ、溝幅寸法や溝の中心位置等を高
精度に加工することが可能になり、シンチレータとホト
ダイオードアレイの各受光素子の有感部との位置ずれ
や、シンチレータの形状の不揃い等に起因する各受光素
子間の感度のばらつきを防止して均一化することができ
る。
With the above construction, when a scintillator having an area covering a sensitive portion of a photodiode array and a dead zone between the sensitive portions is adhered and fixed on the photodiode array, an extension of the dead zone of the photodiode array is required in advance. Above, and at a position deviated from the sensitive part, a mark indicating the boundary line between the sensitive part and the dead zone is provided, so that it is covered with a scintillator even after bonding, as well as when bonding. It becomes possible to visually check the pattern shapes of the sensitive part and the dead zone, which become invisible. For this reason, the groove separating each light receiving element can be processed with reference to the mark, and the groove width dimension, the center position of the groove, and the like can be processed with high accuracy, and the scintillator and the photodiode array can be processed. Variations in sensitivity among the light receiving elements due to misalignment of the light receiving elements with the sensitive part, irregularities in the shape of the scintillator, and the like can be prevented and uniformized.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1ないし図4を
参照して説明する。図1は受光素子数が6のホトダイオ
ードアレイを使用した場合の放射線検出器の溝加工前の
平面図、図2は図1の溝加工後のII−II断面図、図3は
図1の“ア”部の溝加工中の拡大図、図4は図3のIV−
IV断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a plan view of a radiation detector before processing a groove when a photodiode array having six light receiving elements is used, FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1, and FIG. Fig. 4 is an enlarged view of the "" part during groove processing.
It is IV sectional drawing.

【0011】図において、1は基板、2は基板1上に複
数の受光素子を所定のピッチで平行に配列したホトダイ
オードアレイ、3は各受光素子の有感部、4は隣接する
有感部3の間に存在する幅Bの不感帯で、有感部3と交
互に配列されている。5は各受光素子の有感部3および
不感帯4を覆う面積を有し、放射線を吸収して発光する
板状のシンチレータで、シンチレータ5はホトダイオー
ドアレイ2上に光学接着剤により接着して固定され多素
子放射線検出器を形成している。6は有感部3と不感帯
4との境界線を示すように、ホトダイオードアレイ2の
面上に真空蒸着あるいはエッチング等によりパターン形
成された前記各受光素子間を分離する溝加工用のマー
ク、7は不感帯4の幅Bの中心線を示すマークで、マー
ク6と同様にホトダイオードアレイ2の面上に真空蒸着
あるいはエッチング等によりパターン形成される。マー
ク7は溝加工前にカッターの位置合わせを容易にするた
めにつけたもので、マーク6を利用して位置合わせを行
うこともできる。またマーク7は溝加工により消滅す
る。マーク6は図1に示すように前記各受光素子の不感
帯4の延長上で、かつ前記有感部3から外れた位置の両
端部に形成され、いずれも前記各受光素子間を分離する
溝8(幅b)の加工の際に、加工機械の平行度や、加工
後の溝8の仕上がり状態等の計測の基準として使用され
るものである。9は多素子放射線検出器の取付け用の
穴、10は信号端子である。
In the drawing, 1 is a substrate, 2 is a photodiode array in which a plurality of light receiving elements are arranged in parallel on a substrate 1 at a predetermined pitch, 3 is a sensitive part of each light receiving element, 4 is an adjacent sensitive part 3 The dead zone having a width B existing between them is arranged alternately with the sensitive portion 3. Reference numeral 5 denotes a plate-shaped scintillator having an area covering the sensitive portion 3 and the dead zone 4 of each light-receiving element and absorbing radiation to emit light. The scintillator 5 is adhered and fixed on the photodiode array 2 with an optical adhesive. A multi-element radiation detector is formed. Numeral 6 indicates a boundary line between the sensitive part 3 and the dead zone 4, and a groove processing mark formed on the surface of the photodiode array 2 by vacuum deposition or etching for separating the light receiving elements. Is a mark indicating the center line of the width B of the dead zone 4, and similarly to the mark 6, a pattern is formed on the surface of the photodiode array 2 by vacuum evaporation or etching. The mark 7 is provided for facilitating the positioning of the cutter before the groove processing, and the positioning can be performed using the mark 6. The mark 7 disappears by the groove processing. As shown in FIG. 1, the marks 6 are formed on the extension of the dead zone 4 of each of the light receiving elements and at both ends of the position deviating from the sensitive portion 3, and each of the grooves 8 separates the light receiving elements. It is used as a reference for measurement of the parallelism of the processing machine, the finished state of the groove 8 after processing, and the like when processing (width b). 9 is a hole for mounting a multi-element radiation detector, and 10 is a signal terminal.

【0012】溝8の加工に際して、溝幅bは隣接する有
感部3までの距離によって制限を受け、溝8の側面が有
感部3から0.05mm以下に接近すると、加工の際に
発生するシリコン結晶のマイクロクラックのために、受
光素子の暗電流が増大して信号不良を発生することが実
験的に確認されており、一方、不感帯4の幅Bは、例え
ばPIN構造のシリコンホトダイオードにおいては、受
光素子間のクロストーク量を1%以下に抑えるために
0.2mm〜0.3mmが必要であることも確認されて
いる。このため溝8は、不感帯4の幅Bが0.2mmの
場合には溝幅bが0.1mm以下に制限されることにな
り、有感部3と不感帯4との境界線と確実に平行に加工
されなければならないことになる。
When the groove 8 is machined, the groove width b is limited by the distance to the adjacent sensitive portion 3, and when the side surface of the groove 8 approaches 0.05 mm or less from the sensitive portion 3, the groove width b is generated at the time of machining. It has been experimentally confirmed that the dark current of the light receiving element increases due to the micro-crack of the silicon crystal to cause a signal failure, and the width B of the dead zone 4 is, for example, in a PIN type silicon photodiode. It has also been confirmed that 0.2 mm to 0.3 mm is required to suppress the crosstalk amount between light receiving elements to 1% or less. Therefore, when the width B of the dead zone 4 is 0.2 mm, the groove width b is limited to 0.1 mm or less, and the groove 8 is surely parallel to the boundary between the sensitive part 3 and the dead zone 4. Must be processed.

【0013】本発明における溝8の加工は、まず加工前
に、加工の開始位置と終了位置との両端部に形成されて
いるマーク6を基準にして加工機械の平行度およびカッ
ターの位置合わせを行い、図1に示す矢印11の方向ま
たはその反対方向から不感帯4の幅Bの中心線に沿わせ
るようにして行われる。そして、加工中および加工後
は、マーク6を基準にして溝8の仕上がり状態が計測検
査され、その検査値に応じて随時加工修正して加工を完
了する。このため溝8の加工は、溝8の中心の位置ずれ
を±0.01mm以下の高精度で行うことが可能にな
り、例えば、受光素子の幅が1mmの放射線検出機の場
合に、各受光素子間の感度のばらつきを1%以下にする
ことが実現された。そして同時に、従来、溝8の側面が
有感部3に接近することによる受光素子の暗電流の増大
も発生しないことが確認された。なお、加工された各溝
8内には、受光素子間の分離能を高めるために図示しな
い金属薄板製の隔壁板が挿入される。
In the processing of the groove 8 in the present invention, first, before processing, the parallelism of the processing machine and the positioning of the cutter are adjusted with reference to the marks 6 formed at both ends of the processing start position and the end position. This is performed so as to be along the center line of the width B of the dead zone 4 from the direction of the arrow 11 shown in FIG. During and after the processing, the finished state of the groove 8 is measured and inspected with reference to the mark 6, and the processing is corrected as needed according to the inspection value to complete the processing. For this reason, the groove 8 can be processed with a high positional accuracy of ± 0.01 mm or less in the center of the groove 8. For example, in the case of a radiation detector having a light-receiving element width of 1 mm, It has been realized that the variation in sensitivity between the elements is reduced to 1% or less. At the same time, it has been confirmed that the dark current of the light receiving element does not increase due to the fact that the side surface of the groove 8 approaches the sensitive portion 3 conventionally. In addition, a not-shown partition plate made of a thin metal plate is inserted into each of the processed grooves 8 in order to enhance the separating ability between the light receiving elements.

【0014】上記実施例においては、受光素子数が6の
ホトダイオードアレイを使用した場合の放射線検出器の
例を示したが、受光素子数はこれに限定されるものでは
なく、また、本発明に係わる多素子放射線検出器を、例
えば、多数円弧状に配列して500素子以上の検出器を
構成したX線CT装置や、直線状に長さ500mm以上
配列してラインセンサーとして使用するX線手荷物検査
装置等においては、アーチファクトのない良質の画像を
得ることが可能になる。
In the above embodiment, an example of a radiation detector in which a photodiode array having six light receiving elements is used has been described. However, the number of light receiving elements is not limited to this. For example, an X-ray CT apparatus in which related multi-element radiation detectors are arranged in a large number of arcs to constitute a detector of 500 elements or more, or an X-ray baggage used as a line sensor arranged in a linear manner with a length of 500 mm or more. In an inspection device or the like, a high-quality image free from artifacts can be obtained.

【0015】[0015]

【発明の効果】本発明は、以上説明したように構成され
ているので、各受光素子間を分離する溝加工用のマーク
により溝の加工精度を向上することが可能になり、ホト
ダイオードアレイの各受光素子間の感度を均一化するこ
とができる効果を奏する。
Since the present invention is configured as described above, it is possible to improve the processing accuracy of the groove by using the groove processing mark for separating the light receiving elements from each other. There is an effect that the sensitivity between the light receiving elements can be made uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す多素子放射線検出器の
溝加工前の平面図である。
FIG. 1 is a plan view showing a multi-element radiation detector according to an embodiment of the present invention before groove processing.

【図2】図1の溝加工後のII−II断面図である。FIG. 2 is a sectional view taken along the line II-II of FIG. 1 after groove processing.

【図3】図1の“ア”部の溝加工中の拡大図である。FIG. 3 is an enlarged view of a portion “A” of FIG. 1 during groove processing.

【図4】図3のIV−IV断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 3;

【符号の説明】[Explanation of symbols]

1 基板 2 ホトダイオードアレイ 3 有感部 4 不感帯 5 シンチレータ 6 マーク(有感部と不感帯との境界線マーク) 7 マーク(不感帯幅の中心線マーク) 8 溝 DESCRIPTION OF SYMBOLS 1 Substrate 2 Photodiode array 3 Sensitive part 4 Dead zone 5 Scintillator 6 Mark (Boundary mark between sensitive part and dead zone) 7 Mark (Center line mark of dead zone width) 8 Groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 稔 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所中央研究所内 審査官 長井 真一 (56)参考文献 特開 昭64−39579(JP,A) 特開 昭59−147289(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01T 1/20 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Minoru Yoshida 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Examiner, Central Research Laboratory, Hitachi, Ltd. Shinichi Nagai (56) References JP-A-64-39579 (JP, A) JP-A-59-147289 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01T 1/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の受光素子を基板上に所定のピッチで
平行に配列したホトダイオードアレイと、該ホトダイオ
ードアレイの各受光素子の有感部および該有感部間に存
在する不感帯を覆う面積を有し放射線を吸収して発光す
るシンチレータとを、互いに接着して固定してなる多素
子放射線検出器において、前記各受光素子の不感帯の延
長上で、かつ前記有感部から外れた位置のホトダイオー
ドアレイの面上に、前記各受光素子間を分離する溝加工
用の有感部と不感帯との境界線を示すマークを設けたこ
とを特徴とする多素子放射線検出器。
1. A photodiode array in which a plurality of light receiving elements are arranged in parallel at a predetermined pitch on a substrate, and an area covering a sensitive part of each light receiving element of the photodiode array and a dead zone existing between the sensitive parts. In a multi-element radiation detector in which a scintillator that absorbs and absorbs radiation and emits light is adhered and fixed to each other, a photodiode at a position extended from a dead zone of each of the light receiving elements and separated from the sensitive portion. A multi-element radiation detector comprising a mark on a surface of an array, the mark indicating a boundary between a sensitive portion for groove processing for separating the light receiving elements and a dead zone.
【請求項2】複数の受光素子を基板上に所定のピッチで
平行に配列したホトダイオードアレイと、該ホトダイオ
ードアレイの各受光素子の有感部および該有感部間に存
在する不感帯を覆う面積を有し放射線を吸収して発光す
るシンチレータとを互いに接着して固定し、該接着固定
されたシンチレータ側から前記不感帯に沿って溝を加工
して前記各受光素子間を分離する多素子放射線検出器の
製作方法において、前記各受光素子の不感帯の延長上
で、かつ前記有感部から外れた位置のホトダイオードア
レイの面上に設けられた有感部と不感帯との境界線を示
すマークを基準にして加工することを特徴とする多素子
放射線検出器の製作方法。
2. A photodiode array in which a plurality of light receiving elements are arranged in parallel at a predetermined pitch on a substrate, and an area covering a sensitive part of each light receiving element of the photodiode array and a dead zone existing between the sensitive parts. A multi-element radiation detector for adhering and fixing a scintillator that absorbs and emits light by absorbing radiation and processing a groove along the dead zone from the adhesively fixed scintillator side to separate the light receiving elements from each other In the manufacturing method of the above, with reference to the mark indicating the boundary line between the sensitive part and the dead zone provided on the surface of the photodiode array at a position deviating from the sensitive part on the extension of the dead zone of each light receiving element. A method for producing a multi-element radiation detector, characterized by processing by:
JP41540790A 1990-12-28 1990-12-28 Multi-element radiation detector and manufacturing method thereof Expired - Lifetime JP3031724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41540790A JP3031724B2 (en) 1990-12-28 1990-12-28 Multi-element radiation detector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41540790A JP3031724B2 (en) 1990-12-28 1990-12-28 Multi-element radiation detector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04232889A JPH04232889A (en) 1992-08-21
JP3031724B2 true JP3031724B2 (en) 2000-04-10

Family

ID=18523770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41540790A Expired - Lifetime JP3031724B2 (en) 1990-12-28 1990-12-28 Multi-element radiation detector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3031724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160043313A (en) * 2014-10-13 2016-04-21 비케이환경종합건설 주식회사 A horizontal cylinder type agitating fermenter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160043313A (en) * 2014-10-13 2016-04-21 비케이환경종합건설 주식회사 A horizontal cylinder type agitating fermenter

Also Published As

Publication number Publication date
JPH04232889A (en) 1992-08-21

Similar Documents

Publication Publication Date Title
GB2165694A (en) Semiconductor laser devices
JP3031724B2 (en) Multi-element radiation detector and manufacturing method thereof
US4607164A (en) Radiation detecting apparatus
Luhta et al. Back-illuminated photodiodes for multislice CT
JP2611295B2 (en) Radiation detector and manufacturing method thereof
JPH11295432A (en) Solid detector for ct
JP3309618B2 (en) X-ray CT system
JP3549169B2 (en) X-ray CT system
JP2720159B2 (en) Multi-element radiation detector and manufacturing method thereof
JPH01240887A (en) Radiation detector and manufacture thereof
JPH05150049A (en) Radiation detector
JP2840941B2 (en) Multi-element radiation detector and manufacturing method thereof
JPH09127248A (en) Radiation detector
JPH02208591A (en) X-ray detector for ct apparatus
JP4067197B2 (en) Solid state detector for X-ray CT system
JPH1010236A (en) X-ray detector for x-ray ct system
JP4067201B2 (en) X-ray detector for CT equipment
JPH11258351A (en) Method of manufacturing radiation detector
JPH06214036A (en) Multiple element x-ray detector
JP2673808B2 (en) Multi-element radiation detector
JP2553454Y2 (en) X-ray detector for X-ray CT system
JPS5893292A (en) Manufacture of semiconductor radiation detector
JPH10314156A (en) X-ray detector and x-ray ct device using the same
JPH08271637A (en) Manufacture of radiation detector array
JPH09292469A (en) Manufacture of radiation detector array