JPH04187207A - Pressure swinging-type h2s removing method - Google Patents

Pressure swinging-type h2s removing method

Info

Publication number
JPH04187207A
JPH04187207A JP2312806A JP31280690A JPH04187207A JP H04187207 A JPH04187207 A JP H04187207A JP 2312806 A JP2312806 A JP 2312806A JP 31280690 A JP31280690 A JP 31280690A JP H04187207 A JPH04187207 A JP H04187207A
Authority
JP
Japan
Prior art keywords
alumina
pressure
temperature
gamma
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2312806A
Other languages
Japanese (ja)
Other versions
JP3029861B2 (en
Inventor
Jun Izumi
順 泉
Takashi Morimoto
敬 森本
Hiroyuki Tsutaya
博之 蔦谷
Koichi Araki
荒木 公一
Kazuaki Oshima
大嶋 一晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2312806A priority Critical patent/JP3029861B2/en
Publication of JPH04187207A publication Critical patent/JPH04187207A/en
Application granted granted Critical
Publication of JP3029861B2 publication Critical patent/JP3029861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To obtain high desulfurization efficiency with slight consumption of power by bringing a gas contg. H2S into contact with gamma-alumina under pressure to adsorb H2S, and desorbing the adsorbed H2S under reduced pressure to regenerate the gamma-alumina. CONSTITUTION:A gas contg. H2S is brought into contact with the gamma-alumina 6 packed in adsorption towers 7a-7c under pressure to adsorb the H2S and the adsorbed H2S is desorbed under reduced pressure to regenerate the gamma-alumina. The gamma-alumina 6, on which S is gradually deposited in the pressure swinging- type H2S removal process over a long period, is heated to a high temp. to release the S and then cooled, and the pressure swinging-type H2S removal is again performed over a long period. As a result, the adsorbent is hardly replaced, and high desulfurization efficiency is attained with slight consumption of power.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 □本発明はガス中のll2Sの除去方法に関し、特に石
油精製プラントのプロセスガスからのH2S除去、石炭
ガス化プラント生成ガスからのH2S除去、地熱発電プ
ラントオフガスからのH2S除去等の各種流体からの1
428除去に有利に適用できる方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] □The present invention relates to a method for removing ll2S from gas, and in particular, H2S removal from process gas of an oil refinery plant, H2S removal from coal gasification plant gas, 1 from various fluids such as H2S removal from geothermal power plant off-gas
The present invention relates to a method that can be advantageously applied to 428 removal.

〔従来の技術〕[Conventional technology]

各種プロセス流体に含まれプロセス中の触媒の被毒、機
器材の腐食、環境放出後の大気汚染の原因となるH□S
の除去については各種プロセスが提案されているが、こ
の中から代表的な方法として、(i)固体酸化物系脱硫
剤を使用する方法、(ii)  H2S吸収剤を使用す
る液相吸収方法について説明する。
H□S is contained in various process fluids and causes poisoning of catalysts during processes, corrosion of equipment materials, and air pollution after release into the environment.
Various processes have been proposed for the removal of H2S, but the representative methods include (i) a method using a solid oxide desulfurization agent, and (ii) a liquid phase absorption method using an H2S absorbent. explain.

(i)固体脱硫剤法 酸化亜鉛、酸化鉄等の金属酸化物とH2Sを100℃以
上の高温で接触させると、金属をMeで表わして、 Men + H2S−+MeS 十820の硫化反応で
8分は固定される。
(i) Solid desulfurization agent method When a metal oxide such as zinc oxide or iron oxide is brought into contact with H2S at a high temperature of 100°C or higher, a sulfidation reaction of Men + H2S- + MeS 1820 takes place in 8 minutes, where the metal is represented by Me. is fixed.

排ガス中の825m度が低濃度の場合は再生することな
く固体脱硫剤は使い捨て方式を採用している場合が多い
。これに対し、排ガス中のH2S濃度が高濃度の場合は
得られた硫化物を高温空気条件で、更に の反応によりS02として除去し、金属は金属酸化物の
形で再生する方法が採られている。
When the concentration of 825m degrees in the exhaust gas is low, the solid desulfurization agent is often discarded without being regenerated. On the other hand, when the H2S concentration in the exhaust gas is high, a method is adopted in which the obtained sulfide is removed as S02 by further reaction under high temperature air conditions, and the metal is regenerated in the form of metal oxide. There is.

すなわち、水蒸気改質炉ではZnO,Pen等の金属酸
化物を使用して硫化物を回収し、使用した吸着剤は可成
することなく使用後廃棄されている。一方、石炭ガス化
では廃棄吸着剤が多量になるため、高温空気による酸化
反応で8分を802として除去して再使用している。
That is, in a steam reforming furnace, metal oxides such as ZnO and Pen are used to recover sulfides, and the adsorbents used are discarded after use without being regenerated. On the other hand, in coal gasification, a large amount of waste adsorbent is produced, so 8 minutes is removed as 802 by an oxidation reaction using high-temperature air and reused.

(ii )液相吸収法 液相吸収法ではトリエタノールアミンのような)+23
に対する選択性のある吸収液を利用して除去する。この
方法は、更に化学吸収法と物理吸収法に大別され、物理
吸収法では高圧で吸収した後、大気圧に減圧してH2S
を放出し、化学吸収法では低温で吸収した後、高温でH
2Sを放出して吸収液の再生を計っている。この方法は
石油精製プラントのプロセス流体の脱硫に用いられてい
る。
(ii) Liquid phase absorption method In liquid phase absorption method, +23
It is removed using an absorption liquid that is selective to This method is further divided into chemical absorption method and physical absorption method. In the physical absorption method, H2S is absorbed by high pressure and then reduced to atmospheric pressure.
In the chemical absorption method, after absorbing at low temperature, H is released at high temperature.
2S is released to regenerate the absorption liquid. This method is used for desulfurization of process fluids in petroleum refinery plants.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

82Sは反応性に富み、かつ極めて有害であることから
、その処理は煩雑であるが、その課題はプロセス毎に違
うので前述の(i)固体脱硫剤法、(ii )液相吸収
法の各々に分けて説明する。
Since 82S is highly reactive and extremely harmful, its treatment is complicated, but since the challenges differ depending on the process, the methods described above (i) solid desulfurization agent method and (ii) liquid phase absorption method are recommended. I will explain it separately.

(i)固体脱硫剤法 この方法は常に高温での操作が前提となる。(i) Solid desulfurization agent method This method requires constant operation at high temperatures.

通常、石油精製、水蒸気改質、石炭ガス化等ではプロセ
ス流体が高温なた必、熱的損失はないが、地熱オフガス
のような低温ガスに適用する場合、プロセス流体の昇温
という多大な熱量を必要とする。
Normally, in oil refining, steam reforming, coal gasification, etc., the process fluid must be at a high temperature and there is no heat loss. However, when applied to low-temperature gas such as geothermal off-gas, a large amount of heat is generated by raising the temperature of the process fluid. Requires.

又、上記高温プロセス流体に適用する場合も、低濃度H
2Sならば使い捨てが普通なので極めてコストの高いも
のとなるし、高濃度H2Sでは処理時の硫化反応と再生
の酸化反応を充填剤が数時間のサイクルで繰り返すため
、その強度低下が著しい。
Also, when applied to the above-mentioned high-temperature process fluid, low concentration H
2S is usually disposable and therefore extremely expensive, and with high concentration H2S, the filler undergoes a sulfurization reaction during treatment and an oxidation reaction during regeneration over a cycle of several hours, resulting in a significant decrease in its strength.

(ii )液相吸収法 この方法は低温での操作が前提となるため、上記高温プ
ロセス流体では熱交換にょる降温操作が必要であり、脱
硫プロセスの後流で高温操作を必要する場合には熱損失
が問題である。
(ii) Liquid phase absorption method Since this method requires operation at low temperatures, the above-mentioned high-temperature process fluid requires temperature-lowering operation by heat exchange, and if high-temperature operation is required downstream of the desulfurization process, Heat loss is a problem.

通常、吸収液はアルカリ性を示し、co2等の酸性ガス
をプロセス流体が含む場合には選択的なH2Sの吸収は
難しい。
Normally, the absorption liquid exhibits alkalinity, and selective absorption of H2S is difficult when the process fluid contains an acidic gas such as CO2.

又、吸収液は高価であり、脱硫工程での吸収液の劣化、
吸収液の後流への飛散等のため一定の吸収液の補充が必
要である。
In addition, the absorption liquid is expensive, and deterioration of the absorption liquid during the desulfurization process,
A certain amount of absorption liquid needs to be replenished due to the absorption liquid scattering to the downstream.

本発明は上記技術水準に鑑み、従来技術におけるような
不具合のないH2S除去方法を提供しようとするもので
ある。
In view of the above-mentioned state of the art, the present invention seeks to provide a H2S removal method that does not have the problems encountered in the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は上記課題を解決すべく鋭意研究の結果、H
2Sを含有する気体を相対的に加圧条件でT−アルミナ
と接触させて吸着除去した後、相対的に減圧条件下で吸
着したH2Sを離脱して吸着剤を連続的に再生する方法
を見出し、更に、この方法ではわずかではあるが、H2
S吸着時にH2Sの一部が吸着剤に固体状8分として析
出し、4、000時間程度の連続操作で吸着剤が劣化す
るが、この吸着剤を220℃以上に昇温することで気体
状8分として除去し再生し得ることを確認し、相当長期
にわたる吸着剤の無補充で操作しうろことを確S忍した
As a result of intensive research to solve the above problems, the present inventors found that H.
We discovered a method to continuously regenerate the adsorbent by bringing a gas containing 2S into contact with T-alumina under relatively pressurized conditions to adsorb and remove it, and then removing the adsorbed H2S under relatively reduced pressure conditions. , Furthermore, with this method, H2
During S adsorption, a part of H2S is precipitated on the adsorbent as a solid state, and the adsorbent deteriorates after approximately 4,000 hours of continuous operation. It was confirmed that the adsorbent could be removed and regenerated within 8 minutes, and it was confirmed that the operation could be carried out without replenishing the adsorbent for a considerable period of time.

本発明は上記知見に基いて完成されたものであって、本
発明は (1)  H2Sを含有する気体を相対的に加圧条件下
でT−アルミナと接触させてH2Sを吸着除去し、相対
的に減圧条件で吸着したH2Sを離脱して吸着剤を再生
する圧力スイング弐H2S除去方法 (2)請求項(1)の工程での長期にわたる圧力スイン
グ弐H2S除去方法で、徐々に8分で蓄積したT−アル
ミナを相対的に高温に昇温してS分を離脱させた後、降
温して再び長期にわたる圧力スイング式H2S除去方法
を実施する熱再生を併用した圧力スイング式H2S除去
方法である。
The present invention was completed based on the above findings, and the present invention consists of (1) bringing a gas containing H2S into contact with T-alumina under relatively pressurized conditions to adsorb and remove H2S; Pressure swing 2 H2S removal method (2) in which the adsorbed H2S is released under reduced pressure conditions to regenerate the adsorbent (2) In the pressure swing 2 H2S removal method that takes a long time in the process of claim (1), the method gradually removes the adsorbed H2S in 8 minutes. The accumulated T-alumina is heated to a relatively high temperature to release the S component, and then the temperature is lowered and the long-term pressure swing H2S removal method is carried out again.This is a pressure swing H2S removal method that combines thermal regeneration. be.

すなわち、本発明は圧力スイング吸着法による高効率な
H2S除去を基本として、数千時間に1回の昇温で析出
したS分を昇華除去することで相当長期にわたる吸着剤
の無補充条件を設定しつるようにしたものである。
In other words, the present invention is based on highly efficient H2S removal using the pressure swing adsorption method, and by sublimating and removing the precipitated S by increasing the temperature once every several thousand hours, the adsorbent is not refilled for a considerable period of time. It was made to last.

これはγ−アルミナを吸着剤に選定したことの長所であ
り、他の吸着剤として、例えばゼオライト系吸着剤では
吸着したH、Sは減圧工程で離脱しに<<、更、に昇温
によるS分の除去はより高温が必要であり、耐熱性に乏
しいこともあって使用に耐えない。又、他の吸着剤とし
て活性炭についてもゼオライトと同様である。
This is an advantage of selecting γ-alumina as an adsorbent. When using other adsorbents, such as zeolite-based adsorbents, the adsorbed H and S are released during the depressurization process. Removal of the S content requires a higher temperature, and the heat resistance is poor, making it unusable. The same applies to activated carbon as another adsorbent.

シリカゲル及びゼオラ゛イトの一種であるが、はぼ10
0wt%シリカ化合物であるシリカライトについては、
室温では確かに圧力スイング吸着用吸着剤として昇温再
生についてはほぼT−アルミナと同様な性能が期待でき
るが、50℃以上での吸着量の低下が著しく高温のプロ
セス流体用としては適さない。
It is a type of silica gel and zeolite, but about 10
Regarding silicalite, which is a 0wt% silica compound,
At room temperature, as an adsorbent for pressure swing adsorption, it can be expected to have almost the same performance as T-alumina for temperature raised regeneration, but the adsorption amount decreases significantly at temperatures above 50°C, making it unsuitable for use in high-temperature process fluids.

〔作用〕[Effect]

本発明においては、吸着剤としてr−アルミナを使用し
てH2S含有ガスを0〜400℃で吸着圧力大気圧以上
で吸着除去した後、再生圧力を大気圧以下の減圧に導い
て再生して連続的にH2Sを分離除去することができる
。吸着圧力Paと再生圧力Pdの設定については、効率
的に分離するためには圧力スイング法の提唱者でSka
rs−tromが提出しているように、パージガス量G
、を、d 入口ガス量G。との間でGp≧□ ・Goとするのは1
7、あ、。     2” なお、パージガスとは相対的に減圧条件下、例えば真空
排気条件下、において、吸着時とは流れが向流するよう
に吸着塔に系外から大気又は浄化ガスを採り入れて吸着
塔内を流過させ、吸着塔内のH2S分圧を急速に減少さ
せて吸着剤から)12Sを離脱させ易くするためのガス
である。
In the present invention, r-alumina is used as an adsorbent to adsorb and remove H2S-containing gas at a temperature of 0 to 400°C at an adsorption pressure above atmospheric pressure, and then the regeneration pressure is reduced to below atmospheric pressure for continuous regeneration. It is possible to separate and remove H2S. Regarding the setting of adsorption pressure Pa and regeneration pressure Pd, in order to efficiently separate the adsorption pressure, pressure swing method advocate Ska et al.
As submitted by rs-trom, purge gas amount G
, d Inlet gas amount G. Gp≧□ ・Go is 1 between
7. Ah. 2" Note that purge gas refers to air or purified gas that is introduced into the adsorption tower from outside the system under relatively reduced pressure conditions, such as vacuum exhaust conditions, so that the flow is countercurrent to that during adsorption. This gas is used to rapidly reduce the H2S partial pressure in the adsorption tower and facilitate the removal of 12S from the adsorbent.

吸着塔入口ガス量を6゜、  H,S除去ガスを61、
パ濃縮するのが目的なのでしは少<子る程好ましく P
a/ Pd≧5以上として少くとも5倍以上に濃縮する
のが望ましいであろう。
The amount of gas at the inlet of the adsorption tower was 6°, the amount of H,S removal gas was 61,
Since the purpose is to concentrate the liquid, the smaller the amount, the better.
It would be desirable to set a/Pd≧5 and concentrate it at least five times.

本発明方法で少くとも4.000時間程度の連続再生は
可能であるが徐々に吸着剤にS分が析出して吸着量が減
少し、それ以上の操作は不可能となる。□圧力スイング
法では変動費が極めて少ないため、吸着剤を使い捨てと
してもかまゎないが本発明者等はこの点についての改善
として、220℃以上の高温で吸着剤に析出したS分は
昇華離脱して降温した後は更に数千時間の圧力スイング
操作が可能となることを確認している。
Although continuous regeneration for at least 4,000 hours is possible with the method of the present invention, S content gradually precipitates on the adsorbent and the amount of adsorption decreases, making further operation impossible. □In the pressure swing method, the variable cost is extremely low, so the adsorbent can be used as a disposable material.However, as an improvement on this point, the present inventors proposed that the S content precipitated on the adsorbent at a high temperature of 220°C or higher is desorbed by sublimation. It has been confirmed that after the temperature has been lowered, pressure swing operation can be performed for several thousand hours.

以上、本発明によれば、(i)圧力スイング式吸着法に
よる4、 000時□間の操作、(ii)220℃以上
の昇温によるS分の昇華除去とそ9゛ の後の降温を繰り返して相当長期にわかる吸着剤補充技
術が提供されることとなる。
As described above, according to the present invention, (i) operation for 4,000 hours by pressure swing adsorption method, (ii) sublimation removal of S by increasing temperature to 220°C or higher, and cooling after 9'. An adsorbent replenishment technique that can be repeated over a fairly long period of time will be provided.

〔実施例〕〔Example〕

以下、本発明の一実施態様を第1図によって説明する。 Hereinafter, one embodiment of the present invention will be explained with reference to FIG.

主プラント1はH2Sを5.000 p’pm含有する
流体を発生し、該流体はN2: 90’VO1%、CO
2:9、5 vo1%を共存している。主プラント1を
出た流体は流路2から圧縮機3によりi、2atm、か
ら40 atm、までの範囲で圧縮され、圧縮された流
体は流路4からバルブ5 a’を通してr−アルミナ(
ベーマイト)6を充填された吸着塔7aに至る。
Main plant 1 generates a fluid containing 5.000 p'pm of H2S, which contains 1% N2:90'VO, CO
2:9, 5 vo1% coexists. The fluid exiting the main plant 1 is compressed by the compressor 3 from the flow path 2 to a range of 2 atm to 40 atm, and the compressed fluid passes from the flow path 4 to the valve 5 a' and is converted into r-alumina (
The adsorption tower 7a is filled with boehmite) 6.

吸着塔?、aでは充填されたγ−アルミナ6龜より l
’123は除去され、浄化されたガスがノにルブ8aか
ら流路9を通って系外に放出される。
Adsorption tower? , in a, from 6 filled γ-alumina tanks l
'123 is removed, and the purified gas is then discharged from the lube 8a through the channel 9 to the outside of the system.

この時、吸着塔7bはH2Sでて一アルミナ6が飽和し
た状態にあり、バルブ5t)、8bを閉状態としてバル
ブ10b、流路Hから、大気圧以上の再生では流路12
から放出され、大気圧以下の再生では真空ポンプ13に
より減圧条件でH28の除去が計られる。
At this time, the adsorption tower 7b is saturated with alumina 6 with H2S, and the valves 5t) and 8b are closed, and the flow path 12 is opened from the valve 10b and the flow path H in the case of regeneration above atmospheric pressure.
During regeneration below atmospheric pressure, H28 is removed under reduced pressure conditions using a vacuum pump 13.

この時、減圧弁15、バルブ16、バルブ14bを通し
て浄化ガスの一部を吸着塔7bに向流減圧条件で流過(
すなわち、パージ)すると、吸着塔7b内■2Sの分圧
が急速に低下して効率的にH2Sは吸着する。
At this time, a part of the purified gas is passed through the pressure reducing valve 15, valve 16, and valve 14b to the adsorption tower 7b under countercurrent pressure reduction conditions (
That is, when purging), the partial pressure of 2S in the adsorption tower 7b rapidly decreases, and H2S is efficiently adsorbed.

パージガス流量をGp (Nrn3/h) 、入口ガス
量をGo(Nm3/h) 、吸着圧力Pa (at+n
) 、再生圧力Pd(atm)とすると、Skarst
rom則により、G、≧Pd/PaXGoが目安とでる
が、式の右辺の値の20%増しを操作時の実際のパージ
量とした。
Purge gas flow rate is Gp (Nrn3/h), inlet gas amount is Go (Nm3/h), adsorption pressure Pa (at+n
), regeneration pressure Pd (atm), Skarst
According to the ROM rule, G, ≧ Pd/Pa

流路12及び真空ポンプ13を通った脱着H2Sガスは
流路18からH2Sの代表的固定法であるH2Sの部分
酸化、すわなち■2s+z02→S↓+H20により固
体Sとするクラウス反応器19に導かれる。こ\では吸
着塔入口ガスのH2S濃度5.000 ppmに対して
5 vo1%以上に減容濃縮されているた袷、処理費用
は大幅に低下される。
The desorbed H2S gas that has passed through the flow path 12 and the vacuum pump 13 is transferred from the flow path 18 to the Claus reactor 19 where it is converted into solid S by partial oxidation of H2S, which is a typical fixation method for H2S, that is, ■2s+z02→S↓+H20. be guided. In this case, since the H2S concentration of the adsorption column inlet gas is 5.000 ppm, the volume is reduced and concentrated to 5 vol. 1% or more, and the processing cost is significantly reduced.

この後、H2Sを除去された浄化ガスは流路20から系
外に放出される。
Thereafter, the purified gas from which H2S has been removed is discharged from the flow path 20 to the outside of the system.

この操作を続けるとT−アルミナ6の表面に徐々に8分
が析出するので、バルブ17、ヒータ18を通じて8分
で劣化したT−アルミナが充填されている吸着塔7cに
220℃以上の浄化ガスを流過させる。このようにする
ことによりγ−アルミナ6の表面の8分は昇華する。こ
の操作は4. OO0時間に1回程度行なえばよい。
If this operation is continued, 8 minutes will gradually precipitate on the surface of the T-alumina 6, so the purified gas at 220°C or higher will pass through the valve 17 and heater 18 to the adsorption tower 7c filled with the deteriorated T-alumina. to flow through. By doing this, 80% of the surface of the γ-alumina 6 is sublimated. This operation is 4. It suffices to do this about once every 00 hours.

再生が終了するとヒータ18を切って低温ガスを流過し
て吸着塔7cを冷却し、他の吸着塔7a、7bのr−ア
ルミナが劣化して上記操作が必要な時期まで時期するこ
ととなる。
When the regeneration is completed, the heater 18 is turned off and the low temperature gas is passed through to cool the adsorption tower 7c, until the time when the r-alumina in the other adsorption towers 7a and 7b deteriorates and the above operation becomes necessary. .

以上の実施態様の効果を確認するため、3.00ONm
3/hのH2Sガスを含有するプロセス流体ガスからの
H2Sの除去を行なうべく、本発明の圧力スイング法と
しての吸着剤使用量1.5トン(0,5)ン/塔×3塔
)の昇温8分昇華法を併用した装置を取りつけて実施し
た。
In order to confirm the effect of the above embodiment, 3.00Nm
In order to remove H2S from a process fluid gas containing H2S gas at The experiment was carried out using an apparatus that also uses a sublimation method at elevated temperatures for 8 minutes.

事前に、吸着剤としてT−アルミナ以外にNa−X型ゼ
オライト、活性炭、シリカライト、シリカゲルの8分蓄
積性を検馴したが、Na−X型ゼオライト、活性炭は極
狛で短期に8分が析出し、昇温による8分除去でも30
0℃以上の高温再生が必要であった。このため、r−ア
ルミナ、シリカライト、シリカゲルに劣ると判断し、上
記装置での検討にはT−アルミナとシリカゲルを候補と
して使用した。
In addition to T-alumina, we previously tested the 8-minute accumulation ability of Na-X type zeolite, activated carbon, silicalite, and silica gel as adsorbents, but Na-X type zeolite and activated carbon are extremely difficult to accumulate in 8 minutes. Precipitation, 8 minutes removal by temperature increase is 30%
High temperature regeneration of 0°C or higher was required. Therefore, T-alumina and silica gel were judged to be inferior to r-alumina, silicalite, and silica gel, and T-alumina and silica gel were used as candidates for the study using the above device.

第2図は吸着圧カニ 1.2 atm、、再生圧カニQ
、 5 at+n、での圧力スイング条件における吸着
塔温度(X軸)と脱硫率(y軸)の関係を示したもので
ある。脱硫率は で定義した。図中、r−アルミナは○印、シリカゲルは
・印で示している。
Figure 2 shows the adsorption pressure 1.2 atm, and the regeneration pressure Kani Q.
, 5 at+n, shows the relationship between adsorption tower temperature (X axis) and desulfurization rate (y axis) under pressure swing conditions. The desulfurization rate was defined as In the figure, r-alumina is indicated by a circle, and silica gel is indicated by a symbol.

γ−アルミナでは0〜300℃の広い温度域で100%
近い脱硫性を示す。これに対し、シリカゲルは60℃以
下ではr−アルミナに匹敵する高い脱硫率を示すが高温
では急速に脱硫率が低下している。
γ-Alumina is 100% in a wide temperature range from 0 to 300℃
Shows similar desulfurization properties. On the other hand, silica gel exhibits a high desulfurization rate comparable to r-alumina at temperatures below 60°C, but the desulfurization rate rapidly decreases at high temperatures.

第3図は温度25℃、パージ率10%、再生圧力l a
tm、でのT−アルミナの吸着圧力(X軸)と脱硫率(
y軸)の関係を示したものである。
Figure 3 shows a temperature of 25°C, a purge rate of 10%, and a regeneration pressure of l a
T-alumina adsorption pressure (X axis) and desulfurization rate (
y-axis).

10 atm、以上の高圧で脱硫率100%に達し、S
karstrom則Gp/Go=0.1≧Pd/ Pa
= 0.1をほぼ満足していることが判り、高圧域での
1」2Sの分離が良好に行なわれているのが判る。
The desulfurization rate reaches 100% at high pressures of 10 atm or more, and S
Karstrom's law Gp/Go=0.1≧Pd/Pa
= 0.1, and it can be seen that the separation of 1''2S is performed well in the high pressure region.

第4図は温度25℃、吸着圧力12atm、、パージ率
として再生圧力0.1 atm、以上ではパージ率20
%、0.1 atm、以下ではパージ率0としたて一ア
ルミナの再生圧力(X軸)と脱硫率(y軸)の関係を示
したものである。大気圧近傍に吸着圧力を設定した場合
、Q、 2atm、以下の脱着圧力で脱硫率は100%
に達している。すなわち、第4図から流体圧力が大気圧
近傍であれば充分な真空再生で高い脱硫率の得られるこ
とが判る。
Figure 4 shows a temperature of 25°C, an adsorption pressure of 12 atm, a purge rate of regeneration pressure of 0.1 atm, and a purge rate of 20.
%, 0.1 atm.The following shows the relationship between fresh alumina regeneration pressure (X-axis) and desulfurization rate (y-axis) with a purge rate of 0. When the adsorption pressure is set near atmospheric pressure, the desulfurization rate is 100% at desorption pressures below Q, 2 atm.
has reached. That is, it can be seen from FIG. 4 that if the fluid pressure is near atmospheric pressure, a high desulfurization rate can be obtained with sufficient vacuum regeneration.

〔発明の効果〕〔Effect of the invention〕

吸着剤の補充を殆ど伴なわず、非常にわずかな消費電力
で高脱硫率が達成される。
High desulfurization efficiency is achieved with very little power consumption and almost no adsorbent replenishment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフローシートの概略図、第2図は吸着
塔温度と脱硫率の関係を示す図表、第3図は吸着圧力と
脱硫率の関係を示す図表、第4図は再生圧力と脱硫率の
関係を示す図表である。
Fig. 1 is a schematic diagram of the flow sheet of the present invention, Fig. 2 is a chart showing the relationship between adsorption tower temperature and desulfurization rate, Fig. 3 is a chart showing the relationship between adsorption pressure and desulfurization rate, and Fig. 4 is a chart showing the regeneration pressure. It is a chart showing the relationship between and desulfurization rate.

Claims (2)

【特許請求の範囲】[Claims] (1)H_2Sを含有する気体を相対的に加圧条件下で
γ−アルミナと接触させてH_2Sを吸着除去し、相対
的に減圧条件下で吸着したH_2Sを離脱してγ−アル
ミナを再生することを特徴とする圧力スイング式H_2
S除去方法。
(1) A gas containing H_2S is brought into contact with γ-alumina under relatively pressurized conditions to adsorb and remove H_2S, and the adsorbed H_2S is removed under relatively reduced pressure conditions to regenerate γ-alumina. Pressure swing type H_2 characterized by
S removal method.
(2)請求項(1)の工程での長期にわたる圧力スイン
グ式H_2S除去方法で徐々にS分で蓄積したγ−アル
ミナを相対的に高温に昇温してS分を離脱させた後、降
温して再び長期にわたる圧力スイング式H_2S除去方
法を実施することを特徴とする熱再生を併用した圧力ス
イング式H_2S除去方法。
(2) The γ-alumina that has gradually accumulated S content in the long-term pressure swing type H_2S removal method in the process of claim (1) is heated to a relatively high temperature to remove the S content, and then the temperature is lowered. A pressure swing type H_2S removal method using thermal regeneration, characterized in that the pressure swing type H_2S removal method is carried out again over a long period of time.
JP2312806A 1990-11-20 1990-11-20 Pressure swing type H lower 2 S removal method Expired - Fee Related JP3029861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312806A JP3029861B2 (en) 1990-11-20 1990-11-20 Pressure swing type H lower 2 S removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312806A JP3029861B2 (en) 1990-11-20 1990-11-20 Pressure swing type H lower 2 S removal method

Publications (2)

Publication Number Publication Date
JPH04187207A true JPH04187207A (en) 1992-07-03
JP3029861B2 JP3029861B2 (en) 2000-04-10

Family

ID=18033637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312806A Expired - Fee Related JP3029861B2 (en) 1990-11-20 1990-11-20 Pressure swing type H lower 2 S removal method

Country Status (1)

Country Link
JP (1) JP3029861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925158A (en) * 1997-12-19 1999-07-20 Praxair Technology, Inc. Gas recycle for float glass system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925158A (en) * 1997-12-19 1999-07-20 Praxair Technology, Inc. Gas recycle for float glass system

Also Published As

Publication number Publication date
JP3029861B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
AU2017395075B2 (en) Carbon dioxide recovery method and recovery apparatus
TWI450752B (en) Contaminant removal from a gas stream
EP2069231B1 (en) Process for removal of metal carbonyls from a synthesis gas stream
WO2013084402A1 (en) Method and apparatus for separating hydrogen sulfide and hydrogen production system using same
KR100974521B1 (en) Method and apparatus for gas purification
JPH07509438A (en) Method for removing hydrogen sulfide from gas and recovering it in sulfur form
TW201841683A (en) Carbon dioxide removal device and method for recovering carbon dioxide adsorption capacity of adsorbent
CA2782944C (en) Process for the removal of sulfur compounds from gas streams
KR20200092360A (en) Process for recovery of sulfur from acid gas streams without catalytic cloth reactor
JP6642590B2 (en) Carbon dioxide separation and capture device, combustion system and thermal power generation system using the same, and carbon dioxide separation and capture method
US4849202A (en) Sulfur recovery process using metal oxide absorbent with reducing gas purge
JPS62119104A (en) Method for recovering high-purity argon from exhaust gas of single crystal producing furnace
US4283380A (en) Process and installation for desulphurizing gases containing SO2
JPH04187207A (en) Pressure swinging-type h2s removing method
JPS59203625A (en) Removal of nitrogen oxide from gas mixture containing nitrogen oxide by pressure change adsorption
SU1582975A3 (en) Method of purifying gases from mercaptanes
JPH04187208A (en) Pressure swinging-type h2s removing method
JP4101955B2 (en) Ammonia purification method
EP0256741A2 (en) Sulphur recovery process using metal oxide absorbent with reducing gas purge
JPS61245819A (en) Method for purifying high temperature reductive gas
JPH04505446A (en) A method for recovering sulfur by desulfurizing a gas mixture containing H↓2S and SO↓2
JPS6039417B2 (en) Method for regenerating solid reactants
JPH0569566B2 (en)
DK201900886A1 (en) A process for the preparation of gaseous fuel from a raw gas stream
Morton et al. Simultaneous removal of H 2 S and SO 2 from tail gases

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees