JP3029070B2 - Microcurrent measuring device and method - Google Patents

Microcurrent measuring device and method

Info

Publication number
JP3029070B2
JP3029070B2 JP03305936A JP30593691A JP3029070B2 JP 3029070 B2 JP3029070 B2 JP 3029070B2 JP 03305936 A JP03305936 A JP 03305936A JP 30593691 A JP30593691 A JP 30593691A JP 3029070 B2 JP3029070 B2 JP 3029070B2
Authority
JP
Japan
Prior art keywords
flushing
current
contact
minute current
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03305936A
Other languages
Japanese (ja)
Other versions
JPH0694758A (en
Inventor
忠晴 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP03305936A priority Critical patent/JP3029070B2/en
Priority to KR1019920021856A priority patent/KR960005603B1/en
Publication of JPH0694758A publication Critical patent/JPH0694758A/en
Application granted granted Critical
Publication of JP3029070B2 publication Critical patent/JP3029070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R5/00Instruments for converting a single current or a single voltage into a mechanical displacement

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気接点を介して流れ
る微少電流を測定する微少電流測定装置に関する。また
本発明は活線下で高圧電力ケーブルに直流信号電圧を重
畳印加し、測定対象ケーブルの遮蔽端と大地間に挿入し
た微少電流測定装置により漏洩電流を読む微少電流測定
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a minute current measuring device for measuring a minute current flowing through an electric contact. The present invention also relates to a method for measuring a minute current in which a DC signal voltage is superimposed and applied to a high-voltage power cable under a live line and a leakage current is read by a minute current measuring device inserted between the shielded end of the cable to be measured and the ground.

【0002】[0002]

【従来の技術】従来、測定対象ケーブルの絶縁抵抗を測
定するための微少電流測定装置として図4に示す構成が
知られている。図4において測定対象ケーブルの交流電
圧に重畳して印加する直流信号電圧装置側は図示されて
ない。n本の測定対象ケーブル11、12…1nの遮蔽端
からのリードは対応する入力端子F1、F2…Fnを経
て、各ケーブルごとに対応して設けられた切替スイッチ
1、22…2nに導かれる。この切替スイッチは手動式
または電磁接触器でも良く、回路的には同じであり、各
出力は直列要素5の一端に導かれる。各切替スイッチの
構成は同一で、例えば切替スイッチ21では入力端子F1
と直列要素5との間に常開接点a1が直列接続され、常
閉接点b1は並列接続されて端子Eに導かれて接地され
ている。さらに常開接点a2が並列接続されてアレスタ
3およびコンデンサ4からなる保安接地回路に導かれて
いる。切替スイッチ21は常時は接点b1が閉じて接点
a1とa2は開放しているが、測定対象にケーブル11
が選択されて切替スイッチ21が常時位置から測定位置
に切替えられると接点b1が開放して遮蔽端は大地の接
続から開放される。この寸前に接点a1およびa2が閉
じてケーブル11の遮蔽端を直列要素5に接続すると共
に遮蔽端を保安接地回路に接続して直流的に絶縁状態に
する。この場合、接点a2は測定対象電流が通過するも
のでないが、接点抵抗は低くかつ安定していることが必
要である。
2. Description of the Related Art Conventionally, a configuration shown in FIG. 4 has been known as a minute current measuring device for measuring the insulation resistance of a cable to be measured. In FIG. 4, the side of the DC signal voltage device which is superimposed and applied to the AC voltage of the cable to be measured is not shown. measured cable 1 1 of the n, 1 2 ... input terminal F 1 1 n read from the shielding end of the corresponding, F 2 ... F n via the changeover switch 2 1 provided corresponding to each cable , 2 2 ... 2 n . This changeover switch may be a manual type or an electromagnetic contactor, and is the same in terms of circuit, and each output is led to one end of the series element 5. In configuration same respective changeover switch, for example, the changeover switch 2 1 input terminals F 1
A normally open contact a1 is connected in series between the power supply and the series element 5, and a normally closed contact b1 is connected in parallel, guided to the terminal E, and grounded. Further, a normally open contact a2 is connected in parallel and led to a safety ground circuit including an arrester 3 and a capacitor 4. While the changeover switch 2 1 normally has a contact a1 closes contacts b1 a2 are opened, the cable 1 1 to be measured
There shielding edge is selected changeover switch 2 1 is opened the contact b 1 when switched to the measurement position from the constant position is released from the earth connection. And contacts a1 and a2 is close to the verge to galvanically insulated by connecting the shield end to the safety ground circuit with connecting shielded end of the cable 1 1 in series element 5. In this case, although the current to be measured does not pass through the contact a2, the contact resistance needs to be low and stable.

【0003】上記直列要素5はチョークコイルまたは抵
抗からなる。直列要素5の他端と大地の間にはコンデン
サ6が並列接続され、さらに該他端には順次、リレー7
の接点RY1bとリレー9の接点RY2aが直列接続さ
れて増幅器10に導かれる。増幅された電流は、出力計
11に導かれて表示される。出力計11は絶縁抵抗値を
直読できるアナログメータまたはデイジタルボルトメー
タであっても良くさらにその出力をコンピュータが取り
込んで計算して絶縁抵抗値として表示しても良い。リレ
ー7の接点RY1aは放電抵抗8に直列接続されて大地
に導かれている。また、リレー9の接点RY2bは防食
層絶縁抵抗測定回路標準抵抗14、防食層絶縁抵抗直指
計13を通じて防食層絶縁抵抗測定用電源12に導かれ
ている。
[0003] The series element 5 comprises a choke coil or a resistor. A capacitor 6 is connected in parallel between the other end of the series element 5 and the ground.
And the contact RY2a of the relay 9 are connected in series and guided to the amplifier 10. The amplified current is guided to the power meter 11 and displayed. The output meter 11 may be an analog meter or a digital voltmeter capable of directly reading the insulation resistance value, and the output thereof may be read by a computer, calculated, and displayed as the insulation resistance value. The contact RY1a of the relay 7 is connected in series to the discharge resistor 8 and is led to the ground. Further, the contact RY2b of the relay 9 is guided to the anticorrosion layer insulation resistance measurement power supply 12 through the anticorrosion layer insulation resistance measuring circuit standard resistor 14 and the anticorrosion layer insulation resistance direct finger meter 13.

【0004】ケーブル11に直流信号電圧が印加される
と漏洩微少電流は接点a2を介してコンデンサ4を充電
すると共に接点a1および直列要素5を経てコンデンサ
6を充電し、さらに接点RY1bおよびRY2aを通り
増幅器10を経て出力計11により表示される。防食層
絶縁抵抗を測定する場合にはリレー9の接点RY2bを
閉成し、電源12からの電圧をRY2b、RY1b、直
列要素5、接点a1を介して遮蔽端に印加し、大地を帰
路として形成される回路に流れる微少電流を防食層絶縁
抵抗直示計13により読み取る。
[0004] and the leakage small current DC signal voltage is applied to the cable 1 1 charges the capacitor 6 through the contact a1 and the series element 5 which charges the capacitor 4 via the contact a2, a further contact RY1b and RY2a The signal is displayed by the power meter 11 via the amplifier 10. When the corrosion resistance of the anticorrosion layer is measured, the contact RY2b of the relay 9 is closed, and the voltage from the power supply 12 is applied to the shield end via the RY2b, RY1b, the series element 5, and the contact a1, and the ground is formed as a return path. The minute current flowing in the circuit to be performed is read by the corrosion resistance layer insulation resistance direct indicator 13.

【0005】ひとつのケーブルの測定が終わって他のケ
ーブルの測定に切替える場合には、測定回路に残留して
いる電荷を放電するためリレー7の接点RY1aを閉成
し、コンデンサ4および6に蓄積された電荷を放電抵抗
8を介して放電する。
[0005] When the measurement of one cable is completed and the measurement is switched to the measurement of another cable, the contact RY1a of the relay 7 is closed to discharge the electric charge remaining in the measurement circuit and stored in the capacitors 4 and 6. The discharged charge is discharged via the discharge resistor 8.

【0006】[0006]

【発明が解決しようとする課題】上述のように微少電流
測定装置では切替スイッチの接点、リレーの接点のよう
に多くの電気接点が測定回路中に直列および並列に存在
している。上記微少電流測定装置においては前記電気接
点を介して流れる微少電流を測定するものであるが、該
接点の接触抵抗が増大しかつ不安定になる問題がある。
接点を通過する電流が極く微少でそのバックアップ電圧
も零に近いような場合には、接触抵抗の不安定性は増大
して測定回路内に大きな雑音電圧を誘発し、漏洩電流測
定の目的を達成できない問題があった。接触抵抗が増大
して不安定になる原因は主に周辺雰囲気中に存在する硫
化水素などの有害成分により接点表面に絶縁性の被膜が
形成されるためである。それでも強電流回路に使用され
る場合には、該回路のバックアップ電圧も大きく(一般
に1接点当たり5V以上が必要とされる)容易に被膜を
絶縁破壊することができるため実用上何等問題は生じな
い。しかし、図4のようにマイクロアンペアからナノア
ンペア程度の微少電流を測定しかつ測定回路内にバック
アップ電圧もほとんど存在しない場合には大きな問題と
なる。
As described above, in the microcurrent measuring device, many electric contacts such as a contact of a changeover switch and a contact of a relay exist in a measuring circuit in series and in parallel. The microcurrent measuring device measures a microcurrent flowing through the electric contact, but has a problem that the contact resistance of the contact increases and becomes unstable.
If the current passing through the contact is extremely small and its backup voltage is close to zero, the instability of the contact resistance increases, causing a large noise voltage in the measurement circuit, and achieving the purpose of measuring leakage current. There was a problem that could not be done. The reason why the contact resistance increases and becomes unstable is mainly that an insulating film is formed on the contact surface by harmful components such as hydrogen sulfide existing in the surrounding atmosphere. Nevertheless, when used in a strong current circuit, the backup voltage of the circuit is large (generally, 5 V or more is required per contact) and the coating can be easily broken down, so that there is no practical problem. . However, as shown in FIG. 4, when a very small current of about microamps to nanoamps is measured and there is almost no backup voltage in the measurement circuit, a serious problem occurs.

【0007】図4の微少電流測定装置において問題とな
るのは切替スイッチの直列接点a1、並列接点a2、リ
レー7の接点RY1bおよびリレー9の接点RY2aの
接触抵抗が増大しかつ不安定になることである。接点接
触抵抗値は通常は数十mΩ程度であるが、接点表面に被
膜が形成された場合は容易に数Ωから数KΩに達する。
図5および図6は接点表面被膜による雑音発生現象を記
録計により記録した図である。図5では測定対象ケーブ
ル12に直流信号電圧を印加していないのに、遮蔽と大
地間および増幅器10の出力に大きなパルス状雑音電圧
が連続的に観測された。これは並列接点a2の接触不完
全のためケーブル12の遮蔽のコンデンサ4による交流
接地状態が不安定になっているためである。このような
状態では直流信号電圧を印加して絶縁抵抗を測定できる
環境ではない。また、ケーブル19を対象とした図6は
増幅器出力に不規則な雑音電圧混入と共にそのレベルが
時間と共に増加していくドリフト現象が認められた。こ
の原因は並列接点a2だけでなく直列接点のいずれかに
接触不完全が存在するためである。この場合も絶縁抵抗
測定を実施できる状態ではない。
The problem with the microcurrent measuring device of FIG. 4 is that the contact resistance of the series contact a1, the parallel contact a2 of the changeover switch, the contact RY1b of the relay 7, and the contact RY2a of the relay 9 increases and becomes unstable. It is. The contact resistance of the contact is usually about several tens of mΩ, but easily reaches several Ω to several KΩ when a film is formed on the contact surface.
5 and 6 are diagrams in which the noise generation phenomenon due to the contact surface coating is recorded by a recorder. To the FIG. 5 measured cable 1 2 not by applying a DC signal voltage, large pulse-like noise voltage at the output of the shielding and the ground and between the amplifier 10 is continuously observed. This is because the AC grounded by the capacitor 4 of the shielded cable 1 2 for contact imperfect parallel contact a2 is unstable. In such a state, it is not an environment where a DC signal voltage can be applied to measure the insulation resistance. In FIG. 6 for the cable 19 , a drift phenomenon was observed in which the level increased with time due to irregular noise voltage mixing in the amplifier output. The reason for this is that not only the parallel contact a2 but also one of the series contacts has imperfect contact. Also in this case, it is not in a state where the insulation resistance can be measured.

【0008】上述の現象を克服するには、スイッチおよ
びリレー類を全て取替えること、接点のみを取替えるこ
と、接点を磨くか接点清浄剤を吹付けることなどがある
が、手間と費用を要する割に効果が期待できず、さらに
何れまた現象が必ず再現するという欠陥があった。
In order to overcome the above-mentioned phenomena, all of the switches and relays must be replaced, only the contacts must be replaced, and the contacts must be polished or sprayed with a contact detergent. The effect could not be expected, and there was a defect that the phenomenon was always reproduced.

【0009】この発明は、直列および並列に接点が存在
する微少電流測定回路において該接点の表面接触抵抗の
安定化を得て雑音電圧を低減した環境下において微少電
流を測定することができる微少電流測定装置を提供する
ことである。
According to the present invention, there is provided a minute current measuring circuit in which a contact is present in series and in parallel so that a minute current can be measured in an environment in which the surface contact resistance of the contact is stabilized and the noise voltage is reduced. It is to provide a measuring device.

【0010】また、この発明は高圧電力ケーブルの活線
下で絶縁抵抗を測定する場合に使用される微少電流測定
回路の接点の表面接触抵抗の安定化を得て雑音を低減し
た環境下において微少電流を測定する微少電流測定方法
を提供することである。
Also, the present invention provides a micro current measuring circuit used for measuring insulation resistance under a live line of a high-voltage power cable. An object of the present invention is to provide a minute current measuring method for measuring a current.

【0011】[0011]

【課題を解決するための手段】この発明の微少電流測定
装置は、測定対象微少電流を測定する測定回路に設置さ
れていて前記微少電流が通過する電気接点を連ねて還流
する、前記微少電流より大きいフラッシング電流を供給
するフラッシング用電源と、前記微少電流の測定に先立
って、該フラッシング用電源からフラッシング電流通電
を行わせるフラッシング開始手段と、前記フラッシング
用電源と前記電気接点との間を結びフラッシング電流を
還流させる回路を一時的に構成する還流接続手段とを備
え、前記フラッシング開始手段はフラッシング電流の通
電が開始された所定時間後にフラッシング電流を遮断す
るように働くタイマ手段を備えている。
A minute current measuring device according to the present invention is provided in a measuring circuit for measuring a minute current to be measured, and is connected to an electric contact through which the minute current passes to recirculate. A flushing power supply for supplying a large flushing current; a flushing start means for supplying a flushing current from the flushing power supply prior to the measurement of the minute current; and a flushing connection between the flushing power supply and the electrical contact. Refluxing means for temporarily configuring a circuit for circulating the current; and the flushing start means having a timer means for interrupting the flushing current after a predetermined time from when the application of the flushing current is started.

【0012】また、この発明の絶縁抵抗測定方法は、活
線下で高圧電力ケーブルに直流信号電圧を重畳印加し、
測定対象ケーブルの遮蔽端と大地間に挿入された微少電
流測定装置によって、高圧電力ケーブルの絶縁抵抗を通
じて漏洩して来る微少電流を読むことにより高圧電力ケ
ーブルの絶縁抵抗を測定する絶縁抵抗測定方法におい
て、前記直流信号電圧の重畳印加に先立って、前記微少
電流測定装置内に設置されていて前記微少電流が通過す
る電気接点を連ねて、前記微少電流より大きいフラッシ
ング電流を短時間還流させ、前記電気接点の接触抵抗の
安定化を行う段階とを含んでいる。
Further, according to the insulation resistance measuring method of the present invention, a DC signal voltage is superimposed and applied to a high-voltage power cable under a live line.
An insulation resistance measurement method that measures the insulation resistance of a high-voltage power cable by reading the small current that leaks through the insulation resistance of the high-voltage power cable using a small current measurement device inserted between the shielded end of the cable to be measured and the ground. Prior to the superimposition application of the DC signal voltage, an electrical contact installed in the minute current measuring device and through which the minute current passes is connected, and a flushing current larger than the minute current is refluxed for a short time, and Stabilizing the contact resistance of the contact.

【0013】[0013]

【作用】フラッシング開始手段(a3、16、17、1
9)によりフラッシング用電源(12、15)から還流
接続手段(a2、RY3a1、RY3a2)を介して微
少電流測定回路に存在する電気接点(a1、RY1b、
RY2a)に該微少電流より大きいフラッシング(短時
間一挙通電)電流を流すことにより電気接点表面被膜を
破壊して接点接触抵抗の安定化を獲得し、雑音電圧を減
少させて微少電流測定可能な環境を現出させる。さら
に、タイマ手段を備えることにより前記フラッシング電
流は所定時間経過後に自動的に遮断される。
The flushing start means (a3, 16, 17, 1)
9), the electrical contacts (a1, RY1b, and RY1b,) existing in the microcurrent measuring circuit from the flushing power supplies (12, 15) via the return connection means (a2, RY3a1, RY3a2).
An environment in which an electric contact surface resistance is destroyed by applying a flushing current (a short-time energization) larger than the minute current to the RY2a) to stabilize contact contact resistance and reduce a noise voltage to enable measurement of a minute current. To appear. Further, the provision of the timer means automatically shuts off the flushing current after a predetermined time has elapsed.

【0014】また、高圧電力ケーブルの絶縁抵抗測定に
おける漏洩微少電流の測定に先立って、電気接点を介す
るフラッシング電流を短時間流す段階を経ることによ
り、微少電流測定可能な環境が絶縁抵抗測定の都度得ら
れる。これは発明者が実験により知見を得た、フラッシ
ングによる効果が一時的なもので切替スイッチの開閉に
より再び元の不安定状態に戻ることの不都合を防止す
る。
Further, prior to the measurement of the leakage microcurrent in the insulation resistance measurement of the high-voltage power cable, a step of flowing a flushing current through the electric contact for a short time is performed, so that the environment in which the microcurrent can be measured is changed each time the insulation resistance is measured. can get. This prevents the inconvenience of returning to the original unstable state again by opening and closing the changeover switch, the effect of the flushing being temporary obtained by the inventor's experiment.

【0015】[0015]

【実施例】図1は高電圧電力ケーブル活線下の絶縁抵抗
測定における微少電流測定装置の一実施例を示してい
る。この実施例は本発明者の次の知見および構想に基づ
いて具体化されている。即ち、フラッシングによる効果
は既に絶縁性被膜の形成された接点に対しては一時的な
もので、いったん切替スイッチを開閉すると再び元の不
安定状態に戻る。これは接点接触位置が開閉の都度微妙
にずれるためと考えられる。このためフラッシングは測
定の直前にその都度行わなければならない。また、フラ
ッシングに必要な電流はフラッシング成功確認灯の点灯
を視認するために必要な時間(例えば2秒)のもとで、
数十〜数百mAが望ましい。ところが図4に示すように
測定回路内には低域フィルタの直列要素5としてチョー
クコイル或いは抵抗が存在しその前後に接点a1、RY
2a等が別れて存在する場合がある。直列要素を経由し
て通電するとフラッシング用電源の出力電圧が直列要素
で無駄に降下されてしまう。この場合は環流接続手段
(a3、RY3a1、RY3a2等)により発動される
フラッシング用電源を別けて2台置くか、或いはフラッ
シング時に直列要素を短絡して全対象接点をまとめて一
つにするような環流回路を構成する必要がある。さら
に、接点の絶縁性被膜を破壊して通電に成功したことを
示す表示があれば安心である。
FIG. 1 shows an embodiment of a micro-current measuring device for measuring insulation resistance under a live line of a high-voltage power cable. This embodiment is embodied based on the following knowledge and concept of the inventor. That is, the effect of the flushing is temporary with respect to the contact on which the insulating film is already formed, and once the changeover switch is opened and closed, the state returns to the original unstable state again. It is considered that this is because the contact position of the contact is slightly shifted each time the contact is opened and closed. For this reason, flushing must be performed immediately before each measurement. In addition, the current required for flushing is determined based on the time required for visually confirming the lighting of the flashing success confirmation lamp (for example, 2 seconds).
Several tens to several hundreds mA are desirable. However, as shown in FIG. 4, a choke coil or a resistor exists as a series element 5 of the low-pass filter in the measurement circuit.
2a etc. may exist separately. When power is supplied via the serial element, the output voltage of the flashing power supply is unnecessarily dropped by the serial element. In this case, two power supplies for flushing activated by the reflux connection means (a3, RY3a1, RY3a2, etc.) may be provided separately, or a series element may be short-circuited during flushing to make all target contacts collective. It is necessary to construct a circulation circuit. Furthermore, it is safe if there is a display indicating that the energization was successful by breaking the insulating coating of the contact.

【0016】図1において符号1〜14は図4に示した
対応する要素と同じであるので説明は省略する。切替ス
イッチ21、22…2nには切替スイッチ21により例示さ
れるように通常は開状態の補助接点a3が接続されてい
る。この補助接点a3はもともと切替スイッチ21が保
有している遊休状態の接点を活用している。この補助接
点a3は交流(AC)低圧電源をフラッシング用電源1
5に接続する一次回路形成の開閉を行う。フラッシング
用電源15は補助接点a3が閉じて交流低圧電源が印加
されると活性化され、補助接点a3と同時に閉成する接
点a2とa1を介し、電流制限抵抗18を通り電源15
に到る二次回路、即ちフラッシング電流を環流させる回
路が形成される。電源15の一次回路にはタイマ16が
接続されて補助接点a3の閉成と同時に駆動され、不必
要にフラッシング用電源15を作動させないように所定
時間(例えば2秒間)経過後に接点17を開き電源15
を消勢している。接点に流れるフラッシング電流は測定
対象の微少電流よりも大きく、その絶対値はmAのオー
ダである。タイマ16は切替スイッチが常時位置に戻さ
れるとリセットされ、次のケーブルの測定に備えて待機
される。電流制限抵抗18の両端にはリレー19が接続
され、フラッシング用電源15の出力電圧とほぼ等しい
電圧になると動作する。
In FIG. 1, reference numerals 1 to 14 are the same as corresponding elements shown in FIG. Usually it is connected to an auxiliary contact a3 in the open state so as to change-over switch 2 1, 2 2 ... 2 n is exemplified by the changeover switch 2 1. The auxiliary contact a3 is originally utilizing contacts idle state changeover switch 2 1 owns. The auxiliary contact a3 is connected to an alternating current (AC) low voltage power supply by a power supply 1 for flashing.
Opening / closing of a primary circuit connected to 5 is performed. The flushing power supply 15 is activated when the auxiliary contact a3 is closed and an AC low-voltage power supply is applied, passes through the current limiting resistor 18 via the contacts a2 and a1, which are closed at the same time as the auxiliary contact a3.
, Ie, a circuit for recirculating the flushing current. A timer 16 is connected to the primary circuit of the power supply 15 and is driven simultaneously with the closing of the auxiliary contact a3. The contact 17 is opened after a lapse of a predetermined time (for example, 2 seconds) so that the flushing power supply 15 is not operated unnecessarily. Fifteen
Is inactive. The flushing current flowing through the contact is larger than the minute current to be measured, and its absolute value is on the order of mA. The timer 16 is reset when the changeover switch is returned to the normal position, and waits for the next cable measurement. A relay 19 is connected to both ends of the current limiting resistor 18 and operates when the output voltage of the flushing power supply 15 becomes substantially equal to the output voltage.

【0017】前記リレー19のひとつの接点RY3a2
はリレー7と直列要素5間の接続点と大地の間に接続さ
れている。またリレー19の他の接点RY3a1はその
一端がリレー9と増幅器10との間に接続されその他端
は電流制限抵抗20を通して防食層絶縁抵抗測定用電源
12に導かれている。リレー19はその両端にフラッシ
ング用電源15の出力電圧とほぼ等しい電圧が印加され
ると動作し、前記接点RY3a1およびRY3a2を閉
成する。すると、防食層絶縁抵抗測定用電源12を臨時
のフラッシング用電源として電流制限抵抗20、接点R
Y3a1、接点RY2a、接点RY1b、接点RY3a
2を経て電源12に環流するフラッシング電流の環流回
路が形成される。フラッシングが成功した場合には電流
制限抵抗20の両端に電源12の出力電圧がほぼ現れ、
その分圧電圧で発光ダイオード21を点灯する。
One contact RY3a2 of the relay 19
Is connected between the connection point between the relay 7 and the series element 5 and the ground. The other end RY3a1 of the relay 19 has one end connected between the relay 9 and the amplifier 10 and the other end led to the anticorrosion layer insulation resistance measuring power supply 12 through the current limiting resistor 20. The relay 19 operates when a voltage substantially equal to the output voltage of the flushing power supply 15 is applied to both ends thereof, and closes the contacts RY3a1 and RY3a2. Then, the power supply 12 for measuring the anticorrosion layer insulation resistance is used as a power supply for temporary flushing, and the current limiting resistor 20 and the contact R
Y3a1, contact RY2a, contact RY1b, contact RY3a
A return circuit for the flushing current flowing back to the power supply 12 via the power supply 2 is formed. When the flushing is successful, the output voltage of the power supply 12 almost appears at both ends of the current limiting resistor 20,
The light emitting diode 21 is turned on by the divided voltage.

【0018】図1の微少電流測定装置を使用して活線下
でケーブルの絶縁抵抗を測定する場合には該絶縁抵抗測
定の直前に測定対象ケーブル11への切替スイッチ21
常時位置から測定位置に切替える。すると、接点a1、
a2、a3が閉成し、接点b1が開放し、フラッシング
用電源15が作動してフラッシング電流が電流制限抵抗
18、接点a1、a2、電源15からなる環流回路を介
して流れ、各接点表面に生じた絶縁性被膜を破壊する。
フラッシングが成功すると、電源15の出力電圧とほぼ
等しい電圧の印加によってリレー19が作動し、その接
点RY3a1およびRY3a2が閉成する。すると、接
点RY3a1、接点RY2a、接点RY1b、接点RY
3a2からなる環流接続を介して電源12からフラッシ
ング電流が流れる。このように切替スイッチ21を測定
位置に切替えることにより、直列要素5を境としてその
左右に存在する接点群に対して将棋倒し式にそれぞれフ
ラッシングが自動的に実行される。最終的に二つのフラ
ッシングが成功すると発光ダイオード21が点灯して該
成功を知らせる。タイマ16は設定時間後に接点17を
開放し、この結果リレー19が消勢されて接点RY3a
1およびRY3a2が開放して発光ダイオード21は消
灯する。
[0018] Using the minute current measuring apparatus of FIG. 1 under live wire from the constant position selector switch 2 1 to be measured cable 1 1 immediately before the insulation resistance measurement when measuring the insulation resistance of the cable Switch to measurement position. Then, the contact points a1,
a2 and a3 are closed, the contact b1 is opened, the power supply 15 for flushing is operated, and the flushing current flows through the circulating circuit composed of the current limiting resistor 18, the contacts a1, a2 and the power supply 15, and flows to the surface of each contact. Destroy the resulting insulating coating.
When the flushing is successful, the relay 19 is operated by applying a voltage substantially equal to the output voltage of the power supply 15, and the contacts RY3a1 and RY3a2 are closed. Then, the contact points RY3a1, RY2a, RY1b, and RY
A flushing current flows from the power supply 12 via the circulating connection 3a2. By switching in this way the change-over switch 2 1 to the measurement position, the flushing each runs automatically stampede expression for contact group present in the right and left as a boundary series elements 5. Finally, when the two flushings succeed, the light emitting diode 21 lights up to notify the success. The timer 16 opens the contact 17 after a set time, and as a result, the relay 19 is deenergized and the contact RY3a
1 and RY3a2 are opened, and the light emitting diode 21 is turned off.

【0019】上述の操作により各接点に存在したかも知
れない接触抵抗の不安定性は強制的に除去されて絶縁抵
抗測定に必要な雑音電圧の少ない環境が提供された。こ
の後、ケーブル11に対して通常の絶縁抵抗測定が実施
される。他のケーブルの絶縁抵抗を測定する場合にもそ
の測定都度、測定直前に上述のフラッシング電流を流し
て接点接触抵抗の不安定性の除去動作が行われる。
The above operation has forcibly eliminated the instability of the contact resistance that may have been present at each contact and provided an environment with low noise voltage required for insulation resistance measurement. Thereafter, normal insulation resistance measured for the cable 1 1 is performed. In each case of measuring the insulation resistance of another cable, the flushing current is applied immediately before the measurement to remove the instability of the contact resistance.

【0020】図2および図3は図1の装置を使用してフ
ラッシング後にケーブル12および19の絶縁抵抗を測定
した場合の雑音安定環境構成状況を記録した図で、従来
の図5および図6にそれぞれ対応している。図2及び図
3からは雑音電圧が除去されていることが明確に観測さ
れる。絶縁抵抗の測定結果は両ケーブル11、19ともに
5000MΩ以上と良好であることが確認された。
[0020] Figures 2 and 3 are views recorded noise stable environment configuration status in the case of measuring the insulation resistance of the cable 1 2 and 1 9 after flushing the apparatus of Figure 1, conventional in FIG. 5 and FIG. 6 respectively. 2 and 3 clearly show that the noise voltage has been removed. Insulation resistance measurement results, it was confirmed both cable 1 1, 1 9 are both 5000MΩ more excellent.

【0021】なお、前記実施例では防食層絶縁抵抗測定
用電源12を直列要素5の後段のフラッシング用電源に
流用したが、別個の専用電源を設けても良い。またフラ
ッシング用電源15にさらに兼用責務を負わせても良い
が、この場合は両回路の動作電位や極性に注意を払う必
要がある。
In the above embodiment, the power supply 12 for measuring the corrosion resistance of the anticorrosion layer is used as the power supply for flushing at the subsequent stage of the series element 5. However, a separate dedicated power supply may be provided. Further, the flushing power supply 15 may have a dual-purpose duty, but in this case, it is necessary to pay attention to the operating potentials and polarities of both circuits.

【0022】[0022]

【効果】この発明の微少電流測定装置は、その回路内に
おいて直列および並列に存在している電気接点の接触抵
抗が増大しかつ不安定化した場合あるいはそのおそれが
ある場合に、フラッシング開始手段および還流接続手段
の動作によりフラッシング用電源から各電気接点を連ね
た還流回路を経て微少電流より大きいフラッシング電流
を流すことにより治療的あるいは予防的に接触抵抗の低
減および安定化を獲得し、雑音電圧の減少を図ることが
できる。従って、従来のように接点を取替えまたは磨い
たりする手間や費用を無くし、また必ず再現するという
基本的欠陥を取除いて接触抵抗から生じる不安定性を除
去することができる。さらに本発明はタイマ手段を備え
ているから無駄にフラッシング用電源の電力が消費され
ることはない。
According to the present invention, there is provided a micro-current measuring device comprising: a flushing start means; and a flashing start means, provided that the contact resistance of electric contacts existing in series and in parallel in a circuit increases and becomes unstable or may become unstable. Through the operation of the reflux connection means, a flushing current larger than a very small current is passed from the flushing power supply through the reflux circuit connecting the electrical contacts, thereby reducing or stabilizing the contact resistance therapeutically or prophylactically, and reducing the noise voltage. Reduction can be achieved. Therefore, it is possible to eliminate the trouble and cost of replacing or polishing the contacts as in the related art, and to eliminate the instability caused by the contact resistance by removing the fundamental defect of always reproducing. Further, since the present invention includes the timer means, the power of the flushing power supply is not wasted.

【0023】また、本発明の方法は活線下で高圧電力ケ
ーブルの絶縁抵抗を測定する場合に絶縁抵抗測定の前に
電気接点を介してフラッシング電流を流す段階を含んで
いるから、電気接点の接触抵抗から生じる雑音電圧を減
少させた安定した環境下で絶縁抵抗の測定を実施するこ
とができる。
Also, the method of the present invention includes the step of flowing a flushing current through the electrical contact before measuring the insulation resistance when measuring the insulation resistance of the high-voltage power cable under a live line. The insulation resistance can be measured under a stable environment in which the noise voltage generated from the contact resistance is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す回路構成図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】図1の装置を使用して測定対象ケーブル12
対して観測されたフラッシング後の電圧記録図。
[Figure 2] Voltage recording view after observed flushing the measurement target cable 1 2 using the apparatus of FIG.

【図3】図1の装置を使用して測定対象ケーブル19
対して観測されたフラッシング後の電圧記録図。
FIG. 3 is a voltage recording diagram after flushing observed for a cable to be measured 19 using the apparatus of FIG. 1;

【図4】従来の微少電流測定装置を示す回路構成図。FIG. 4 is a circuit configuration diagram showing a conventional minute current measuring device.

【図5】図4の装置を使用して測定対象ケーブル12
対して観測された雑音電圧の存在を示す電圧記録図。
[5] voltage recording showing the presence of the observed noise voltage to be measured cable 1 2 using the apparatus of FIG.

【図6】図4の装置を使用して測定対象ケーブル19に
対して観測された雑音電圧の存在を示す電圧記録図。
FIG. 6 is a voltage recording diagram showing the presence of a noise voltage observed on the measurement target cable 19 using the apparatus of FIG. 4;

【符号の説明】[Explanation of symbols]

1〜1n 測定対象ケーブル 21〜2n 切替スイッチ 5 直列要素 7 リレー 9 リレー 12 防食層絶縁抵抗測定用電源 15 フラッシング用電源 16 タイマ 19 リレー a1、a2、a3、b1、RY1a、RY1b、RY2
a、RY2b、RY3a1、RY3a 接点
1 1 to 1 n Measurement target cable 2 1 to 2 n switch 5 Series element 7 Relay 9 Relay 12 Corrosion protection layer insulation resistance measurement power supply 15 Flushing power supply 16 Timer 19 Relay a1, a2, a3, b1, RY1a, RY1b, RY1b, RY2
a, RY2b, RY3a1, RY3a

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 19/00 - 19/32 G01R 27/16 G01R 31/02 G01R 31/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01R 19/00-19/32 G01R 27/16 G01R 31/02 G01R 31/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定対象微少電流を測定する測定回路に
設置されていて前記微少電流が通過する電気接点を連ね
て還流する、前記微少電流より大きいフラッシング電流
を供給するフラッシング用電源と、 前記微少電流の測定に先立って、該フラッシング用電源
からフラッシング電流通電を行わせるフラッシング開始
手段と、 前記フラッシング用電源と前記電気接点との間を結びフ
ラッシング電流を還流させる回路を一時的に構成する還
流接続手段とを備え、 前記フラッシング開始手段はフラッシング電流の通電が
開始された所定時間後にフラッシング電流を遮断するよ
うに働くタイマ手段を備えることを特徴とする微少電流
測定装置。
1. A flashing power supply which is provided in a measuring circuit for measuring a minute current to be measured and which supplies a flushing current larger than the minute current, which is connected to an electric contact through which the minute current passes, and Prior to the measurement of the current, a flushing start means for supplying a flushing current from the flushing power supply, and a reflux connection for temporarily forming a circuit for connecting the flushing power supply and the electric contact to reflux the flushing current. A minute current measuring device, characterized in that the flushing start means comprises timer means which works to cut off the flushing current a predetermined time after the flushing current is started to flow.
【請求項2】 活線下で高圧電力ケーブルに直流信号電
圧を重畳印加し、測定対象ケーブルの遮蔽端と大地間に
挿入された微少電流測定装置によって、高圧電力ケーブ
ルの絶縁抵抗を通じて漏洩して来る微少電流を読むこと
により高圧電力ケーブルの絶縁抵抗を測定する絶縁抵抗
測定方法において、 前記直流信号電圧の重畳印加に先立って、前記微少電流
測定装置内に設置されていて前記微少電流が通過する電
気接点を連ねて、前記微少電流より大きいフラッシング
電流を短時間還流させ、前記電気接点の接触抵抗の安定
化を行う段階とを含む、絶縁抵抗測定方法
2. A DC signal voltage is superimposed and applied to a high-voltage power cable under a live line, and leaks through an insulation resistance of the high-voltage power cable by a minute current measuring device inserted between a shielded end of a cable to be measured and the ground. In an insulation resistance measuring method for measuring the insulation resistance of a high-voltage power cable by reading an incoming minute current, prior to superimposing application of the DC signal voltage, the minute current is installed in the minute current measuring device and the minute current passes. and lined with electrical contacts, the greater flushing current than minute current refluxed briefly, and performing a stabilization of the contact resistance of the electrical contact, the insulation resistance measurement method.
JP03305936A 1991-11-21 1991-11-21 Microcurrent measuring device and method Expired - Lifetime JP3029070B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03305936A JP3029070B2 (en) 1991-11-21 1991-11-21 Microcurrent measuring device and method
KR1019920021856A KR960005603B1 (en) 1991-11-21 1992-11-20 Current mesurement circuit and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03305936A JP3029070B2 (en) 1991-11-21 1991-11-21 Microcurrent measuring device and method

Publications (2)

Publication Number Publication Date
JPH0694758A JPH0694758A (en) 1994-04-08
JP3029070B2 true JP3029070B2 (en) 2000-04-04

Family

ID=17951082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03305936A Expired - Lifetime JP3029070B2 (en) 1991-11-21 1991-11-21 Microcurrent measuring device and method

Country Status (2)

Country Link
JP (1) JP3029070B2 (en)
KR (1) KR960005603B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802094B1 (en) * 2005-03-18 2008-02-13 한국전기안전공사 Electrical measurement meter
KR20060110850A (en) * 2006-09-26 2006-10-25 (주)김포전력 Apparatus for pinpointing short circuit in live state and method thereof
KR102656937B1 (en) 2023-11-09 2024-04-12 (주)플루토테크놀로지 Lightning Arrester Grounding Line Leakage Current Measurement Device using Automatic Switching of Measurement Current Section and Noise Removal Technology for Measuring Microcurrent

Also Published As

Publication number Publication date
KR940011954A (en) 1994-06-22
JPH0694758A (en) 1994-04-08
KR960005603B1 (en) 1996-04-26

Similar Documents

Publication Publication Date Title
US3813579A (en) Electric receptacle assembly with ground fault protection
US10012718B2 (en) Protective device with automated self-test
DE19734224C1 (en) Method and device for determining switchgear-specific data on contacts in switchgear and / or for determining company-specific data in the network connected with it
US4803436A (en) Method and apparatus for evaluating the condition of a gapless metal-oxide varistor lightning arrester used for protecting a distribution transformer
JP2000217245A (en) Ground-fault circuit breaker
JP3029070B2 (en) Microcurrent measuring device and method
US6288553B1 (en) Method for determining the loop resistance of a power supply network
JPH08205516A (en) Electronic circuit
JP3132250B2 (en) Transient recovery voltage measurement method
JP3157386B2 (en) Ground fault detector
JP4051157B2 (en) Neon transformer ground fault detection circuit
JP2003322675A (en) Voltage divider for measuring arc voltage of switch interrupting test
DE19935025A1 (en) Ion current glow plug and control device for controlling it
JPS57172259A (en) Evaluating method of capacitor
JP3308197B2 (en) Cable deterioration diagnosis method
GB429503A (en) Improvements in or relating to earthing arrangements for electric apparatus
SU428493A1 (en) METHOD OF BLOCKING AUTOMATIC REPEATED INCLUSION OF CABLE LINES
JP3795698B2 (en) Voltage application device
DE4429950A1 (en) Semi automatic test facility for leakage current detection
JPH03194477A (en) Self-diagnostic method for insulation resistance measuring device
JP2605045Y2 (en) Leading current interruption test circuit
JPH0368353B2 (en)
SU1573497A1 (en) Device for protection of electric circuit from damage
JP3896231B6 (en) Heating and ion current measuring system and glow plug for measuring ion current
JPH0879962A (en) Closing alarm device for high-voltage load switch

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

EXPY Cancellation because of completion of term