JP2673808B2 - Multi-element radiation detector - Google Patents

Multi-element radiation detector

Info

Publication number
JP2673808B2
JP2673808B2 JP63014444A JP1444488A JP2673808B2 JP 2673808 B2 JP2673808 B2 JP 2673808B2 JP 63014444 A JP63014444 A JP 63014444A JP 1444488 A JP1444488 A JP 1444488A JP 2673808 B2 JP2673808 B2 JP 2673808B2
Authority
JP
Japan
Prior art keywords
light receiving
anode electrode
semiconductor light
radiation detector
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63014444A
Other languages
Japanese (ja)
Other versions
JPH01191086A (en
Inventor
稔 吉田
秀司 藤井
学 中河
文男 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP63014444A priority Critical patent/JP2673808B2/en
Publication of JPH01191086A publication Critical patent/JPH01191086A/en
Application granted granted Critical
Publication of JP2673808B2 publication Critical patent/JP2673808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は計算機利用X線断層像撮影装置(X線CT装
置)に用いる複数のシンチレータと光電変換素子からな
る多素子固体放射線検出器に係り、特に、多素子放射線
検出器を構成する放射線検出素子の感度一様性向上に好
適な放射線検出素子の構造に関する。
The present invention relates to a multi-element solid-state radiation detector including a plurality of scintillators and photoelectric conversion elements used in a computer-aided X-ray tomographic imaging apparatus (X-ray CT apparatus). In particular, the present invention relates to a structure of a radiation detection element suitable for improving sensitivity uniformity of a radiation detection element which constitutes a multi-element radiation detector.

〔従来の技術〕[Conventional technology]

多素子からなるX線CT用固体検出器においてフォトダ
イオードを使用する、特開昭58-216973号公報、特開昭5
8-216974号公報などの技術が知られており、従来の多素
子からなるX線CT用固体検出器に用いる光電変換素子で
は、特願昭60-204036号(特開昭62-63880号公報)に記
載のように、多素子固体放射線検出器で使用されるフォ
トダイオードは、第2図に示すようなフォトダイオード
となっていた。すなわちフォトダイオードはSiのPIN型
ウエハー1上に不感部3によって仕切られた有感部2が
形成されて1つの放射線検出素子の受光素子を構成す
る。この有感部2(P層)には信号取り出し用のアノー
ド電極4が形成され、端部のアノード電極ボンディング
部6からボンディングワイヤー5,アノード信号ピン7と
接続されている。第2図にも示す通り、通常アノード電
極4は有感部2の端に片寄らせて構成することが多く、
特願昭60-204036号(特開昭62-63880号公報)のように
中央に形成されたものもある。しかしアノード電極ボン
ディング部6の形成は片側のみであり、電気的および光
学的に左右対称とはなっていない。このため、第3図に
示すようにシンチレータと組合わせた放射線検出素子と
した場合、シンチレータ10からの光がPIN型Siウエハー
1の有感部の界面での光の反射および有感部内部での電
気的挙動が左右対称とならず、放射線検出素子の位置感
度分布は第4図のbのように左右の感度が非対称となっ
た。
Using a photodiode in a solid-state detector for X-ray CT consisting of multiple elements, JP-A-58-216973 and JP-A-5-216973
Techniques such as 8-216974 are known, and a photoelectric conversion element used in a conventional solid-state detector for X-ray CT composed of multiple elements is disclosed in Japanese Patent Application No. 60-204036 (Japanese Patent Application Laid-Open No. 62-63880). ), The photodiode used in the multi-element solid-state radiation detector was the photodiode shown in FIG. That is, in the photodiode, the sensitive portion 2 partitioned by the insensitive portion 3 is formed on the Si PIN wafer 1 to form a light receiving element of one radiation detecting element. An anode electrode 4 for extracting a signal is formed on the sensitive portion 2 (P layer), and is connected to a bonding wire 5 and an anode signal pin 7 from an anode electrode bonding portion 6 at an end portion. As shown in FIG. 2, usually, the anode electrode 4 is usually formed so as to be offset from the end of the sensitive portion 2.
There is also one formed in the center as in Japanese Patent Application No. 60-204036 (JP-A No. 62-63880). However, the anode electrode bonding portion 6 is formed only on one side, and is not electrically and optically symmetrical. Therefore, when the radiation detecting element is combined with the scintillator as shown in FIG. 3, the light from the scintillator 10 is reflected at the interface of the sensitive part of the PIN type Si wafer 1 and inside the sensitive part. The electric behavior of No. was not symmetrical, and the position sensitivity distribution of the radiation detection element was asymmetrical as shown in b of FIG.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術のSiフォトダイオードは有感部であるP
層2およびアノード電極4,アノード電極ボンディング部
6の構造が対称形となっておらず受光面上に設置するシ
ンチレータとの光学的接合面において光学的に対称とな
らず、さらにシンチレータからの光が有感部2に入射し
光電変換される過程においても電気的に非対称となり、
放射線検出素子の位置感度(感度分布)が第4図のbに
示すように非対称となった。このような放射線検出素子
を用いたX線CT装置においては、その再生画像にリング
状のアーチファクトが生じる結果となり、画質が著しく
低下すると言う問題があった。
The above-mentioned prior art Si photodiode is a sensitive part P
The structure of the layer 2, the anode electrode 4, and the anode electrode bonding portion 6 is not symmetrical and does not become optically symmetrical at the optical joint surface with the scintillator installed on the light receiving surface. Even in the process of being incident on the sensitive section 2 and being photoelectrically converted, it becomes electrically asymmetrical,
The position sensitivity (sensitivity distribution) of the radiation detecting element became asymmetric as shown in b of FIG. In the X-ray CT apparatus using such a radiation detecting element, there is a problem that a ring-shaped artifact is generated in the reproduced image and the image quality is significantly deteriorated.

本発明は上記放射線検出素子の位置感度(感度分布)
の対称性を改善し、再生画像上のアーチファクトを低減
させ良質な画質を得るとの課題を解決しようとするもの
である。
The present invention relates to the position sensitivity (sensitivity distribution) of the radiation detection element.
It is intended to solve the problem of improving the symmetry of, reducing artifacts on a reproduced image, and obtaining good image quality.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題は、第1図に示すように、PIN型Siウエハー
1上のP層2面上に形成するアノード電極4をP層2長
手方向の中央部分に全域に設置し、アノード電極ボンデ
ィング部6を長手方向両端に設け、この両端のアノード
電極ボンディング部6を挟む有感部P層2上の左右対称
位置にシンチレータ10を設置することにより解決され
る。
As shown in FIG. 1, the above-mentioned problem is that the anode electrode 4 formed on the surface of the P layer 2 on the PIN type Si wafer 1 is installed in the entire central portion in the longitudinal direction of the P layer 2 and the anode electrode bonding portion 6 is formed. Is provided at both ends in the longitudinal direction, and the scintillator 10 is installed at symmetrical positions on the sensitive portion P layer 2 sandwiching the anode electrode bonding portions 6 at both ends.

〔作用〕[Action]

第1図に示す有感部P層2上長手方向中央部分に設置
したアノード電極4は光電効果により生じた電子を長手
方向のどの位置においても同じ距離で集電させ有感部2
の感度一様性を向上させるものである。またアノード電
極4を長手方向中央部分全域に設置することにより第3
図に示すようにシンチレータ10との光学的に接合した場
合に有感部2での光学的反射等の条件は有感部2上どの
部分においても同一となる。
The anode electrode 4 provided in the central portion in the longitudinal direction on the sensitive layer P layer 2 shown in FIG. 1 collects the electrons generated by the photoelectric effect at the same distance at any position in the longitudinal direction, and the sensitive portion 2
The sensitivity uniformity of is improved. Also, by disposing the anode electrode 4 over the entire central portion in the longitudinal direction,
As shown in the figure, when optically bonded to the scintillator 10, the conditions such as optical reflection at the sensitive section 2 are the same on any part of the sensitive section 2.

アノード電極4の両端にアノード電極ボンディング部
6を設けることによりボンディングワイヤー5はどちら
にでもボンディング可能となる。また、第3図のように
シンチレータ10を有感部2上に左右対称に精度良く設置
する場の目印としても有効であり、かつシンチレータ10
の長手方向端部での光学的条件も左右同一となる。
By providing the anode electrode bonding portions 6 on both ends of the anode electrode 4, the bonding wire 5 can be bonded to either side. Further, as shown in FIG. 3, the scintillator 10 is also effective as a mark for a place where the scintillator 10 is symmetrically and accurately installed on the sensitive part 2, and the scintillator 10 is also effective.
The left and right optical conditions at the longitudinal ends are also the same.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。PI
N型Siウエハー1上に形成された有感部(P層)2の表
面には長手方向両端部にアノード電極ボンディング部6
を有するアノード電極が長手方向の端から端まで中央部
分に形成されている。Siウエハー1は有感部2の裏面N
層部がカソード電極となり導電接着剤等により補強用の
絶縁基板8(ガラスエポキシ樹脂あるいはセラミックス
材など)上に設けられたカソード電極用パタに接着さ
れ、カソード電極信号ピン9に接合される。アノード電
極の信号はアノード電極ボンディング部6からボンディ
ングワイヤー5により、同じく絶縁基板8に設けられた
アノード電極信号ピン7にボンディングされる。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. PI
On the surface of the sensitive part (P layer) 2 formed on the N-type Si wafer 1, anode electrode bonding parts 6 are formed on both ends in the longitudinal direction.
Is formed in the central portion from end to end in the longitudinal direction. The Si wafer 1 is the back surface N of the sensitive part 2.
The layer portion serves as a cathode electrode and is adhered to a cathode electrode pattern provided on a reinforcing insulating substrate 8 (glass epoxy resin or ceramic material) by a conductive adhesive or the like, and is joined to a cathode electrode signal pin 9. The signal of the anode electrode is bonded from the anode electrode bonding portion 6 to the anode electrode signal pin 7 also provided on the insulating substrate 8 by the bonding wire 5.

第3図は第1図に示した本発明の半導体受光素子にシ
ンチレータ10を搭載して成る放射線検出素子の一実施例
の構造を示すものである。
FIG. 3 shows the structure of an embodiment of the radiation detecting element in which the scintillator 10 is mounted on the semiconductor light receiving element of the present invention shown in FIG.

第3図に示すシンチレータ10に放射線が入射すると入
射放射線量に比例した光がシンチレータ10から発光され
る。この光は第1図に示す本発明による半導体受光素子
の有感部2に入射し光電効果によりアノード信号ピン7
およびカソード信号ピン間に入射光量に比例した光電流
が生成する。したがってこの光電流は入射放射線量に比
例した量となり光電流の量を測定することにより二次的
に入射放射線量を検出する放射線検出素子となり得る。
上記放射線検出の過程において、シンチレータ10に一様
に放射線が入射した場合、シンチレータ10はどの部位も
一様に発光する。しかるに半導体受光素子において有感
部2の感度が一様でないと検出素子の出力は一様になら
ないことになり検出誤差を生じる。本発明においては有
感部2の感度を一様にするため有感部2の表面に幅方向
中央部に長手方向の両端に至る細長いアノード電極4を
形成した。これにより有感部(P層)2で生成した電子
は長手方向どの位置からも同一距離でアノード電極に集
電され感度が長手方向で一様となる。またアノード電極
4を幅方向の中央部に形成することによりシンチレータ
10および有感部2表面での光の相互反射の条件も幅方向
で対称となり有感部2へ入射する光においても幅方向で
対称となり得る。このアノード電極4はAl等の導電体に
より形成するが電極部は光に対する不感帯となるのでそ
の幅は光学的には狭くすることが望ましいが狭過ぎると
電気的信頼性が劣るため有感部2の全幅の1/100程度と
する。(有感部全幅1mmの場合で10μm程度)本実施例
ではアノード電極4の両端部にアノード電極ボンディン
グ部6を設けているが、これはボンディングワイヤー5
のボンディング部で、両端に設けることによりシンチレ
ータ10との光学的接合が長手方向でも左右対称となり、
放射線検出器としての長手方向感度分布も第4図aに示
すように左右対称となる。さらにアノード電極ボンディ
ング部6を両端に設けた場合にはボンディングワイヤー
5のボンディングはどちらを用いることも可能となる。
When radiation is incident on the scintillator 10 shown in FIG. 3, light proportional to the amount of incident radiation is emitted from the scintillator 10. This light enters the sensitive portion 2 of the semiconductor light receiving element according to the present invention shown in FIG.
And a photocurrent proportional to the amount of incident light is generated between the cathode signal pins. Therefore, this photocurrent becomes an amount proportional to the incident radiation dose, and it can be a radiation detecting element that secondarily detects the incident radiation dose by measuring the amount of the photocurrent.
When radiation is uniformly incident on the scintillator 10 in the process of detecting radiation, the scintillator 10 uniformly emits light at any part. However, in the semiconductor light receiving element, if the sensitivity of the sensitive portion 2 is not uniform, the output of the detecting element will not be uniform, resulting in a detection error. In the present invention, in order to make the sensitivity of the sensitive portion 2 uniform, a long and narrow anode electrode 4 is formed on the surface of the sensitive portion 2 at the central portion in the width direction to reach both ends in the longitudinal direction. As a result, the electrons generated in the sensitive portion (P layer) 2 are collected in the anode electrode at the same distance from any position in the longitudinal direction, and the sensitivity becomes uniform in the longitudinal direction. Further, by forming the anode electrode 4 in the center portion in the width direction, the scintillator is formed.
10 and the condition of mutual reflection of light on the surface of the sensitive portion 2 is also symmetrical in the width direction, and the light incident on the sensitive portion 2 can also be symmetrical in the width direction. The anode electrode 4 is formed of a conductor such as Al, but the electrode portion becomes a dead zone for light, so it is desirable to make its width optically narrow, but if it is too narrow, the electrical reliability will be poor and the sensitive portion 2 1/100 of the full width of. (Approximately 10 μm when the entire width of the sensitive portion is 1 mm) In this embodiment, the anode electrode bonding portions 6 are provided at both ends of the anode electrode 4, which is the bonding wire 5
In the bonding part of, the optical bonding with the scintillator 10 becomes symmetrical in the longitudinal direction by providing at both ends,
The longitudinal sensitivity distribution of the radiation detector is also symmetrical as shown in FIG. 4a. Further, when the anode electrode bonding portions 6 are provided at both ends, it is possible to use either of the bonding wires 5 for bonding.

〔発明の効果〕〔The invention's effect〕

本発明によれば、半導体受光素子の感度の一様性およ
び左右対称性が良好となり、特に感度の一様性,対称性
を厳しく要求されるX線CT用多素子放射線検出器におい
ては感度の一様性および対称性を1%以下にすることが
可能であり、再生画像のリング状アーチファクトの低減
が計れ画質が向上する。さらにX線CT装置では検出器の
小形高密度化が進んでいるが、本発明による両端部アノ
ード電極ボンディング部はどちらかでもボンディングが
出来るため、交互ボンディングによる実装密度は2倍に
向上する効果もある。
According to the present invention, the uniformity and the left-right symmetry of the sensitivity of the semiconductor light receiving element are improved, and particularly in the multi-element radiation detector for X-ray CT where the uniformity and the symmetry of the sensitivity are strictly required. It is possible to reduce the uniformity and symmetry to 1% or less, and it is possible to reduce ring-shaped artifacts in the reproduced image and improve the image quality. Further, in the X-ray CT apparatus, the size of the detector is becoming smaller and higher in density, but since either of the anode electrode bonding portions at both ends according to the present invention can be bonded, the mounting density by alternate bonding can be doubled. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の半導体受光素子の一実施例を示す傾斜
図、第2図は従来の半導体受光素子の構造を示す傾斜
図、第3図は本発明の多放射線検出器における放射線検
出素子の一実施例を示す傾斜図、第4図は本発明により
改善された多放射線検出器および従来の多放射線検出器
における放射線検出素子の長手方向の感度分布図であ
る。 1……PIN型Siウエハー、2……有感部、3……不感
部、4……アノード電極、5……ボンディングワイヤ
ー、6……アノード電極ボンディング部、7……アノー
ド信号ピン、8……絶縁基板、9……カソード信号ピ
ン、10……シンチレータ。
FIG. 1 is an inclined view showing an embodiment of a semiconductor light receiving element of the present invention, FIG. 2 is an inclined view showing the structure of a conventional semiconductor light receiving element, and FIG. 3 is a radiation detecting element in a multi-radiation detector of the present invention. FIG. 4 is an inclination diagram showing an embodiment of the present invention, and FIG. 4 is a longitudinal sensitivity distribution diagram of radiation detecting elements in the multiple radiation detector improved by the present invention and the conventional multiple radiation detector. 1 ... PIN type Si wafer, 2 ... Sensitive part, 3 ... Insensitive part, 4 ... Anode electrode, 5 ... Bonding wire, 6 ... Anode electrode bonding part, 7 ... Anode signal pin, 8 ... Insulation board, 9 Cathode signal pin, 10 Scintillator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 文男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭54−96981(JP,A) 特開 昭60−244883(JP,A) 特開 昭62−265585(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumio Kawaguchi 1-280 Higashi Koigokubo, Kokubunji, Tokyo (56) References JP-A-54-96981 (JP, A) JP-A-60 -244883 (JP, A) JP-A-62-265585 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シンチレータと矩形型の半導体受光素子と
を有し放射線を検出する放射線検出素子を複数具備する
多素子放射線検出器において、前記半導体受光素子がPI
N型Siフォトダイオードからなり、前記半導体受光素子
の長手方向の両端部にアノード電極ボンデイング部を有
し、受光有感部の短手方向の中央部分に前記両端部のア
ノード電極ボンデイング部を結ぶアノード電極が形成さ
れ、前記アノード電極ボンデイング部、前記受光有感
部、前記アノード電極のそれぞれが、前記半導体受光素
子の長手方向及び短手方向の中心軸に関して対称に形成
されたことを特徴とする多素子放射線検出器。
1. A multi-element radiation detector comprising a scintillator and a rectangular semiconductor light receiving element and comprising a plurality of radiation detecting elements for detecting radiation, wherein the semiconductor light receiving element is a PI.
An anode composed of an N-type Si photodiode, having anode electrode bonding portions at both ends in the longitudinal direction of the semiconductor light receiving element, and connecting the anode electrode bonding portions at the both ends to the center portion in the lateral direction of the light receiving sensitive portion An electrode is formed, and each of the anode electrode bonding portion, the light receiving sensitive portion, and the anode electrode is formed symmetrically with respect to a central axis in a longitudinal direction and a lateral direction of the semiconductor light receiving element. Element radiation detector.
【請求項2】前記アノード電極ボンデイング部、前記受
光有感部、前記アノード電極のそれぞれが、前記半導体
受光素子の長手方向及び短手方向の中心軸に関して、電
気的及び光学的に対称な構造を有することを特徴とする
特許請求の範囲第1項に記載の多素子放射線検出器。
2. The anode electrode bonding portion, the light receiving sensitive portion, and the anode electrode each have an electrically and optically symmetrical structure with respect to a central axis in the longitudinal direction and the lateral direction of the semiconductor light receiving element. The multi-element radiation detector according to claim 1, characterized in that it has.
【請求項3】前記半導体受光素子の外周部に不感部が、
前記半導体受光素子の長手方向及び短手方向の中心軸に
関して対称に形成されたことを特徴とする特許請求の範
囲第1項に記載の多素子放射線検出器。
3. A dead portion is provided on the outer peripheral portion of the semiconductor light receiving element,
The multi-element radiation detector according to claim 1, wherein the multi-element radiation detector is formed symmetrically with respect to a central axis in a longitudinal direction and a lateral direction of the semiconductor light receiving element.
【請求項4】前記半導体受光素子の短手方向での受光感
度分布が対称であることを特徴とする特許請求の範囲第
1項に記載の多素子放射線検出器。
4. The multi-element radiation detector according to claim 1, wherein the light receiving sensitivity distribution in the lateral direction of the semiconductor light receiving element is symmetrical.
【請求項5】前記半導体受光素子の長手方向での受光感
度分布がほぼ左右対称であることを特徴とする特許請求
の範囲第1項に記載の多素子放射線検出器。
5. The multi-element radiation detector according to claim 1, wherein the light receiving sensitivity distribution in the longitudinal direction of the semiconductor light receiving element is substantially symmetrical.
【請求項6】前記アノード電極の前記半導体受光素子の
短手方向での幅が、前記受光有感部の前記半導体受光素
子の短手方向での全幅のほぼ1/100であることを特徴と
する特許請求の範囲第1項に記載の多素子放射線検出
器。
6. The width of the anode electrode in the lateral direction of the semiconductor light receiving element is approximately 1/100 of the total width of the light receiving and sensitive portion in the lateral direction of the semiconductor light receiving element. A multi-element radiation detector according to claim 1.
JP63014444A 1988-01-27 1988-01-27 Multi-element radiation detector Expired - Fee Related JP2673808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63014444A JP2673808B2 (en) 1988-01-27 1988-01-27 Multi-element radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63014444A JP2673808B2 (en) 1988-01-27 1988-01-27 Multi-element radiation detector

Publications (2)

Publication Number Publication Date
JPH01191086A JPH01191086A (en) 1989-08-01
JP2673808B2 true JP2673808B2 (en) 1997-11-05

Family

ID=11861202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63014444A Expired - Fee Related JP2673808B2 (en) 1988-01-27 1988-01-27 Multi-element radiation detector

Country Status (1)

Country Link
JP (1) JP2673808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997052A (en) * 2010-09-08 2011-03-30 中国科学院上海技术物理研究所 Tellurium cadmium mercury infrared line column detector with curve extension electrode structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5896499A (en) * 1998-04-24 1999-12-13 Digirad Corporation Integrated radiation detector probe
JP2003084066A (en) 2001-04-11 2003-03-19 Nippon Kessho Kogaku Kk Component for radiation detector, radiation detector, and radiation-detection unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997052A (en) * 2010-09-08 2011-03-30 中国科学院上海技术物理研究所 Tellurium cadmium mercury infrared line column detector with curve extension electrode structure

Also Published As

Publication number Publication date
JPH01191086A (en) 1989-08-01

Similar Documents

Publication Publication Date Title
US6707046B2 (en) Optimized scintillator and pixilated photodiode detector array for multi-slice CT x-ray detector using backside illumination
EP1356317B1 (en) Back-illuminated photodiodes for computed tomography detectors
US6393092B1 (en) X-ray detection device and X-ray CT apparatus
JP2004536313A (en) Solid-state X-ray radiation detector module, mosaic structure thereof, imaging method, and imaging apparatus using the same
US5041729A (en) Radiation detector and manufacturing process thereof
JPH11505069A (en) Coplanar X-ray photodiode assembly
JP2009511104A (en) Computer tomography detector using thin circuit
JP2003084066A (en) Component for radiation detector, radiation detector, and radiation-detection unit
KR20080106453A (en) Radiation detector array
JP4482253B2 (en) Photodiode array, solid-state imaging device, and radiation detector
JP2673808B2 (en) Multi-element radiation detector
JP2001509317A (en) Radiation detection device sealing method and radiation detection device manufactured by the method
JPH08187239A (en) X-ray ct apparatus
JPS6263880A (en) Radiation detector
JPH11295432A (en) Solid detector for ct
JPH08213585A (en) Photodiode array
JP3975091B2 (en) Radiation detector
JP2004273747A (en) Photodetector and radiation detecting device
US6133574A (en) Radiation-electrical transducer
US6586742B2 (en) Method and arrangement relating to x-ray imaging
JPH0836059A (en) Radiation detector
JP4067197B2 (en) Solid state detector for X-ray CT system
JP2001051064A (en) Multi-slice x-ray detector and x-ray ct device using it
JPH06109855A (en) X-ray detector
JP2003232861A (en) Radiation detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees