JP3029861B2 - Pressure swing type H lower 2 S removal method - Google Patents

Pressure swing type H lower 2 S removal method

Info

Publication number
JP3029861B2
JP3029861B2 JP2312806A JP31280690A JP3029861B2 JP 3029861 B2 JP3029861 B2 JP 3029861B2 JP 2312806 A JP2312806 A JP 2312806A JP 31280690 A JP31280690 A JP 31280690A JP 3029861 B2 JP3029861 B2 JP 3029861B2
Authority
JP
Japan
Prior art keywords
pressure
alumina
gas
temperature
pressure swing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2312806A
Other languages
Japanese (ja)
Other versions
JPH04187207A (en
Inventor
順 泉
敬 森本
博之 蔦谷
公一 荒木
一晃 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2312806A priority Critical patent/JP3029861B2/en
Publication of JPH04187207A publication Critical patent/JPH04187207A/en
Application granted granted Critical
Publication of JP3029861B2 publication Critical patent/JP3029861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガス中のH2Sの除去方法に関し、特に石油精
製プラントのプロセスガスからのH2S除去、石炭ガス化
プラント生成ガスからのH2S除去、地熱発電プラントオ
フガスからのH2S除去等の各種流体からのH2S除去に有利
に適用できる方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for removing H 2 S in a gas, and more particularly to a method for removing H 2 S from a process gas of a petroleum refining plant, and a method of removing H 2 S from a gas produced by a coal gasification plant. H 2 S removal, relates to a method which can be advantageously applied to H 2 S removal from various fluids such as H 2 S removal from a geothermal power plant off-gas.

〔従来の技術〕[Conventional technology]

各種プロセス流体に含まれプロセス中の触媒の被毒、
機器材の腐食、環境放出後の大気汚染の原因となるH2S
の除去については各種プロセスが提案されているが、こ
の中から代表的な方法として、(i)固体酸化物系脱硫
剤を使用する方法、(ii)H2S吸収剤を使用する液相吸
収方法について説明する。
Poisoning of catalyst during process included in various process fluids,
H 2 S causes corrosion of equipment and air pollution after release to the environment
Various processes have been proposed for the removal of water. Typical methods are (i) a method using a solid oxide type desulfurizing agent, and (ii) a liquid phase absorption using an H 2 S absorbent. The method will be described.

(i)固体脱硫剤法 酸化亜鉛、酸化鉄等の金属酸化物とH2Sを100℃以上の
高温で接触させると、金属をMeで表わして、 MeO+H2S→MeS+H2O の硫化反応でS分は固定される。
(I) Solid desulfurizing agent method When H 2 S is brought into contact with metal oxides such as zinc oxide and iron oxide at a high temperature of 100 ° C or higher, the metal is represented by Me, and the sulfurization reaction of MeO + H 2 S → MeS + H 2 O The S component is fixed.

排ガス中のH2S濃度が低濃度の場合は再生することな
く固体脱硫剤は使い捨て方式を採用している場合が多
い。これに対し、排ガス中のH2S濃度が高濃度の場合は
得られた硫化物を高温空気条件で、更に の反応によりSO2として除去し、金属は金属酸化物の形
で再生する方法が採られている。
When the H 2 S concentration in the exhaust gas is low, the solid desulfurizing agent often adopts a disposable method without regeneration. On the other hand, when the H 2 S concentration in the exhaust gas is high, the obtained sulfide is further subjected to high-temperature air conditions. Is removed as SO 2 by the above reaction, and the metal is regenerated in the form of a metal oxide.

すなわち、水蒸気改質炉ではZnO,FeO等の金属酸化物
を使用して硫化物を回収し、使用した吸着剤は再成する
ことなく使用後廃棄されている。一方、石炭ガス化では
廃棄吸着剤が多量になるため、高温空気による酸化反応
でS分をSO2として除去して再使用している。
That is, in a steam reforming furnace, sulfides are recovered using metal oxides such as ZnO and FeO, and the used adsorbent is discarded after use without being regenerated. On the other hand, in coal gasification, a large amount of waste adsorbent is used. Therefore, S is removed as SO 2 by an oxidation reaction using high-temperature air and reused.

(ii)液相吸収法 液相吸収法ではトリエタノールアミンのようなH2Sに
対する選択性のある吸収液を利用して除去する。この方
法は、更に化学吸収法と物理吸収法に大別され、物理吸
収法では高圧で吸収した後、大気圧に減圧してH2Sを放
出し、化学吸収法では低温で吸収した後、高温でH2Sを
放出して吸収液の再生を計っている。この方法は石油精
製プラントのプロセス流体の脱硫に用いられている。
(Ii) Liquid phase absorption method In the liquid phase absorption method, removal is performed using an absorbing solution having selectivity for H 2 S such as triethanolamine. This method is further divided into chemical absorption method and physical absorption method.In the physical absorption method, after absorbing at a high pressure, the pressure is reduced to atmospheric pressure to release H 2 S, and after absorbing at a low temperature in the chemical absorption method, H 2 S is released at high temperature to regenerate the absorbing solution. This method has been used for desulfurization of process fluids in petroleum refineries.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

H2Sは反応性に富み、かつ極めて有害であることか
ら、その処理は煩雑であるが、その課題はプロセス毎に
違うので前述の(i)固体脱硫剤法、(ii)液相吸収法
の各々に分けて説明する。
Since H 2 S is rich in reactivity and extremely harmful, its treatment is complicated. However, since the problems differ depending on the process, the above-mentioned (i) solid desulfurizing agent method and (ii) liquid phase absorption method Will be described separately.

(i)固体脱硫剤法 この方法は常に高温での操作が前提となる。通常、石
油精製、水蒸気改質、石炭ガス化等ではプロセス流体が
高温なため、熱的損失はないが、地熱オフガスのような
低温ガスに適用する場合、プロセス流体の昇温という多
大な熱量を必要とする。
(I) Solid desulfurizing agent method This method always requires operation at a high temperature. Normally, in the case of petroleum refining, steam reforming, coal gasification, etc., there is no thermal loss because the process fluid is hot, but when applied to low-temperature gas such as geothermal off-gas, a large amount of heat such as temperature rise of the process fluid is required. I need.

又、上記高温プロセス流体に適用する場合も、低濃度
H2Sならば使い捨てが普通なので極めてコストの高いも
のとなるし、高濃度H2Sでは処理時の硫化反応と再生の
酸化反応を充填剤が数時間のサイクルで繰り返すため、
その強度低下が著しい。
Also, when applied to the above high temperature process fluid, low concentration
In the case of H 2 S, it is extremely expensive because it is disposable, and in the case of high concentration H 2 S, the filler repeats the sulfurization reaction during treatment and the oxidation reaction during regeneration in a cycle of several hours,
The strength is significantly reduced.

(ii)液相吸収法 この方法は低温での操作が前提となるため、上記高温
プロセス流体では熱交換による降温操作が必要であり、
脱硫プロセスの後流で高温操作を必要する場合には熱損
失が問題である。
(Ii) Liquid phase absorption method Since this method is premised on operation at low temperature, the above-mentioned high temperature process fluid requires a temperature lowering operation by heat exchange.
Heat loss is a problem when high temperature operation is required downstream of the desulfurization process.

通常、吸収液はアルカリ性を示し、CO2等の酸性ガス
をプロセス流体が含む場合には選択的なH2Sの吸収は難
しい。
Usually, the absorbing liquid shows alkalinity, and it is difficult to selectively absorb H 2 S when the process fluid contains an acidic gas such as CO 2 .

又、吸収液は高価であり、脱硫工程での吸収液の劣
化、吸収液の後流への飛散等のため一定の吸収液の補充
が必要である。
Further, the absorption liquid is expensive, and it is necessary to replenish the absorption liquid for a certain amount due to deterioration of the absorption liquid in the desulfurization step, scattering of the absorption liquid to the downstream side, and the like.

本発明は上記技術水準に鑑み、従来技術におけるよう
な不具合のないH2S除去方法を提供しようとするもので
ある。
The present invention has been made in view of the above-mentioned state of the art, and aims to provide an H 2 S removal method free from defects as in the related art.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は上記課題を解決すべく鋭意研究の結果、
H2Sを含有する気体を相対的に加圧条件でγ−アルミナ
と接触させて吸着除去した後、相対的に減圧条件下で吸
着したH2Sを離脱して吸着剤を連続的に再生する方法を
見出し、更に、この方法ではわずかではあるが、H2S吸
着時にH2Sの一部が吸着剤に固体状S分として析出し、
4,000時間程度の連続操作で吸着剤が劣化するが、この
吸着剤を220℃以上に昇温することで気体状S分として
除去し再生し得ることを確認し、相当長期にわたる吸着
剤の無補充で操作しうることを確認した。
The present inventors have conducted intensive studies to solve the above problems,
After the gas containing H 2 S is contacted with γ-alumina under relatively pressurized conditions and adsorbed and removed, the adsorbent is continuously regenerated by releasing the adsorbed H 2 S under relatively reduced pressure conditions In this method, a small amount of H 2 S was precipitated as a solid S component in the adsorbent during H 2 S adsorption,
The adsorbent is deteriorated by continuous operation for about 4,000 hours, but it has been confirmed that the adsorbent can be removed and regenerated as gaseous S by raising the temperature of the adsorbent to 220 ° C or higher. Operation was confirmed.

本発明は上記知見に基いて完成されたものであって、
本発明は (1) H2Sを含有する気体を相対的に加圧条件下でγ
−アルミナと接触させてH2Sを吸着除去し、相対的に減
圧条件で吸着したH2Sを離脱して吸着剤を再生する圧力
スイング式H2S除去方法 (2) 請求項(1)の工程での長期にわたる圧力スイ
ング式H2S除去方法で、徐々にS分が蓄積したγ−アル
ミナを220℃以上の温度に昇温してS分を離脱させた
後、降温して再び長期にわたる圧力スイング式H2S除去
方法を実施する熱再生を併用した圧力スイング式H2S除
去方法である。
The present invention has been completed based on the above findings,
The present invention relates to (1) a method in which a gas containing H 2 S
- is contacted with alumina H 2 S removed by adsorption, relatively decompression condition pressure swing H 2 S removal process to regenerate the adsorbent and leave the H 2 S adsorbed by (2) claim (1) In the long-term pressure swing type H 2 S removal method in the step of, after the γ-alumina in which the S component is gradually accumulated is heated to a temperature of 220 ° C. or more to release the S component, the temperature is lowered and the long-term pressure swing H 2 S removal process over a pressure swing H 2 S removal process in combination with thermal regeneration to implement.

すなわち、本発明は圧力スイング吸着法による高効率
なH2S除去を基本として、数千時間に1回の昇温で析出
したS分を昇華除去することで相当長期にわたる吸着剤
の無補充条件を設定しうるようにしたものである。
In other words, the present invention is based on the high-efficiency H 2 S removal by the pressure swing adsorption method, and sublimates and removes the S component precipitated at a temperature rise once every several thousand hours, so that the adsorbent is not replenished for a considerably long time. Can be set.

これはγ−アルミナを吸着剤に選定したことの長所で
あり、他の吸着剤として、例えばゼオライト系吸着剤で
は吸着したH2Sは減圧工程で離脱しにくく、更に昇温に
よるS分の除去はより高温が必要であり、耐熱性に乏し
いこともあって使用に耐えない。又、他の吸着剤として
活性炭についてもゼオライトと同様である。
This is an advantage of selecting γ-alumina as the adsorbent. As other adsorbents, for example, with a zeolite-based adsorbent, the adsorbed H 2 S is difficult to be released in the decompression step, and furthermore, the removal of S content by raising the temperature Requires higher temperature and is not usable due to poor heat resistance. Activated carbon is also the same as zeolite as another adsorbent.

シリカゲル及びゼオライトの一種であるが、ほぼ100w
t%シリカ化合物であるシリカライトについては、室温
では確かに圧力スイング吸着用吸着剤として昇温再生に
ついてはほぼγ−アルミナと同様な性能が期待できる
が、50℃以上での吸着量の低下が著しく高温のプロセス
流体用としては適さない。
It is a kind of silica gel and zeolite, but almost 100w
At room temperature, silicalite, which is a t% silica compound, can be expected to have almost the same performance as γ-alumina at room temperature as an adsorbent for pressure swing adsorption. It is not suitable for extremely high temperature process fluids.

〔作用〕[Action]

本発明においては、吸着剤としてγ−アルミナを使用
してH2S含有ガスを0〜400℃で吸着圧力大気圧以上で吸
着除去した後、再生圧力を大気圧以下の減圧に導いて再
生して連続的にH2Sを分離除去することができる。吸着
圧力Paと再生圧力Pdの設定については、効率的に分離す
るためには圧力スィング法の提唱者でSkarstromが提出
しているように、パージガス量GPを、入口ガス量G0との
間で とするのは当然である。
In the present invention, after the H 2 S-containing gas is adsorbed and removed at 0 to 400 ° C. at an adsorption pressure of at least atmospheric pressure using γ-alumina as an adsorbent, the regeneration pressure is reduced to less than atmospheric pressure for regeneration. Thus, H 2 S can be continuously separated and removed. Between about setting of the suction pressure Pa and the regeneration pressure Pd, as Skarstrom in advocate pressure swing method for efficient separation is submitted, the purge gas amount G P, the inlet gas amount G 0 so It is natural that.

なお、パージガスとは相対的に減圧条件下、例えば真
空排気条件下、において,吸着時とは流れが向流するよ
うに吸着塔に系外から大気又は浄化ガスを採り入れて吸
着塔内を流過させ、吸着塔内のH2S分圧を急速に減少さ
せて吸着剤からH2Sを離脱させ易くするためのガスであ
る。吸着塔入口ガス量をG0,H2S除去ガスをG1、パージガ
ス量をGPとすると、パージ率Rは、 で定義される。
In addition, under a relatively reduced pressure condition, for example, a vacuum evacuation condition, a purge gas is introduced into the adsorption tower from the outside of the system by passing air or a purified gas so that the flow is countercurrent to that during the adsorption, and flows through the adsorption tower. This is a gas for rapidly reducing the partial pressure of H 2 S in the adsorption tower to easily separate H 2 S from the adsorbent. Assuming that the amount of gas at the inlet of the adsorption tower is G 0 , the amount of H 2 S removal gas is G 1 , and the amount of purge gas is GP , the purge rate R is Is defined by

通常、パージガスを少くしてH2Sを高濃度に濃縮する
のが目的なのでGPは少くする程好ましくPa/Pd≧5以上
として少くとも5倍以上に濃縮するのが望ましいであろ
う。
Normally, since the purpose is to reduce the purge gas to concentrate H 2 S at a high concentration, it is preferable to reduce GP so that Pa / Pd ≧ 5 or more, and it is desirable to concentrate at least 5 times or more.

本発明方法で少くとも4,000時間程度の連続再生は可
能であるが徐々に吸着剤にS分が析出して吸着量が減少
し、それ以上の操作は不可能となる。圧力スイング法で
は変動費が極めて少ないため、吸着剤を使い捨てとして
もかまわないが本発明者等はこの点についての改善とし
て、220℃以上の高温で吸着剤に析出したS分は昇華離
脱して降温した後は更に数千時間の圧力スイング操作が
可能となることを確認している。
According to the method of the present invention, continuous regeneration for at least about 4,000 hours is possible, but the S component is gradually precipitated on the adsorbent, and the amount of adsorption is reduced, so that further operation becomes impossible. In the pressure swing method, since the cost of variation is extremely small, the adsorbent may be disposable. However, the present inventors have made an improvement in this regard as follows. It has been confirmed that the pressure swing operation can be further performed for several thousand hours after the temperature is lowered.

以上、本発明によれば、(i)圧力スイング式吸着法
による4,000時間の操作、(ii)220℃以上の昇温による
S分の昇華除去とその後の降温を繰り返して相当長期に
わかる吸着剤無補充のH2S除去技術が提供されることと
なる。
As described above, according to the present invention, the adsorbent which can be obtained for a considerably long time by repeating (i) the operation for 4,000 hours by the pressure swing adsorption method, (ii) the sublimation removal of S by the temperature rise of 220 ° C. or more and the subsequent temperature decrease. so that the H 2 S removal technique no replenishment is provided.

〔実施例〕〔Example〕

以下、本発明の一実施態様を第1図によって説明す
る。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.

主プラント1はH2Sを5,000ppm含有する流体を発生
し、該流体はN2:90vol%,CO2:9.5vol%を共存してい
る。主プラント1を出た流体は流路2から圧縮機3によ
り1.2atm.から40atm.までの範囲で圧縮され、圧縮され
た流体は流路4からバルブ5aを通してγ−アルミナ(ベ
ーマイト)6を充填された吸着塔7aに至る。
The main plant 1 generates a fluid containing 5,000 ppm of H 2 S, and the fluid coexists with N 2 : 90 vol% and CO 2 : 9.5 vol%. The fluid exiting the main plant 1 is compressed from the passage 2 by the compressor 3 in a range of 1.2 atm. To 40 atm. The compressed fluid is filled with γ-alumina (boehmite) 6 from the passage 4 through the valve 5a. To the absorbed adsorption tower 7a.

吸着塔7aでは充填されたγ−アルミナ6によりH2Sは
除去され、浄化されたガスがバルブ8aから流路9を通っ
て系外に放出される。
In the adsorption tower 7a, H 2 S is removed by the filled γ-alumina 6, and the purified gas is discharged from the valve 8a through the flow path 9 to the outside of the system.

この時、吸着塔7bはH2Sでγ−アルミナ6が飽和した
状態にあり、バルブ5b,8bを閉状態としてバルブ10b、流
路11から、大気圧以上の再生では流路12から放出され、
大気圧以下の再生では真空ポンプ13により減圧条件でH2
Sの除去が計られる。
At this time, the adsorption tower 7b is in a state in which the γ-alumina 6 is saturated with H 2 S, the valves 5b and 8b are closed, and the gas is discharged from the valve 10b and the flow path 11 from the flow path 12 for regeneration at a pressure higher than the atmospheric pressure. ,
Under a reduced pressure by a vacuum pump 13 is reproduced below atmospheric pressure H 2
S removal is measured.

この時、減圧弁15、バルブ16、バルブ14bを通して浄
化ガスの一部を吸着塔7bに向流減圧条件で流過(すなわ
ち、パージ)すると、吸着塔7b内H2Sの分圧が急速に低
下して効率的にH2Sは脱着する。
At this time, when a part of the purified gas flows through the pressure reducing valve 15, the valve 16 and the valve 14b to the adsorption tower 7b under the countercurrent depressurization condition (that is, purge), the partial pressure of H 2 S in the adsorption tower 7b rapidly increases. H 2 S desorbs efficiently as it decreases.

パージガス流量をGP(Nm3/h)、入口ガス量をG0(Nm3
/h)、吸着圧力Pa(atm)、再生圧力Pd(atm)とする
と、Skarstrom則により、GP≧Pd/Pa×G0が目安となる
が、式の右辺の値の20%増しを操作時の実際のパージ量
とした。
Set the purge gas flow rate to G P (Nm 3 / h) and the inlet gas flow to G 0 (Nm 3
/ h), operating the adsorption pressure Pa (atm), if the regeneration pressure Pd (atm), the Skarstrom law, but G P ≧ Pd / Pa × G 0 is a measure of 20% more of the values on the right side of the equation The actual purge amount at the time was used.

流路12及び真空ポンプ13を通った脱着H2Sガスは流路1
8からH2Sの代表的固定法であるH2Sの部分酸化、すわな
ちH2S+1/2O2→S↓+H2Oにより固体Sとするクラウス
反応器19に導かれる。こゝでは吸着塔入口ガスのH2S濃
度5,000ppmに対して5vol%以上に減容濃縮されているた
め、処理費用は大幅に低下される。
The desorbed H 2 S gas that has passed through the flow path 12 and the vacuum pump 13
8 H 2 S partial oxidation of a typical fixation of H 2 S from the guided Klaus reactor 19, the solid S by Nachi Suwa H 2 S + 1 / 2O 2 → S ↓ + H 2 O. In this case, since the H 2 S concentration of the gas at the inlet of the adsorption tower is reduced to 5 vol% or more with respect to the H 2 S concentration of 5,000 ppm, the treatment cost is greatly reduced.

この後、H2Sを除去された浄化ガスは流路20から系外
に放出される。
Thereafter, the purified gas from which H 2 S has been removed is discharged from the flow path 20 to the outside of the system.

この操作を続けるとγ−アルミナ6の表面に徐々にS
分が析出するので、バルブ17、ヒータ18を通じてS分で
劣化したγ−アルミナが充填されている吸着塔7cに220
℃以上の浄化ガスを流過させる。このようにすることに
よりγ−アルミナ6の表面のS分は昇華する。この操作
は4,000時間に1回程度行なえばよい。
When this operation is continued, the surface of γ-alumina 6 gradually becomes S
Γ-alumina, which has been degraded by the S component, is passed through the valve 17 and the heater 18 to the adsorption tower 7c.
Let the purified gas of ℃ or more flow. By doing so, the S component on the surface of γ-alumina 6 is sublimated. This operation may be performed about once every 4,000 hours.

再生が終了するとヒータ18を切って低温ガスを流過し
て吸着塔7cを冷却し、他の吸着塔7a,7bのγ−アルミナ
が劣化して上記操作が必要な時期まで待機することとな
る。
When the regeneration is completed, the heater 18 is turned off to flow the low-temperature gas to cool the adsorption tower 7c, and the γ-alumina of the other adsorption towers 7a and 7b is deteriorated, and the operation is required to wait until the above operation is necessary. .

以上の実施態様の効果を確認するため、3,000Nm3/hの
H2Sガスを含有するプロセス流体ガスからのH2Sの除去を
行なうべく、本発明の圧力スィング法としての吸着剤使
用量1.5トン(0.5トン/塔×3塔)の昇温S分昇華法を
併用した装置を取りつけて実施した。
In order to confirm the effect of the above embodiment, 3,000 Nm 3 / h
In order to remove H 2 S from the process fluid gas containing H 2 S gas, the pressure swing method according to the present invention uses 1.5 tons (0.5 tons / tower × 3 towers) of the adsorbent to raise the temperature and S sublimation. The test was carried out by attaching a device using the method.

事前に、吸着剤としてγ−アルミナ以外にNa−X型ゼ
オライト、活性炭、シリカライト、シリカゲルのS分蓄
積性を検討したが、Na−X型ゼオライト、活性炭は極め
て短期にS分が析出し、昇温によるS分除去でも300℃
以上の高温再生が必要であった。このため、γ−アルミ
ナ、シリカライト、シリカゲルに劣ると判断し、上記装
置での検討にはγ−アルミナとシリカゲルを候補として
使用した。
In advance, in addition to γ-alumina as an adsorbent, Na-X type zeolite, activated carbon, silicalite, the S content accumulation of silica gel was examined, but Na-X type zeolite and activated carbon precipitate S component in a very short time, 300 ° C even when removing S content by heating
The above high-temperature regeneration was necessary. For this reason, it was judged to be inferior to γ-alumina, silicalite, and silica gel, and γ-alumina and silica gel were used as candidates for the examination with the above apparatus.

第2図は吸着圧力:1.2atm.、再生圧力:0.5atm.での圧
力スィング条件における吸着塔温度(x軸)と脱硫率
(y軸)の関係を示したものである。脱硫率は で定義した。図中、γ−アルミナは○印、シリカゲルは
●印で示している。
FIG. 2 shows the relationship between the temperature of the adsorption tower (x-axis) and the desulfurization rate (y-axis) under the pressure swing conditions at an adsorption pressure of 1.2 atm. And a regeneration pressure of 0.5 atm. The desulfurization rate is Defined. In the figure, γ-alumina is indicated by ○ and silica gel is indicated by ●.

γ−アルミナでは0〜300℃の広い温度域で100%近い
脱硫性を示す。これに対し、シリカゲルは60℃以下では
γ−アルミナに匹敵する高い脱硫率を示すが高温では急
速に脱硫率が低下している。
γ-alumina exhibits nearly 100% desulfurization in a wide temperature range of 0 to 300 ° C. On the other hand, silica gel shows a high desulfurization rate comparable to that of γ-alumina at 60 ° C. or lower, but rapidly decreases at high temperatures.

第3図は温度25℃、パージ率10%、再生圧力1atm.で
のγ−アルミナの吸着圧力(x軸)と脱硫率(y軸)の
関係を示したものである。
FIG. 3 shows the relationship between the adsorption pressure (x-axis) of γ-alumina and the desulfurization rate (y-axis) at a temperature of 25 ° C., a purge rate of 10%, and a regeneration pressure of 1 atm.

10atm.以上の高圧で脱硫率100%に達し、Skarstrom則
GP/G0=0.1≧Pd/Pa=0.1をほぼ満足していることが判
り、高圧域でのH2Sの分離が良好に行なわれているのが
判る。
The desulfurization rate reaches 100% at high pressure of 10atm.
It can be seen that GP / G 0 = 0.1 ≧ Pd / Pa = 0.1 was almost satisfied, indicating that H 2 S was separated well in the high pressure range.

第4図は温度25℃、吸着圧力1.2atm.、パージ率とし
て再生圧力0.1atm.以上ではパージ率20%、0.1atm.以下
ではパージ率0としたγ−アルミナの再生圧力(x軸)
と脱硫率(y軸)の関係を示したものである。大気圧近
傍に吸着圧力を設定した場合、0.2atm.以下の脱着圧力
で脱硫率は100%に達している。すなわち、第4図から
流体圧力が大気圧近傍であれば充分な真空再生で高い脱
硫率の得られることが判る。
Fig. 4 shows the regeneration pressure of γ-alumina at 25 ° C, adsorption pressure of 1.2atm., Purge rate of 20% for regeneration pressure of 0.1atm. Or higher and purge rate of 0 for 0.1atm. Or lower (x-axis).
It shows the relationship between and the desulfurization rate (y-axis). When the adsorption pressure is set near atmospheric pressure, the desulfurization rate reaches 100% at a desorption pressure of 0.2 atm. Or less. That is, it can be seen from FIG. 4 that if the fluid pressure is near atmospheric pressure, a high desulfurization rate can be obtained by sufficient vacuum regeneration.

〔発明の効果〕〔The invention's effect〕

吸着剤の補充を殆ど伴なわず、非常にわずかな消費電
力で高脱硫率が達成される。
High desulfurization rates are achieved with very little power consumption with little replenishment of adsorbent.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のフローシートの概略図、第2図は吸着
塔温度と脱硫率の関係を示す図表、第3図は吸着圧力と
脱硫率の関係を示す図表、第4図は再生圧力と脱硫率の
関係を示す図表である。
FIG. 1 is a schematic view of the flow sheet of the present invention, FIG. 2 is a chart showing the relationship between the adsorption tower temperature and the desulfurization rate, FIG. 3 is a chart showing the relationship between the adsorption pressure and the desulfurization rate, and FIG. 3 is a table showing the relationship between the ratio and the desulfurization rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒木 公一 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 大嶋 一晃 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 平2−126936(JP,A) 特開 平2−119921(JP,A) 特開 昭62−110744(JP,A) 特開 昭59−203625(JP,A) 特公 昭51−23470(JP,B2) 特公 昭48−20102(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B01D 53/02 - 53/053 B01D 53/34 - 53/72 B01J 20/08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Araki 1-1, Akunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Kazuaki Oshima 1-1, Akunoura-cho, Nagasaki-shi, Nagasaki (56) References JP-A-2-126936 (JP, A) JP-A-2-119921 (JP, A) JP-A-62-1110744 (JP, A) JP-A-59 -203625 (JP, A) JP-B 51-23470 (JP, B2) JP-B 48-20102 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/02- 53/053 B01D 53/34-53/72 B01J 20/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】H2Sを含有する気体を相対的に加圧条件下
でγ−アルミナと接触させてH2Sを吸着除去し、相対的
に減圧条件下で吸着したH2Sを離脱してγ−アルミナを
再生することを特徴とする圧力スイング式H2S除去方
法。
1. A H 2 S is contacted with relatively pressurized with pressure conditions γ- alumina gas containing by H 2 S was adsorbed and removed, leaving the H 2 S adsorbed at relatively reduced pressure condition A pressure swing type H 2 S removal method, wherein γ-alumina is regenerated.
【請求項2】請求項(1)の工程での長期にわたる圧力
スイング式H2S除去方法で徐々にS分が蓄積したγ−ア
ルミナを220℃以上の温度に昇温してS分を離脱させた
後、降温して再び長期にわたる圧力スイング式H2S除去
方法を実施することを特徴とする熱再生を併用した圧力
スイング式H2S除去方法。
2. The γ-alumina in which the S content is gradually accumulated by the long-term pressure swing type H 2 S removal method in the step (1) is heated to a temperature of 220 ° C. or more to release the S content. after, pressure swing H 2 S removal method in combination with heat regeneration which comprises carrying out the re prolonged pressure swing H 2 S removal method and cooled.
JP2312806A 1990-11-20 1990-11-20 Pressure swing type H lower 2 S removal method Expired - Fee Related JP3029861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312806A JP3029861B2 (en) 1990-11-20 1990-11-20 Pressure swing type H lower 2 S removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312806A JP3029861B2 (en) 1990-11-20 1990-11-20 Pressure swing type H lower 2 S removal method

Publications (2)

Publication Number Publication Date
JPH04187207A JPH04187207A (en) 1992-07-03
JP3029861B2 true JP3029861B2 (en) 2000-04-10

Family

ID=18033637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312806A Expired - Fee Related JP3029861B2 (en) 1990-11-20 1990-11-20 Pressure swing type H lower 2 S removal method

Country Status (1)

Country Link
JP (1) JP3029861B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925158A (en) * 1997-12-19 1999-07-20 Praxair Technology, Inc. Gas recycle for float glass system

Also Published As

Publication number Publication date
JPH04187207A (en) 1992-07-03

Similar Documents

Publication Publication Date Title
JP2988625B2 (en) Temperature swing adsorption method
JP6575050B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5906074B2 (en) Hydrogen production system
JP3237795U (en) Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle
AU2017395075B2 (en) Carbon dioxide recovery method and recovery apparatus
EP2069231B1 (en) Process for removal of metal carbonyls from a synthesis gas stream
KR100974521B1 (en) Method and apparatus for gas purification
JP5614808B2 (en) Helium gas purification method and purification apparatus
CA2782944C (en) Process for the removal of sulfur compounds from gas streams
JP3853398B2 (en) Carbon dioxide recovery method and carbon dioxide adsorbent
JPH1085588A (en) Treatment agent for gas refining and gas refining device
EP3406318A1 (en) Carbon dioxide separation/recovery device, combustion system using same, thermal power generation system using same, and method for separating and recovering carbon dioxide
JP3029861B2 (en) Pressure swing type H lower 2 S removal method
JPS59203625A (en) Removal of nitrogen oxide from gas mixture containing nitrogen oxide by pressure change adsorption
JP4101955B2 (en) Ammonia purification method
SU1582975A3 (en) Method of purifying gases from mercaptanes
JPH04187208A (en) Pressure swinging-type h2s removing method
JP2004161503A (en) Gas purification method
JPH07505856A (en) Method and apparatus for recovering sulfur from a gas stream containing hydrogen sulfide
JP4322171B2 (en) Gas processing method and apparatus
CN115945024A (en) Flue gas desulfurization and denitrification and adsorbent regeneration method and device, and flue gas combined desulfurization and denitrification method and device
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS62114627A (en) Apparatus for absorbing and separating gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees