JP3132250B2 - Transient recovery voltage measurement method - Google Patents

Transient recovery voltage measurement method

Info

Publication number
JP3132250B2
JP3132250B2 JP05181781A JP18178193A JP3132250B2 JP 3132250 B2 JP3132250 B2 JP 3132250B2 JP 05181781 A JP05181781 A JP 05181781A JP 18178193 A JP18178193 A JP 18178193A JP 3132250 B2 JP3132250 B2 JP 3132250B2
Authority
JP
Japan
Prior art keywords
phase
circuit
voltage
transient recovery
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05181781A
Other languages
Japanese (ja)
Other versions
JPH0735830A (en
Inventor
孝和 松波
周司 小野本
長  輝通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP05181781A priority Critical patent/JP3132250B2/en
Publication of JPH0735830A publication Critical patent/JPH0735830A/en
Application granted granted Critical
Publication of JP3132250B2 publication Critical patent/JP3132250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はしゃ断器などの開閉装置
の短絡電流しゃ断時に現れる過渡回復電圧固有波形の測
定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a characteristic waveform of a transient recovery voltage which appears when a short-circuit current of a switching device such as a circuit breaker is cut off.

【0002】[0002]

【従来の技術】過渡回復電圧(TRV)固有波形の決定
方法として、次の6つの手段がある。
2. Description of the Related Art There are the following six methods for determining a transient recovery voltage (TRV) characteristic waveform.

【0003】(1)短絡回路の直接しゃ断法 (2)商用周波電流注入法 (3)キャパシタンス電流注入法 (4)モデルネットワーク (5)回路定数からの計算 (6)変圧器を含む試験回路の無負荷しゃ断 6つの決定法の中で(1)項の短絡回路の直接しゃ断法
がTRV固有波形を評価をするための最も適した方法で
ある。すなわち、図4は直接しゃ断法を示す基本的な短
絡試験回路であって、同図において1は短絡発電機、2
は保護しゃ断器であって、2aは保護しゃ断器2のA相
接点、2bはB相接点、2cはC相接点である。3a〜
3cは限流リアクトル、4は投入器であって接点4a,
4b,4cを有する。5は供試しゃ断器であって、供試
しゃ断器5はA相接点5a,B相接点5b、C相接点5
cを備えている。6a〜6cは過渡回復電圧調整用の抵
抗、7a〜7cは同じく過渡回復電圧調整用のコンデン
サである。
[0003] (1) Short-circuit short circuit method (2) Commercial frequency current injection method (3) Capacitance current injection method (4) Model network (5) Calculation from circuit constant (6) Test circuit including transformer No-load interruption Among the six determination methods, the direct interruption method of the short circuit of the item (1) is the most suitable method for evaluating the TRV characteristic waveform. That is, FIG. 4 shows a basic short-circuit test circuit showing a direct cut-off method. In FIG.
Is a protection circuit breaker, 2a is an A-phase contact of the protection circuit breaker 2, 2b is a B-phase contact, and 2c is a C-phase contact. 3a ~
3c is a current limiting reactor, 4 is a thrower, and contacts 4a,
4b and 4c. Reference numeral 5 denotes a test circuit breaker. The test circuit breaker 5 includes an A-phase contact 5a, a B-phase contact 5b, and a C-phase contact 5.
c. 6a to 6c are resistors for adjusting the transient recovery voltage, and 7a to 7c are capacitors for adjusting the transient recovery voltage.

【0004】図5は図4の短絡試験回路の等価回路であ
って、第1相しゃ断過渡回復電圧発生回路であり、Ea
〜Ecは短絡発電機1の出力電圧である。
FIG. 5 is an equivalent circuit of the short-circuit test circuit shown in FIG.
Ec is the output voltage of the short-circuit generator 1.

【0005】図5に示すように、A相が第1相しゃ断と
した場合、B,C相は通電中でありアース電位となる。
従って、抵抗6aとコンデンサ7aの両端電圧はA相電
圧EA×1.5倍の電圧が過渡回復電圧(TRV)であ
る。なおA相も電流しゃ断するまではアース電位であり
抵抗6aとコンデンサ7aの両端電圧も零となる。
As shown in FIG. 5, when the phase A is the first phase cut-off, the phases B and C are energized and have the ground potential.
Accordingly, the voltage across the resistor 6a and the capacitor 7a is a transient recovery voltage (TRV) that is a voltage that is 1.5 times the A-phase voltage E A × 1.5. The phase A is also at the ground potential until the current is cut off, and the voltage across the resistor 6a and the capacitor 7a is also zero.

【0006】[0006]

【発明が解決しようとする課題】短絡回路の直接しゃ断
法が一般的に用いられているが、アーク電圧,ポストア
ーク電流,並びに電流チョッピングによる波形変歪が必
ず発生し、理想しゃ断時に得られる過渡回復電圧(TR
V)固有波形と異なる場合がある。従って、以下のよう
な不具合点がある。
Although the direct breaking method of the short circuit is generally used, the waveform distortion due to the arc voltage, the post arc current, and the current chopping always occurs, and the transient obtained at the time of the ideal breaking. Recovery voltage (TR
V) It may be different from the unique waveform. Therefore, there are the following disadvantages.

【0007】(1a)アーク電圧発生に依り電圧零点の
測定が難しい。
(1a) It is difficult to measure a voltage zero point due to arc voltage generation.

【0008】(2a)残留電流(ポストアーク電流)に
依りTRV波形を低減させる。
(2a) The TRV waveform is reduced by the residual current (post-arc current).

【0009】(3a)電流零点近傍のアーク電圧が急激
に上昇し電流さい断を起こしTRV波形を著しく異なっ
たものにする場合がある。
(3a) In some cases, the arc voltage near the current zero point sharply rises, causing a current cutoff, resulting in a significantly different TRV waveform.

【0010】本発明は上記従来の問題点に鑑みてなされ
たもので、その目的はアーク電圧や電流さい断の影響を
受けないで過渡回復電圧固有波形を測定可能な過渡回復
電圧測定方法を提供することである。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a transient recovery voltage measuring method capable of measuring a transient recovery voltage unique waveform without being affected by arc voltage or current interruption. It is to be.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するために、第1相しゃ断相に相当する1相のみを短
絡点に接続しない回路構成とし、第2,第3相しゃ断時
の通電電流を流し始め、しかる後に所定時間経過後に前
記第1相と接地間の両端電圧を測定することを特徴とす
る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention has a circuit configuration in which only one phase corresponding to the first phase cut-off phase is not connected to the short-circuit point. And after a lapse of a predetermined time, a voltage between the first phase and the ground is measured.

【0012】[0012]

【作用】第1相には短絡電流を流さないので、アーク電
圧による過渡回復電圧の変歪,残留電流による過渡回復
電圧の低減,電流さい断による過渡回復電圧の大幅な変
形等がない。
Since no short-circuit current flows through the first phase, there is no distortion of the transient recovery voltage due to the arc voltage, reduction of the transient recovery voltage due to the residual current, and no significant deformation of the transient recovery voltage due to the current interruption.

【0013】[0013]

【実施例】以下に本発明の実施例を図1〜図3を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0014】図1は本発明の実施例による過渡回復電圧
測定方法に用いる過渡回復電圧測定回路を示すもので、
図4のものと同一または相当部分には同一符号が付され
ている。
FIG. 1 shows a transient recovery voltage measuring circuit used in a transient recovery voltage measuring method according to an embodiment of the present invention.
The same or corresponding parts as those in FIG. 4 are denoted by the same reference numerals.

【0015】図1の回路においては、短絡発電機1に保
護しゃ断器2のA相接点2a,B相接点2bおよびC相
接点2cが接続され、保護しゃ断器の接点2a,2b,
2cには限流リアクトル3a,3b,3cを介して投入
器4の接点4a,4b,4cが接続されている。また、
投入器4の接点4a,4b,4cには供試しゃ断器5の
接点5a,5b,5cが接続され、供試しゃ断器5の接
点5bと5cは接地されている。
In the circuit of FIG. 1, the A-phase contact 2a, the B-phase contact 2b and the C-phase contact 2c of the protection circuit breaker 2 are connected to the short-circuit generator 1, and the contacts 2a, 2b,
The contacts 4a, 4b, 4c of the thrower 4 are connected to 2c via current limiting reactors 3a, 3b, 3c. Also,
The contacts 4a, 4b and 4c of the input device 4 are connected to the contacts 5a, 5b and 5c of the circuit breaker 5, and the contacts 5b and 5c of the circuit breaker 5 are grounded.

【0016】さらに、投入器4と供試しゃ断器5間で各
相は抵抗およびコンデンサを介して接地されている。従
って、第1相しゃ断相に相当する1相(A相)だけが短
絡点を接地しない回路構成になっている。
Each phase between the input device 4 and the circuit breaker 5 is grounded via a resistor and a capacitor. Therefore, only one phase (A phase) corresponding to the first phase cutoff phase has a circuit configuration in which the short-circuit point is not grounded.

【0017】図2は図1の回路における第1相しゃ断T
RV発生回路であり、図3はTRV測定時の各相の電流
Iと電圧Vの波形図である。図3において、AGVは短
絡発電機1の出力電圧、C相IはC相電流、C相VはC
相電圧、B相IはB相電流、B相VはB相電圧、A相I
はA相電流、A相VはA相電圧である。
FIG. 2 shows the first phase cutoff T in the circuit of FIG.
FIG. 3 is a waveform diagram of current I and voltage V of each phase at the time of TRV measurement. In FIG. 3, AGV is the output voltage of the short-circuit generator 1, C phase I is C phase current, and C phase V is C
Phase voltage, B phase I is B phase current, B phase V is B phase voltage, A phase I
Is an A-phase current, and A-phase V is an A-phase voltage.

【0018】本実施例においては、以下のような手順で
過渡回復電圧の測定を実行する。
In this embodiment, the measurement of the transient recovery voltage is performed in the following procedure.

【0019】(1A)手動によって保護しゃ断器2と供
試しゃ断器5を投入しておき、投入器4はオフにしてお
く。
(1A) The protective circuit breaker 2 and the test circuit breaker 5 are manually turned on, and the shutter 4 is turned off.

【0020】(2A)短絡発電機1を励磁し、図3に示
すように発電機出力電圧AGVを所定の給与電圧(供試
しゃ断器5の定格電圧)まで上昇させて保持する。
(2A) The short-circuit generator 1 is excited, and the generator output voltage AGV is raised to a predetermined supply voltage (the rated voltage of the circuit breaker 5) and held as shown in FIG.

【0021】(3A)タイマーにより投入器4のB相接
点4bとC相接点4cを、図3に示すように、A相より
も90度前に投入命令を出して投入する。
(3A) As shown in FIG. 3, the B-phase contact 4b and the C-phase contact 4c of the thrower 4 are thrown by issuing a throwing command 90 degrees earlier than the A-phase by a timer.

【0022】(4A)B相とC相には投入器4が投入さ
れた時点で限流リアクトル3b,3cによって制限され
た短絡電流(C相I,B相I)が流れる(B,C相の投
入位相は90度または270度とする)。この時点は図
4における第1相しゃ断が完了し第2,第3相しゃ断完
了までの間と同一現象となる。
(4A) Short-circuit currents (C-phase I and B-phase I) limited by the current limiting reactors 3b and 3c at the time when the injector 4 is turned on flow through the B-phase and the C-phase (B and C phases). Is set to 90 degrees or 270 degrees). At this time, the same phenomenon occurs as in the period from the completion of the first phase cutoff to the completion of the second and third phase cutoffs in FIG.

【0023】(5A)次に投入器4のA相接点4aを、
B,C相に短絡電流が流れてから90度後に、投入す
る。
(5A) Next, the A-phase contact 4a of the thrower 4 is
It is turned on 90 degrees after the short-circuit current flows in the B and C phases.

【0024】(6A)図1に示すようにA相はB,C相
と接続されておらず回路が切れているので、図3のA相
Iに示すように短絡電流は流れない。しかし、A相には
供試しゃ断器5の電源端子電圧まで充電される。
(6A) As shown in FIG. 1, the A phase is not connected to the B and C phases and the circuit is cut off, so that no short-circuit current flows as shown in the A phase I of FIG. However, the A-phase is charged up to the power supply terminal voltage of the circuit breaker 5 under test.

【0025】(7A)供試しゃ断器5のA相の両端子間
電圧を測定することにより3相短絡試験における第1相
しゃ断時の過渡回復電圧(TRV)固有波形と同一の波
形を測定できる。
(7A) By measuring the voltage between both terminals of the A-phase of the test circuit breaker 5, the same waveform as the transient recovery voltage (TRV) characteristic waveform at the time of the first-phase break in the three-phase short-circuit test can be measured. .

【0026】(8A)その後10〜20mS通電後に供
試しゃ断器または保護しゃ断器2でB,C相をしゃ断す
る。
(8A) Thereafter, after the current is supplied for 10 to 20 ms, the B and C phases are cut off by the test circuit breaker or the protection circuit breaker 2.

【0027】図2に示すように、最初にB,C相に通電
し図4における第2,第3相しゃ断時と同一現象を作り
出しておく。次にA相の投入器接点4aを投入すること
により抵抗6aとコンデンサ7aに図4における第1相
しゃ断時に発生する電圧EA×1.5倍を印加する。供
試しゃ断器のA相接点5aはアース側に接続されていな
いため短絡電流は流れない。従って、アーク電圧も発生
せず、これによりポストアーク電流も流れず電流さい断
も発生しない。
As shown in FIG. 2, the B and C phases are first energized to produce the same phenomenon as in the case of the interruption of the second and third phases in FIG. Then applying a 1.5 voltage E A × generated during the first phase interruption in Figure 4 the resistor 6a and the capacitor 7a by placing the insertion unit contacts 4a of the A phase. Since the A-phase contact 5a of the circuit breaker under test is not connected to the ground side, no short-circuit current flows. Therefore, no arc voltage is generated, so that no post-arc current flows and no current interruption occurs.

【0028】[0028]

【発明の効果】本発明は以上の如くであって、第1相し
ゃ断相に相当する1相のみを短絡点に接続しない回路構
成とし、第2,第3相しゃ断時の通電電流を流し始め、
しかる後に所定時間経過後に前記第1相と接地間の両端
電圧を測定するものであるから、アーク電圧並びに残留
電流(ポストアーク電流)並びに電流さい断の影響を受
けず理想しゃ断時に得られる過渡回復電圧(TRV)固
有波形を測定することができる。高性能な過渡回復電圧
測定方法が得られる。
As described above, the present invention has a circuit configuration in which only one phase corresponding to the first phase cut-off phase is not connected to the short-circuit point, and starts supplying a current flowing at the time of the second and third phase cut-offs. ,
Since the voltage between the first phase and the ground is measured after a lapse of a predetermined period of time, the transient recovery obtained at the time of the ideal interruption without being affected by the arc voltage, the residual current (post-arc current), and the current interruption. The voltage (TRV) characteristic waveform can be measured. A high-performance transient recovery voltage measurement method can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による過渡回復電圧測定方法を
実行するための過渡回復電圧測定回路のブロック図。
FIG. 1 is a block diagram of a transient recovery voltage measurement circuit for performing a transient recovery voltage measurement method according to an embodiment of the present invention.

【図2】図1の回路における第1相しゃ断過渡回復電圧
発生回路。
FIG. 2 is a first phase cutoff transient recovery voltage generation circuit in the circuit of FIG. 1;

【図3】図1の回路による過渡回復電圧測定時の各相の
電流と電圧の波形図。
FIG. 3 is a waveform diagram of current and voltage of each phase when a transient recovery voltage is measured by the circuit of FIG. 1;

【図4】従来の過渡回復電圧測定回路のブロック図。FIG. 4 is a block diagram of a conventional transient recovery voltage measurement circuit.

【図5】図4の回路による第1相しゃ断過渡回復電圧発
生回路。
5 is a first phase cutoff transient recovery voltage generation circuit based on the circuit of FIG. 4;

【符号の説明】[Explanation of symbols]

1…短絡発電機 2…保護しゃ断器 2a〜2c…保護しゃ断器の接点 3a〜3c…限流リアクトル 4…投入器 4a〜4c…投入器の接点 5…供試しゃ断器 6a〜6c…抵抗 7a〜7c…コンデンサ DESCRIPTION OF SYMBOLS 1 ... Short-circuit generator 2 ... Protective breaker 2a-2c ... Protective breaker contact 3a-3c ... Current limiting reactor 4 ... Input device 4a-4c ... Input device contact 5 ... Test circuit breaker 6a-6c ... Resistance 7a ~ 7c ... Capacitor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−142477(JP,A) 特開 昭63−75579(JP,A) 特開 昭49−56180(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 31/327 G01R 31/333 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-142477 (JP, A) JP-A-63-75579 (JP, A) JP-A-49-56180 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) G01R 31/327 G01R 31/333

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1相しゃ断相に相当する1相のみを短
絡点に接続しない回路構成とし、第2,第3相しゃ断時
の通電電流を流し始め、しかる後に所定時間経過後に前
記第1相と接地間の両端電圧を測定することを特徴とす
る過渡回復電圧測定方法。
1. A circuit configuration in which only one phase corresponding to a first phase cut-off phase is not connected to a short-circuit point, an energizing current at the time of the second and third phase cut-offs starts to flow, and then the first phase after a predetermined time has elapsed. A method of measuring a transient recovery voltage, comprising measuring a voltage between a phase and a ground.
【請求項2】 短絡電源の各相出力端子に投入器を介し
て供試開閉装置を接続し、この供試開閉装置の第1相し
ゃ断相に相当する1相だけを短絡点から切離すととも
に、前記投入器と開閉装置間において各相と接地間に抵
抗とコンデンサからなる過渡回復電圧調整回路を接続し
た回路構成とし、第2,第3相しゃ断時の通電電流を直
流分なしの位相で流し始め、しかる後に所定時間後に前
記投入器の第1相の接点を投入し、第1相の過渡回復調
整回路の両端電圧を測定することを特徴とする過渡回復
電圧測定方法。
2. A test switchgear is connected to each phase output terminal of the short-circuit power supply via an input device, and only one phase corresponding to the first phase cutoff phase of the test switchgear is separated from the short-circuit point. A circuit configuration in which a transient recovery voltage adjusting circuit composed of a resistor and a capacitor is connected between each phase and the ground between the closing device and the switchgear, and the energizing current when the second and third phases are cut off is a phase without a DC component. A method of measuring a transient recovery voltage, comprising: starting to flow, then, after a predetermined time, closing a contact of a first phase of the thrower to measure a voltage across a transient recovery adjustment circuit of the first phase.
JP05181781A 1993-07-23 1993-07-23 Transient recovery voltage measurement method Expired - Fee Related JP3132250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05181781A JP3132250B2 (en) 1993-07-23 1993-07-23 Transient recovery voltage measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05181781A JP3132250B2 (en) 1993-07-23 1993-07-23 Transient recovery voltage measurement method

Publications (2)

Publication Number Publication Date
JPH0735830A JPH0735830A (en) 1995-02-07
JP3132250B2 true JP3132250B2 (en) 2001-02-05

Family

ID=16106777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05181781A Expired - Fee Related JP3132250B2 (en) 1993-07-23 1993-07-23 Transient recovery voltage measurement method

Country Status (1)

Country Link
JP (1) JP3132250B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612544B2 (en) 2003-07-24 2011-01-12 サンデン株式会社 Electromagnetic clutch
JP4412991B2 (en) 2003-12-18 2010-02-10 サンデン株式会社 Electromagnetic clutch
JP2006250312A (en) 2005-03-14 2006-09-21 Sanden Corp Electromagnetic clutch
JP2006275178A (en) 2005-03-29 2006-10-12 Sanden Corp Electromagnetic clutch

Also Published As

Publication number Publication date
JPH0735830A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
ES8202452A1 (en) Static tripping device for an electric circuit-breaking switch.
JP3132250B2 (en) Transient recovery voltage measurement method
JP3897818B2 (en) Method and apparatus for testing electrical installations
US6696841B2 (en) Electric power system relay and on-line method of testing same
JP4100035B2 (en) Switch breaker test voltage divider for arc voltage measurement
JPS6165829U (en)
Koeppl et al. New aspects for neutral grounding of generators considering intermittent faults
CN212412739U (en) Novel fault management control device
Oppel et al. Evaluation and testing of a single terminal step distance scheme for use on a six phase transmission system
JPH0552468B2 (en)
JPH02105073A (en) Artificial ground-fault testing device for distribution line
JP3185541B2 (en) High voltage circuit breaker synthesis test equipment
SU660143A1 (en) Arrangement for determining faulty line at single-phase earthing in the network with insulated neutral wire and in compensated network
JP2605045Y2 (en) Leading current interruption test circuit
Vilcheck et al. Voltage transformer ferroresonance in cogeneration substation
JPS60125569A (en) Testing method of multithunder operating duty of lightning arrester
JP2763236B2 (en) Circuit breaker opening control device
JPH0298673A (en) Insulation resistance detector
JPS6238661B2 (en)
JP3179135B2 (en) Power line inspection method
JPH0651035A (en) Advancing minor current testing device
JPH0563748B2 (en)
JPH08278349A (en) Method for synthetic equalization testing of breaker
JPS55166059A (en) Device for closing, synthesizing and testing breaker or the like
JP3010749B2 (en) DC current rate relay test equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees