JPH02105073A - Artificial ground-fault testing device for distribution line - Google Patents

Artificial ground-fault testing device for distribution line

Info

Publication number
JPH02105073A
JPH02105073A JP25986088A JP25986088A JPH02105073A JP H02105073 A JPH02105073 A JP H02105073A JP 25986088 A JP25986088 A JP 25986088A JP 25986088 A JP25986088 A JP 25986088A JP H02105073 A JPH02105073 A JP H02105073A
Authority
JP
Japan
Prior art keywords
ground fault
relay
ground
fault
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25986088A
Other languages
Japanese (ja)
Other versions
JPH0619400B2 (en
Inventor
Hideo Mori
英夫 森
Shigeo Fujiwara
藤原 重男
Toshisuke Hatanaka
畑中 敏亮
Satoru Tento
天藤 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kinkei System Corp
Original Assignee
Tohoku Electric Power Co Inc
Kinkei System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kinkei System Corp filed Critical Tohoku Electric Power Co Inc
Priority to JP25986088A priority Critical patent/JPH0619400B2/en
Publication of JPH02105073A publication Critical patent/JPH02105073A/en
Publication of JPH0619400B2 publication Critical patent/JPH0619400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the device light in weight by providing a ground-fault control part for executing an opening/closing control of a ground-fault device, a relay testing circuit part for measuring an operation of a ground-fault protective relay, and a microcomputer part for deriving a ground-fault characteristic of a line. CONSTITUTION:When a test start push-button of an artificial ground-fault testing device 1 is pushed, a turn-on signal of a short time is sent out to a vacuum circuit breaker of a high voltage opening/closing part from a microcomputer part (a CPU 15, a data memory 16, a program memory 17) and only during that time, the vacuum circuit breaker is turned on, and an artificial ground-faul state appears. Under this artificial ground-fault state, a phase voltage, a ground-fault current, a zero-phase current, a zero-phase voltage and their phase angles are measured, and also, by an operation of the microcomputer part, a parameter of a distribution line is derived. Also, at the time of a relay test, a voltage and a current of a relay input are derived by an operation in the microcomputer part, applied as a voltage and a current of a test signal to a relay from a relay testing circuit part 12 and an operation value is measured automatically. In such a way, a test use transformer becomes unnecessary, and the device is made light is weight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は配電線を瞬時的に地絡させ、対地線路特性の
測定及び地絡保護継電器の動作試験を行う配電線人工地
絡試験装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a distribution line artificial ground fault testing device that instantaneously causes a ground fault in a distribution line, measures the line-to-ground line characteristics, and tests the operation of a ground fault protection relay. It is something.

〔従来の技術〕[Conventional technology]

従来、配電線に地絡事故が発生した場合、各種地絡保護
継電器(以下、単にリレーとも称する)により事故回線
を遮断し、健全回路と切り離すことが行われているが、
地絡事故時に発生する零相電圧や地絡電流の大きさは線
路亘長等で定まる線路“   特性により個々の系統で
異なるため、リレー整定即ちリレーの動作値の設定はそ
れぞれの線路特性に合わせて行う必要がある。
Conventionally, when a ground fault occurs in a distribution line, various types of ground fault protection relays (hereinafter simply referred to as relays) are used to cut off the faulty line and separate it from the healthy circuit.
The magnitude of the zero-sequence voltage and ground fault current that occur in the event of a ground fault differs for each system depending on the line characteristics determined by the line length, etc., so relay setting, that is, the setting of the relay operating value, should be adjusted to suit the characteristics of each line. It is necessary to do so.

しかし、リレー整定に必要な対地アドミタンスi   
を計算により正確に求めることは極めて困難なた1  
 め、現状では線路を人工的に地絡させて実測により求
めた地絡線路特性に基づきリレーの動作値を【   決
定するというやり方が行われている。一般には、試験用
変圧器(配電用変圧器6.6kV)を介して各配電線を
人工地絡させ、試験用変圧器の二次側に接続した水抵抗
器を調整して地絡電流を加減しつつ地絡抵抗−地絡電圧
及び地絡電圧−地絡電流特性を数点にわたり実測するこ
とにより、線路特性を求め、その特性に基づいてリレー
の動作値を決定する。
However, the ground admittance i required for relay setting
It is extremely difficult to obtain accurately by calculation1.
Therefore, the current method is to artificially create a ground fault on the line and determine the operating value of the relay based on the ground fault line characteristics obtained through actual measurements. Generally, each distribution line is artificially grounded through a test transformer (distribution transformer 6.6 kV), and a water resistor connected to the secondary side of the test transformer is adjusted to reduce the ground fault current. By actually measuring the ground fault resistance-ground fault voltage and ground fault voltage-ground fault current characteristics at several points while adjusting and subtracting, the line characteristics are obtained, and the operating value of the relay is determined based on the characteristics.

このような人工地絡試験に用いられる試験回路の一例を
第3図に示す。図示の試験回路は、配電系統の6kV母
線に遮断器CB及び断路器DSa、 DSbを介して接
続された配電線の線路特性を測定するために接続構成さ
れたもので、測定作業の安全のために切替母線を使用す
る。その測定結果に基づいて遮断器CBを作動させるた
めの地絡方向継電器DG及び地絡過電圧継電器0■Gの
動作点(感度)を設定する。図中符号30は接続棒、3
1は水抵抗器、32は試験用変圧器(ボールトランス)
、33は鉄共振防止用抑制抵抗器、AS(OS)は高圧
開閉器、FDSはヒユーズ付断路器、Voは零相電圧測
定用電圧計、phは位相計、Vgは地絡電圧測定用電圧
計、Igは地絡電流測定用電流計、GPTは接地型計器
用変圧器であ測定動作について説明すると、まず遮断器
CB、断路器DSa、 DSbは投入されており、配電
線は送電状態になっている。また、断路器DSc、 D
Si及び高圧開閉器ASは開放、ヒユーズ付断路器FD
Sは投入しておき、水抵抗器31は片方の極板を水中か
ら抜き出しておく(抵抗値最大)。この状態で、試験棒
30を切替母線の試験する相線(図示の場合はT相)に
接触させ、その相の断路器DSc(t)を投入する。
An example of a test circuit used in such an artificial ground fault test is shown in FIG. The illustrated test circuit is configured to measure the line characteristics of the distribution line connected to the 6kV bus of the distribution system via circuit breaker CB and disconnectors DSa and DSb. Use a switching busbar. Based on the measurement results, the operating points (sensitivity) of the ground fault direction relay DG and the ground fault overvoltage relay 0G for operating the circuit breaker CB are set. Reference numeral 30 in the figure is a connecting rod, 3
1 is a water resistor, 32 is a test transformer (ball transformer)
, 33 is a suppression resistor for preventing iron resonance, AS (OS) is a high-voltage switch, FDS is a disconnector with a fuse, Vo is a voltmeter for measuring zero-phase voltage, ph is a phase meter, and Vg is a voltage for measuring ground fault voltage. Ig is an ammeter for measuring ground fault current, and GPT is a grounding type potential transformer. To explain the measurement operation, first, circuit breaker CB, disconnectors DSa and DSb are closed, and the distribution line is in the power transmission state. It has become. In addition, disconnectors DSc, D
Si and high voltage switch AS are open, disconnector with fuse FD
S is put in, and one electrode plate of the water resistor 31 is taken out from the water (maximum resistance value). In this state, the test rod 30 is brought into contact with the phase line to be tested (T phase in the illustrated case) of the switching bus bar, and the disconnector DSc(t) of that phase is turned on.

続いて高圧開閉器ASを投入して人工地絡を発生させる
と共に、DSi を投入して抑制抵抗器33をバイパス
し、この状態で水抵抗を調整して(抵抗値を最大値から
徐々に減少させる入地絡方向継電器DG及び地絡過電圧
継電器OVGの動作点を含め、Vg。
Next, the high voltage switch AS is turned on to generate an artificial ground fault, and the DSi is turned on to bypass the suppression resistor 33, and in this state, the water resistance is adjusted (the resistance value is gradually decreased from the maximum value). Vg, including the operating points of the ground fault directional relay DG and the ground fault overvoltage relay OVG.

Vo、 Ig、 Phの指示値を数点にわたり測定、記
録する。
Measure and record the indicated values of Vo, Ig, and Ph at several points.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のような従来技術による人工地絡試
験には下記のような問題があり、電力業界等にあっては
これらの問題点を解決した装置の開発が要望されていた
However, the conventional artificial ground fault test described above has the following problems, and there has been a demand in the electric power industry and the like for the development of a device that solves these problems.

■ 試験装置の重量が嵩むとともに測定現場での回路組
みが複雑で、取扱が非常に厄介である。
■ The test equipment is heavy, and the circuitry at the measurement site is complicated, making it extremely difficult to handle.

■ 水抵抗器の微妙な調整が必要なため、地絡電流を流
す時間が比較的長くなり、その間地絡保護リレーが使用
できないことによって保護信頼度が低下する。
■ Because delicate adjustments to the water resistor are required, the time during which the ground fault current flows is relatively long, and the protection reliability decreases because the ground fault protection relay cannot be used during that time.

■ 試験用変圧器の鉄共振による異常電圧防止対策を必
要とする。
■ Measures are required to prevent abnormal voltages caused by iron resonance in test transformers.

より詳しくは、上記のようにボールトランスや水抵抗を
用いて人工地絡を起こし、電圧計、電流計によって配電
線の線路特性やDGリレーの動作点を測定する方法では
、非常に重いボールトランスが必要な上、地絡抵抗を水
抵抗によって可変調整するため、常に変動する電圧、電
流を目視で測定しなければならず、準備、測定に多大の
時間を要する。また、トランスのインダクタンスと配電
線の対地容量に起因するものと推定されている異常共振
による異常電圧発生の危険が伴う。
More specifically, the above method of creating an artificial ground fault using a ball transformer or water resistance and measuring the line characteristics of the distribution line and the operating point of the DG relay with a voltmeter and ammeter requires a very heavy ball transformer. In addition, since the ground fault resistance is variably adjusted by water resistance, the constantly fluctuating voltage and current must be measured visually, which requires a large amount of time for preparation and measurement. Additionally, there is a risk of abnormal voltage generation due to abnormal resonance, which is estimated to be caused by the inductance of the transformer and the ground capacity of the distribution line.

この発明は上記の事情に鑑みなされたもので、その目的
は、試験用変圧器が不要で、軽量化され、簡略化された
装置構成により簡単かつ迅速に人工地絡試験を行うこと
のできる配電線人工地絡試験装置を提供することによっ
て、人工地絡試験を半自動化し、作業量の低減と試験時
間の短縮及び危険防止を促進することにある。
This invention was made in view of the above circumstances, and its purpose is to provide an arrangement that does not require a test transformer, is lightweight, and can easily and quickly perform an artificial ground fault test with a simplified device configuration. By providing a wire artificial ground fault testing device, the purpose is to semi-automate artificial ground fault testing, reduce the amount of work, shorten testing time, and promote danger prevention.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的達成のため、この発明は、配電線を瞬時的に人
工地絡させて対地線路特性の測定と地絡保護継電器の動
作試験を行う配電線人工地絡試験装置において:地絡装
置の開閉制御を行う地絡装置制御部と;零相電圧、地絡
電流等の高速サンプリングを行う測定部と;地絡保護リ
レーの試験信号として模擬零相電圧及び模擬地絡電流を
発生し、地絡保護リレーの動作値を測定するリレー試験
回路部と;上記各部を制御すると共に、上記測定部の出
力データに対して所定の演算を行い、上記試験信号発生
のための基礎データとなる線路の地絡特性を求めるマイ
クロコンピュータ部と;を具備したものである。
In order to achieve the above object, the present invention provides a distribution line artificial ground fault testing device that instantaneously causes an artificial ground fault in a distribution line to measure the line-to-ground line characteristics and test the operation of a ground fault protection relay: opening and closing of a ground fault device; A ground fault device control section that performs control; a measurement section that performs high-speed sampling of zero-sequence voltage, ground fault current, etc.; A relay test circuit section that measures the operating value of the protective relay; controls each of the above sections, performs predetermined calculations on the output data of the measurement section, and tests the track ground, which is the basic data for generating the test signal. It is equipped with a microcomputer section for determining the contact characteristics;

〔作用〕[Effect]

中性点が非接地方式の配電系統の線路定数、即ち三相−
括平衡アドミタンス?。。及び三相−払下平衡アドミタ
ンス?。。′は地絡抵抗値をR1としてそれぞれ次式■
及び■で与えられる。また、1線地絡時の零相電圧♀。
Line constants of distribution systems where the neutral point is ungrounded, that is, three-phase −
Boundary equilibrium admittance? . . and three-phase-discharge equilibrium admittance? . . ' is the following formula, assuming the ground fault resistance value as R1.
and ■ are given. Also, zero-sequence voltage ♀ when one wire is grounded.

及び地絡電流!はそれぞれ次式■及び■で与えられる。and ground fault current! are given by the following formulas ■ and ■, respectively.

?。。・=−づj工■−66816909,1140,
(1)0,■+=  E+λ−・・・・・・・・・・・
・・・・・・・・・・・・・・・・・−・・・・■R。
? . .・=-zuj 工■-66816909,1140,
(1) 0,■+=E+λ−・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・■R.

ただし、皇、。: 非地絡時における残留零相電圧ぐ、
: 任意の抵抗(R5)で地絡させたときの零相電圧 E: 相電圧 へ二 地絡相により異なる係数:R相地1  、Q 絡で人=1.S相地絡で人=2’2’ tv’T T相地絡で人=−T+」丁 即ち、常時系統の残留零相電圧!、。を測定し、次に任
意の相を地絡抵抗R,で地絡させ、その時の零相電圧t
、を測定することにより、線路定数を求めることができ
る。上記の構成を有するこの発明の配電線人工地絡試験
装置は、地絡装置の固定抵抗器により短時間の人工地絡
を行い、その結果得られるデータから、系統の地絡特性
を演算により求め、さらにその特性を利用してリレーの
動作試験を行うようにしたものである。
However, Emperor. : Residual zero-sequence voltage during non-ground fault,
: Zero-sequence voltage E when a ground fault occurs with an arbitrary resistor (R5): To the phase voltage 2 Coefficients that vary depending on the ground fault phase: R phase ground 1, Q person due to fault = 1. S-phase ground fault = 2'2'tv'T T-phase ground fault = -T+'' In other words, residual zero-sequence voltage in the system at all times! ,. Then, any phase is grounded with a grounding resistance R, and the zero-sequence voltage t at that time is measured.
By measuring , the line constant can be determined. The distribution line artificial ground fault test device of the present invention having the above configuration performs a short-time artificial ground fault using the fixed resistor of the ground fault device, and calculates the ground fault characteristics of the system from the data obtained as a result. Furthermore, this characteristic is used to test the operation of the relay.

より詳しくは、マイクロコンピュータの制御下において
、地絡装置制御部により地絡装置を瞬時的に閉じさせて
線路を人工地絡させ、その地絡時の零相電圧及び地絡電
流等を測定部によって高速サンプリングする。マイクロ
コンピュータ部は、このサンプリングにより得られたデ
ータを入力して、上記の0式乃至0式に基づく演算を行
い線路の地絡特性を算出するとともに、このようにして
得られた地絡特性に基づきリレー試験回路部より地絡保
護リレーへ模擬零相電圧及び模擬地絡電流を供給させ、
その応答により地絡保護リレーの動作値を測定する。
More specifically, under the control of a microcomputer, a ground fault device control section instantaneously closes the ground fault device to cause an artificial ground fault on the line, and a measurement section measures the zero-sequence voltage, ground fault current, etc. at the time of the ground fault. sample at high speed. The microcomputer section inputs the data obtained through this sampling and calculates the ground fault characteristics of the line by performing calculations based on the above equations 0 and 0, and also calculates the ground fault characteristics obtained in this way. Based on this, the relay test circuit section supplies a simulated zero-sequence voltage and a simulated earth fault current to the earth fault protection relay,
Based on the response, the operating value of the ground fault protection relay is measured.

この発明の人工地絡試験装置は、上記のように測定、デ
ータ記録、演算及びその他の処理を瞬時に行うことがで
きるので、人工地絡を重いボールトランスや水抵抗に代
えて純抵抗分からなる固定抵抗器によって行うことが可
能となる。
The artificial ground fault test device of the present invention can perform measurement, data recording, calculation, and other processing instantly as described above, so that artificial ground faults can be replaced with heavy ball transformers and water resistance by pure resistance components. This can be done with fixed resistors.

〔実施例〕〔Example〕

以下、この発明の配電線人工地絡装置の一実施例につい
て第1図及び第2図を参照しつつ説明する。
Hereinafter, an embodiment of the distribution line artificial ground fault device of the present invention will be described with reference to FIGS. 1 and 2.

第1図に示す実施例の配電線人工地絡試験装置1におい
て、測定部11は入力変換器111、互いに並列に接続
されたn個のフィルタlI21(1=1”=nχこれら
の各フィルタ112.にそれぞれ接続されたn個のサン
プルホールド(S/H)回路ILL(1=1〜nχマル
チプレクサ114及びアナログ−デジタル(^/D)変
換器115で構成されている。また、 リレー試験回路
12は入出力切換器121、電圧増幅器122、振幅調
整器123、位相調整器124、デジタル入出力装置1
25、正弦波発生器t2a、振幅調整器127及び電流
増幅器128で構成され、マイクロコンピュータ部はマ
イクロプロセッサ(CPU) 15、データメモリ16
及びプログラムメモリ17で構成されている。
In the distribution line artificial ground fault test device 1 of the embodiment shown in FIG. It consists of n sample and hold (S/H) circuits ILL (1=1 to nχ multiplexer 114 and analog-to-digital (^/D) converter 115, each connected to the relay test circuit 12. Input/output switch 121, voltage amplifier 122, amplitude adjuster 123, phase adjuster 124, digital input/output device 1
25, consists of a sine wave generator t2a, an amplitude adjuster 127, and a current amplifier 128, and the microcomputer section is a microprocessor (CPU) 15, data memory 16
and a program memory 17.

この装置にはさらにデジタル入出力装置141及びリレ
ードライバ142からなる地絡装置制御部14、及びイ
ンターフェース(1/F)装置1131.プリンタ13
2、液晶表示装置(LCD)133及びキーボード13
4よりなるデータ入出力部13と、電源装置18が設け
られている。この実施例の人工地絡試験装置は接触棒2
0を有する高圧開閉部(地絡装置)2と共に使用され、
高圧開閉部2は7.2kV真空遮断器VCB、 8にΩ
の地絡用固定抵抗器RO1変流器CTO及び保護用電力
ヒューズPF等で構成されている。
This device further includes a ground fault device control section 14 consisting of a digital input/output device 141 and a relay driver 142, and an interface (1/F) device 1131. Printer 13
2. Liquid crystal display (LCD) 133 and keyboard 13
A data input/output section 13 consisting of 4 and a power supply device 18 are provided. The artificial ground fault test device of this embodiment has contact rod 2.
Used with high voltage switchgear (earth fault device) 2 having 0,
High voltage switching section 2 is a 7.2kV vacuum circuit breaker VCB, 8Ω
It consists of a ground fault fixed resistor RO1, a current transformer CTO, a protective power fuse PF, etc.

上記測定部11の入力変換器111には接地型計器用変
圧器GPTの二次側Xより線間電圧及び対地電圧が入力
されると共に、高圧開閉部2の変流器CTOより地絡電
流Igが入力される。なお、フィルタ112、とサンプ
ルホールド(S/)l)回路113.の直列回路が並列
に複数個(n個)設けられているのは、異なる測定点に
ついて三相電圧、零相電圧、地絡電流等、複数の測定要
素を同時にサンプリングし、このように同時にサンプリ
ングしたデータをA/D変換器115でデジタルデータ
に変換できるようにするためである。また、リレー試験
回路部12の入出力切換器121には接地型計器用変圧
器GPTの三次側Yより零相電圧Voが、また零相変流
器ZCTの二次側より二次電流igが入力され、デジタ
ル入出力装置125には地絡方向継電器DGまたは地絡
過電圧継電器OvGより接点動作信号が入力される。
Line voltage and ground voltage are input to the input converter 111 of the measuring section 11 from the secondary side is input. Note that the filter 112 and the sample and hold (S/) circuit 113. The reason why multiple (n) series circuits are installed in parallel is to simultaneously sample multiple measurement elements such as three-phase voltage, zero-phase voltage, and ground fault current at different measurement points. This is to enable the A/D converter 115 to convert the data into digital data. In addition, the input/output switch 121 of the relay test circuit section 12 receives a zero-sequence voltage Vo from the tertiary side Y of the grounded potential transformer GPT, and a secondary current ig from the secondary side of the zero-phase current transformer ZCT. A contact operation signal is input to the digital input/output device 125 from the ground fault direction relay DG or the ground fault overvoltage relay OvG.

測定は、マイクロコンピュータ部(CPuts、 デー
タメモ1月6、プログラムメモ1J17)の制御下にお
いて、電圧、電流の他位相角をも含め高速で行われる。
Measurements including voltage, current, and phase angle are performed at high speed under the control of a microcomputer unit (CPuts, Data Memo January 6, Program Memo 1J17).

このため、高圧開閉部2の純抵抗(固定抵抗器RO)に
よる地絡の時間は約0.5秒と極端に短くて済む。高圧
開閉部2の純抵抗による人工地絡で相電圧、地絡電流、
零相電流、零相電圧及びこれらの間の位相角を測定する
と共に、これらの測定データに基づきマイクロコンピュ
ータ部の演算によって配電線のパラメータ(アドミタン
ス等)を求める。配電線路特性は、このように求めたパ
ラメータを用いてアドミタンス計算により算出する。
Therefore, the time required for a ground fault due to the pure resistance (fixed resistor RO) of the high voltage switching section 2 is extremely short, about 0.5 seconds. Artificial ground fault due to pure resistance of high voltage switching section 2 causes phase voltage, ground fault current,
The zero-sequence current, the zero-sequence voltage, and the phase angle between these are measured, and the parameters (admittance, etc.) of the distribution line are calculated by the microcomputer based on these measurement data. The distribution line characteristics are calculated by admittance calculation using the parameters obtained in this way.

さらに、その計算結果に基づき、任意の地絡抵抗におけ
る地絡電流、零相電流、零相電圧及びそれらの間の位相
角を求める。
Furthermore, based on the calculation results, the ground fault current, zero-sequence current, zero-sequence voltage, and phase angle between them at any ground fault resistance are determined.

そして、地絡抵抗を高い抵抗値から徐々に降下させて行
ったと想定した時の連続的な零相電流、零相電圧及びそ
れらの間の位相角を演算により求め、実際の零相電流、
零相電圧に相当する試験信号をマイクロコンピュータ部
の制御下においてリレー試験回路部12により発生し、
試験対象のDGリレーまたはOvG リレーに加え、こ
れらのリレーの動作点あるいは応答動作を確認する。従
って、人工地絡試験で実際に地絡抵抗を徐々に変化させ
ることによるリレー動作確認の試験を行う必要はない。
Then, by calculating the continuous zero-sequence current, zero-sequence voltage, and phase angle between them, assuming that the ground fault resistance is gradually lowered from a high resistance value, the actual zero-sequence current,
A test signal corresponding to the zero-sequence voltage is generated by the relay test circuit section 12 under the control of the microcomputer section,
In addition to the DG relay or OvG relay being tested, check the operating point or response operation of these relays. Therefore, it is not necessary to conduct a test to confirm relay operation by actually gradually changing the ground fault resistance in the artificial ground fault test.

なお、上記の配電線路のパラメータ測定においては、地
絡電流、零相電流、零相電圧、これらの間の位相角、及
びアドミタンス等がデータ入出力部13のLCD133
の画面上に表示され、またプリンタ132でこれらのデ
ータをプリントアウトすることができる。また、OGや
OvGのリレー試験においては、リレーの動作点のデー
タが表示され、プリントアウトされる。
In addition, in the parameter measurement of the above-mentioned distribution line, the ground fault current, zero-sequence current, zero-sequence voltage, phase angle between these, admittance, etc. are displayed on the LCD 133 of the data input/output unit 13.
These data can be displayed on the screen of the printer 132, and can be printed out using the printer 132. In addition, in OG and OvG relay tests, data on the relay operating point is displayed and printed out.

次に、この実施例の人工地絡試験装置による測定、試験
操作の一例を第2図を参照しつつ簡単に説明する。
Next, an example of measurement and test operations using the artificial ground fault testing device of this embodiment will be briefly explained with reference to FIG.

まず、遮断器CB、断路器DSa、 DSbは投入位置
で、配電線が送電状態にあり、遮断器DScは開放で切
替母線は非送電状態になっている。また、高圧開閉部2
の真空遮断器VCBは開放されている。試験を行うには
、高圧開閉部2に接続された接地棒20を切替母線の試
験する相線(図示の場合はT相)に接触させ、その相の
断路器DSc(t)を投入する。
First, the circuit breaker CB, the disconnectors DSa, and DSb are in the closed position, and the distribution line is in a power transmission state, and the circuit breaker DSc is open and the switching bus is in a non-power transmission state. In addition, the high voltage opening/closing part 2
Vacuum circuit breaker VCB is open. To conduct the test, the grounding rod 20 connected to the high-voltage switching unit 2 is brought into contact with the phase line to be tested (T phase in the illustrated case) of the switching bus, and the disconnector DSc(t) of that phase is turned on.

この状態で人工地絡試験装置Iの試験開始押しボタン(
図示省略)を押すと、マイクロコンピュータ部の制御下
において地絡装置制御部14のデジタル入出力装置14
1及びリレードライバ回路142を介して高圧開閉部2
の真空遮断器VCHに短時間の投入信号が送出され、そ
の短い間だけ真空遮断器VCBが投入されて、人工地絡
状態が現出される。この短い人工地絡状態下において上
記の測定、マイクロコンピュータ部の制御下で上記の測
定、データ取り込み動作が行われ、これに続いて、上記
の演算、試験信号発生/送出、応答確認、データ表示、
プリントアウト等の動作も自動的にあるいはキーボード
134からの指令入力に応じて行われる。
In this state, press the test start button (
(not shown) is pressed, the digital input/output device 14 of the ground fault device control section 14 is pressed under the control of the microcomputer section.
1 and the high voltage switching section 2 via the relay driver circuit 142.
A short-time closing signal is sent to the vacuum circuit breaker VCH, and the vacuum circuit breaker VCB is closed for only that short period of time, thereby creating an artificial ground fault condition. Under this short artificial ground fault condition, the above measurements and data acquisition operations are performed under the control of the microcomputer section, followed by the above calculations, test signal generation/sending, response confirmation, and data display. ,
Operations such as printing out are also performed automatically or in response to command input from the keyboard 134.

例えば、系統の零相電圧−地絡抵抗特性及び地絡電圧−
地絡電流特性を求めるには、地絡前後の9、。、?、、
Eを測定し、前出の式■〜■を適用する。零相変流器(
ZCT)特性を求めるには、上記の如く瞬時人工地絡し
た時の地絡電流(Ig)とZCT二次電流(1g)を測
定してZCT変成比(Ig/ig)ならびに−次一二次
位相差を求め、DCリレーやOVG リレーの試験信号
を発生する際の補正データとして用いる。また、DG、
 OVGのリレー試験においては、上記地絡特性測定で
求めた?、。、?。。′ならびに上記ZCT特性測定の
結果から前記式■及び■により地絡抵抗R,を任意に変
化させた時のリレー入力端子、電流を演算により求め、
リレー試験回路部12よりリレーに試験信号電圧、電流
として印加して動作値(検出感度)を自動測定する。
For example, the zero-sequence voltage of the system - ground fault resistance characteristics and ground fault voltage -
9 before and after the ground fault to determine the ground fault current characteristics. ,? ,,
Measure E and apply equations ① to ① above. Zero-phase current transformer (
To determine the ZCT) characteristics, measure the ground fault current (Ig) and ZCT secondary current (1g) when an instantaneous artificial ground fault occurs as described above, and calculate the ZCT transformation ratio (Ig/ig) and -order primary The phase difference is determined and used as correction data when generating test signals for DC relays and OVG relays. Also, DG,
In the OVG relay test, the ? ,. ,? . . ′ and from the results of the above ZCT characteristic measurement, calculate the relay input terminal current when arbitrarily changing the ground fault resistance R, using the above formulas ① and ②,
A test signal voltage and current are applied to the relay from the relay test circuit section 12 to automatically measure the operating value (detection sensitivity).

上記の測定、データ取り込み後は断路器DSc(t)を
開放し、接触棒20を被験相線から離すだけでよい。
After the above measurement and data acquisition, it is sufficient to simply open the disconnector DSc(t) and separate the contact rod 20 from the phase line under test.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の配電線人工地絡試験装
置は、地絡装置の開閉制御を行う地絡装置制御部と、零
相電圧、地絡電流等の高速サンプリングを行う測定部と
、地絡保護リレーの試験信号として模擬零相電圧及び模
擬地絡電流を発生し、地絡保護リレーの動作値を測定す
るリレー試験回路部と、上記各部を制御すると共に、上
記測定部の出力データに対して所定の演算を行い、上記
試験信号発生のための基礎データとなる線路の地絡特性
を求めるマイクロコンピュータ部とを具備した構成とし
たため、下記の如く人工地絡試験における能率改善及び
安全性向上等にとって極めて望ましい効果を達成し得る
As explained above, the distribution line artificial ground fault testing device of the present invention includes a ground fault device control section that controls opening and closing of the ground fault device, a measurement section that performs high-speed sampling of zero-sequence voltage, ground fault current, etc. A relay test circuit section that generates a simulated zero-sequence voltage and a simulated ground fault current as a test signal for the ground fault protection relay, and measures the operating value of the ground fault protection relay, and controls each of the above sections and output data of the measurement section. The structure is equipped with a microcomputer section that performs predetermined calculations on the ground fault characteristics of the line and obtains the ground fault characteristics of the line, which is the basic data for generating the test signal.As described below, it improves efficiency and safety in artificial ground fault tests. It is possible to achieve extremely desirable effects such as improving sexual performance.

(a)試験用変圧器(ボールトランス)が不要となり、
装置が著しく軽量化され、取扱が極めて容易な上、鉄共
振対策も不要である。
(a) Test transformer (ball transformer) is no longer required,
The device is significantly lighter in weight, extremely easy to handle, and does not require any fero-resonance countermeasures.

(bl  人工地絡時間が非常に短くて済むため、被験
リレーを稼働させたまま試験することができる。
(bl) Since the artificial ground fault time is very short, the test can be performed while the relay under test is in operation.

fc)  装置が著しく簡単化されるため、試験準備時
間及び試験時間が大幅に短縮され、試験に要する人員も
削減することが出来る。
fc) Since the equipment is significantly simplified, the test preparation time and test time are significantly shortened, and the number of personnel required for the test can also be reduced.

tel  装置はすべて遠隔操作化することができるた
め、試験要員の安全性が確保される。
All tel equipment can be operated remotely, ensuring the safety of test personnel.

げ)マイクロコンピュータにより複数の測定点の複数の
測定項目の瞬時データが等時性を以て読み取り処理され
るので、高い測定精度を確保することができる。
g) Since the microcomputer reads and processes the instantaneous data of a plurality of measurement items at a plurality of measurement points in an isochronous manner, high measurement accuracy can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の人工地絡試験装置の一実施例の構成
を示すブロック図、第2図はこの実施例を用いた人工地
絡試験の一例の接続構成を示す結線図、第3図は従来技
術による人工地絡試験の一例の接続構成を示す結線図で
ある。 l・・・・・・・・・配電線人工地絡試験装置、2・・
・・・・・・・高圧開閉部、   11・・・・・・・
・・測定部、12・・・・・・・・・リレー試験回路部
、14・・・・・・・・・地絡装置制御部、15・・・
・・・・・・マイクロプロセッサ、16・・・・・・・
・・データメモリ、17・−・・−・・・・プログラム
メモリ。
FIG. 1 is a block diagram showing the configuration of an embodiment of the artificial ground fault testing device of the present invention, FIG. 2 is a wiring diagram showing the connection configuration of an example of an artificial ground fault test using this embodiment, and FIG. 3 1 is a wiring diagram showing a connection configuration of an example of an artificial ground fault test according to the prior art. l......Distribution line artificial ground fault test equipment, 2...
・・・・・・High voltage opening/closing part, 11・・・・・・
... Measuring section, 12... Relay test circuit section, 14... Earth fault device control section, 15...
・・・・・・Microprocessor, 16・・・・・・・
...Data memory, 17.--.--.Program memory.

Claims (1)

【特許請求の範囲】[Claims] (1)配電線を瞬時的に人工地絡させて対地線路特性の
測定と地絡保護継電器の動作試験を行う配電線人工地絡
試験装置において: 配電線路を人工地絡させる地絡装置の開閉制御を行う地
絡装置制御部と; 零相電圧、地絡電流等の高速サンプリングを行う測定部
と; 地絡保護リレーの試験信号として模擬零相電圧及び模擬
地絡電流を発生し、地絡保護リレーの動作値を測定する
リレー試験回路部と; 上記各部を制御すると共に、上記測定部の出力データに
対して所定の演算を行い、上記試験信号発生のための基
礎データとなる線路の地絡特性を求めるマイクロコンピ
ュータ部と; を具備したことを特徴とする配電線人工地絡試験装置。
(1) In a distribution line artificial ground fault testing device that momentarily causes an artificial ground fault in a distribution line to measure the line-to-ground line characteristics and test the operation of a ground fault protection relay: Opening and closing of a ground fault device that causes an artificial ground fault in a distribution line A ground fault device control section that performs control; A measurement section that performs high-speed sampling of zero-sequence voltage, ground fault current, etc.; A relay test circuit section that measures the operating value of the protective relay; controls each of the above sections, performs predetermined calculations on the output data of the measurement section, and tests the track ground, which is the basic data for generating the test signal. A distribution line artificial ground fault testing device comprising: a microcomputer section for determining fault characteristics;
JP25986088A 1988-10-14 1988-10-14 Distribution line artificial ground fault tester Expired - Lifetime JPH0619400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25986088A JPH0619400B2 (en) 1988-10-14 1988-10-14 Distribution line artificial ground fault tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25986088A JPH0619400B2 (en) 1988-10-14 1988-10-14 Distribution line artificial ground fault tester

Publications (2)

Publication Number Publication Date
JPH02105073A true JPH02105073A (en) 1990-04-17
JPH0619400B2 JPH0619400B2 (en) 1994-03-16

Family

ID=17339975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25986088A Expired - Lifetime JPH0619400B2 (en) 1988-10-14 1988-10-14 Distribution line artificial ground fault tester

Country Status (1)

Country Link
JP (1) JPH0619400B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454435U (en) * 1990-09-14 1992-05-11
KR100356175B1 (en) * 1998-12-16 2002-11-18 주식회사 포스코 Diagnosis Device of Vacuum Circuit Breaker for Electric Furnace_
CN103454457A (en) * 2013-07-04 2013-12-18 国家电网公司 Pneumatic transmission device for high-voltage line artificial short-circuit test
CN108107294A (en) * 2017-12-27 2018-06-01 国网冀北电力有限公司张家口供电公司 A kind of microcomputer protective relay pilot system based on measurement module
CN111964885A (en) * 2020-08-04 2020-11-20 合肥工业大学 Performance testing device and method for high-voltage power transmission line disconnection protector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454435U (en) * 1990-09-14 1992-05-11
KR100356175B1 (en) * 1998-12-16 2002-11-18 주식회사 포스코 Diagnosis Device of Vacuum Circuit Breaker for Electric Furnace_
CN103454457A (en) * 2013-07-04 2013-12-18 国家电网公司 Pneumatic transmission device for high-voltage line artificial short-circuit test
CN108107294A (en) * 2017-12-27 2018-06-01 国网冀北电力有限公司张家口供电公司 A kind of microcomputer protective relay pilot system based on measurement module
CN108107294B (en) * 2017-12-27 2020-02-07 国网冀北电力有限公司张家口供电公司 Microcomputer relay protection test system based on measurement modularization
CN111964885A (en) * 2020-08-04 2020-11-20 合肥工业大学 Performance testing device and method for high-voltage power transmission line disconnection protector

Also Published As

Publication number Publication date
JPH0619400B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
Pope A comparison of 100% stator ground fault protection schemes for generator stator windings
US4634981A (en) Method for testing a circuit breaker using a three terminal current transformer
JPH02105073A (en) Artificial ground-fault testing device for distribution line
JP3312172B2 (en) Distribution line ground fault protection relay test method and apparatus
JP2003189425A (en) Apparatus for testing protection of power receiving and distributing facility system
JP2904748B2 (en) Ground fault protection device
US4152640A (en) Two phase high voltage insulation testing of multiphase windings
Steurer et al. Calculating the transient recovery voltage associated with clearing transformer determined faults by means of frequency response analysis
JPH11304870A (en) Method for confirming polarity of tertiary winding of meter current transformer, and testing method for ground protective relay using the same
JP2578766B2 (en) Live tan δ measuring device
LV13922B (en) Method for determination of distance to fault place by phase-to-earth fault in distribution networks
JPH0692997B2 (en) Measuring device for ground capacitance of power system
JP3313200B2 (en) Zero-phase current transformer primary current measuring device
JPH0229781Y2 (en)
JPH0593748A (en) Measuring apparatus for earth capacitance of isolated neutral power system
KR20010039244A (en) Load tester for automatic voltage regulator and method for the same
Baldwin et al. Using a microprocessor-based instrument to predict the incident energy from arc-flash hazards
JPS6347055B2 (en)
JPS622884Y2 (en)
Estima et al. Real-time Condition Monitoring of Grounding Transformers
SU116004A1 (en) Test method for electric power equipment vanishing devices
RU2092862C1 (en) Method of checking the insulation in networks with solidly grounded neutral and device intended for its realization
WO2000020877A1 (en) Improved safety high voltage test method and equipment
JPH0152972B2 (en)
KR20230034743A (en) Test control apparatus for arc breaker