JPH0152972B2 - - Google Patents

Info

Publication number
JPH0152972B2
JPH0152972B2 JP56012105A JP1210581A JPH0152972B2 JP H0152972 B2 JPH0152972 B2 JP H0152972B2 JP 56012105 A JP56012105 A JP 56012105A JP 1210581 A JP1210581 A JP 1210581A JP H0152972 B2 JPH0152972 B2 JP H0152972B2
Authority
JP
Japan
Prior art keywords
ground fault
distribution line
ground
line
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56012105A
Other languages
Japanese (ja)
Other versions
JPS57126228A (en
Inventor
Koshiro Iwatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP56012105A priority Critical patent/JPS57126228A/en
Publication of JPS57126228A publication Critical patent/JPS57126228A/en
Publication of JPH0152972B2 publication Critical patent/JPH0152972B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は配電線用人工地絡試験方法の改良に
関する。 周知のように、現在配電線地絡保護継電器の動
作試験や配電線対地線路定数を測定するには、
6kV柱上変圧器と水抵抗器を組合わせて行つてい
る。第1図は地絡保護継電器の動作試験を示すも
ので、ZCTは配電線に設けられた零相変流器、
DGは地絡方向継電器(−V〓NとI〓gが同極で動作)、
OVGは地絡過電圧継電器、VNは中性点対地電圧
測定用電圧計、PTは電圧変成器であり、1N,
2N,3Nはそれぞれ1次、2次、3次巻線、Ig
は地絡電流測定用電流計、CTはIg用の変流器、
はV〓NとIgとの位相差測定用位相計、Trは6kV
柱上変圧器、Vgは地絡相対地電圧測定用電圧計、
W・Rは水抵抗器、RHは鉄共振防止用高抵抗
器、〜は試験要員、EPは人工地絡点、SWは
スイツチ、Lは導線である。 上記構成において、水抵抗器W・Rを調整して
OVG,DGそれぞれが動作する最小の地絡電流I〓g
の大きさを求めるとともにVg、を読む。この
ときのOVG,DGの感度を地絡抵抗Rのオーム数
で表わすと R=Vg/Ig・np/nc〔Ω〕 〔但し、np:試験用変圧器の変圧比 nc:Ig用CTの変流比〕 である。 また、第2図は充電電流より対地定数を求める
方法を示すものである。即ち、単相柱上変圧器
P、Tr3台を高圧側スター、低圧側オープンデル
タに接続し、低圧側より電圧を加え高圧配電線に
零相電圧を加える。同図の電圧計V、電流計A、
電力計Wの読みを高圧側に換算しそれぞれV0
A0、W0とすると、この配電系統の完全1線地絡
電流IG(但し、VΔは線間電圧) となる。したがつて、この系統の3線一括対地ア
ドミタンス3Y0は 3Y0=A0/V0〔〕 3Y0をコンダクタンス3g0、サセプタンス3b0
分解すると、 3g0=3Y0W0/V0・A0〔〕 3b0=3√2 02 0〔〕 である。 なお、各相対地アドミタンスに不平衡があり、
残留電圧があるときは試験電源の極性を反転させ
て測定し結果の平均値をとる。また、第2図にお
いて第1図と同一部分には同一符号を付す。 以上のような従来の人工地絡試験装置は次のよ
うな問題点を有している。 (1) 柱上変圧器および水抵抗器を使用しているた
め、試験装置の重量が大で取扱いが煩雑であ
る。 (2) 柱上変圧器を使用しているため鉄共振の可能
性があり、異常電圧発生の危険性を含んでい
る。 (3) 水抵抗器を使用しているため温度変化により
測定値に誤差が生じる。 したがつて、これらの諸問題を解決する方法の
開発が望まれている。 この発明は上記事情に基づいてなされたもの
で、柱上変圧器および水抵抗器を使用せず、可変
容量コンデンサを介して配電線を地絡し、コンデ
ンサによる地絡の場合を抵抗による地絡の場合に
等価的に換算して人工地絡試験を行なうことによ
り、装置重量を軽くし取扱いを容易にし得るとと
もに、安全でしかも異常電圧の発生や測定誤差が
少ない配電線用人工地絡試験方法を提供しようと
するものである。 以下、この発明の一実施例について図面を参照
して説明する。 先ず、この発明の概要について説明する。この
発明は配電線の1線をコンデンサを介して人工的
に地絡させるものである。そして、このとき発生
する故障電圧(零相電圧)や故障電流(地絡電
流)が、抵抗地絡のときと等しい値になるよう
に、必要な抵抗値(オーム数)に対応するコンデ
ンサのリアクタンス値(オーム数)を算出するも
のである。したがつて、コンデンサで地絡させな
がら、実際の地絡故障すなわち絶縁破壊や樹木接
触等のような抵抗地絡の故障を模擬し、このとき
配電線地絡保護継電器OVG,OCG,DG等が正
しく動作するかどうかを総合的に確かめる人工地
絡試験をすることができるものである。なお、配
電線1線地絡時に零相電圧の大きさが等しくなる
抵抗とコンデンサのオーム数の関係、および地絡
電流の大きさが等しくなる抵抗とコンデンサのオ
ーム数の関係についての換算式は後述する。 次に、この発明に係る試験方法を実施するため
の構成について説明する。第3図において、配電
線に設けられた零相変流器ZCTは地絡方向継電
器DGの一方入力端に接続される。このDGの他
方入力端は電圧変成器PTの3次巻線3Nに設け
られた端子a,fに接続される。また、このDG
の他方入力端には地絡過電圧継電器OVG、中性
点対地電圧測定用電圧計VNおよび位相計の一
方入力端が接続される。この位相計の他方入力
端は線間電圧測定用電圧計VΔとともに、前記電
圧変成器PTの2次巻線に設けられた端子b,c
に接続される。この位相計はV〓ΔとV〓Nの位相差を
測定するものである。 一方、Xは可変容量コンデンサである。このコ
ンデンサXは第4図a,bに示す如く直列形ある
いは直並列形の多段タツプ可変容量コンデンサで
あり、それぞれスイツチ41,42を切替えるこ
とにより容量が可変される。このコンデンサXの
一端は第3図に示す如くスイツチSWおよび導線
Lを介して人工地絡点EPにおいて配電線の1線
に接続され、他端は地絡される。このコンデンサ
Xの他端には変流器CTを介して地絡電流測定用
電流計Igが設けられる。また、〜は試験要員
である。 上記構成において、コンデンサXにより人工地
絡を行い、このときの中性点対地電圧VNおよび
位相差を測定する。この測定値より配電線の対
地定数を等価的に換算して求めるとともに、地絡
方向継電器DGおよび地絡過電圧継電器OVGの感
度を実測する。 次に、測定原理について説明する。 (1) 先ず、一般回路における1線地絡関係式につ
いて説明する。なお、ここでは第5図に示すよ
うな三相3線式中性点非接地配電系統について
考える。 第5図において、各記号は次のとおり定め
る。
This invention relates to improvements in testing methods for artificial ground faults for power distribution lines. As is well known, in order to test the operation of distribution line ground fault protection relays and measure the distribution line-to-ground line constant,
This is done by combining a 6kV pole transformer and a water resistor. Figure 1 shows the operation test of a ground fault protection relay, where ZCT is a zero-phase current transformer installed on a distribution line,
DG is a ground fault direction relay (−V〓 N and I〓 g operate with the same polarity),
OVG is a ground fault overvoltage relay, V N is a voltmeter for measuring neutral point to ground voltage, and PT is a voltage transformer.
2N and 3N are the primary, secondary, and tertiary windings, respectively, I g
is an ammeter for measuring ground fault current, CT is a current transformer for I g ,
is V〓 Phase meter for measuring the phase difference between N and I g , T r is 6kV
Pole-mounted transformer, V g is a voltmeter for measuring ground fault-to-ground voltage,
W and R are water resistors, RH is a high resistor for preventing ferro-resonance, ~ is a test personnel, EP is an artificial ground point, SW is a switch, and L is a conductor. In the above configuration, adjust the water resistors W and R.
Minimum ground fault current I〓 g for each of OVG and DG to operate
Find the size of and read V g . The sensitivity of OVG and DG at this time is expressed in terms of the number of ohms of the ground fault resistance R: R=V g /I g・n p /n c [Ω] [However, np: Transformation ratio of the test transformer nc: I The current transformation ratio of CT for g is Further, FIG. 2 shows a method of determining the ground constant from the charging current. That is, three single-phase pole transformers P and Tr are connected to the star on the high voltage side and the open delta on the low voltage side, and voltage is applied from the low voltage side to apply zero-sequence voltage to the high voltage distribution line. Voltmeter V, ammeter A in the same figure,
Convert the reading of the wattmeter W to the high voltage side and obtain V 0 and
If A 0 and W 0 , the complete one-wire ground fault current I G in this distribution system is (However, VΔ is the line voltage). Therefore, the three-wire collective ground admittance 3Y 0 of this system is 3Y 0 = A 0 /V 0 [] If 3Y 0 is decomposed into conductance 3g 0 and susceptance 3b 0 , 3g 0 = 3Y 0 W 0 /V 0・A 0 [] 3b 0 = 3√ 2 02 0 []. Note that there is an imbalance in each relative ground admittance,
If there is residual voltage, reverse the polarity of the test power supply, measure, and take the average value of the results. Further, in FIG. 2, the same parts as in FIG. 1 are given the same reference numerals. The conventional artificial ground fault testing device as described above has the following problems. (1) Since a pole-mounted transformer and water resistor are used, the test equipment is heavy and difficult to handle. (2) Since a pole-mounted transformer is used, there is a possibility of iron resonance, which includes the risk of abnormal voltage generation. (3) Since a water resistor is used, errors occur in the measured values due to temperature changes. Therefore, it is desired to develop a method to solve these problems. This invention was made based on the above-mentioned circumstances, and instead of using a pole transformer and a water resistor, the distribution line is grounded through a variable capacitance capacitor. By performing the artificial ground fault test by converting the equivalent value in the case of This is what we are trying to provide. An embodiment of the present invention will be described below with reference to the drawings. First, an overview of the invention will be explained. This invention artificially connects one line of a power distribution line to ground via a capacitor. Then, in order to ensure that the fault voltage (zero-sequence voltage) and fault current (ground fault current) that occur at this time are equal to those in the case of a resistor ground fault, the reactance of the capacitor corresponding to the required resistance value (number of ohms) is adjusted. It calculates the value (ohm number). Therefore, while creating a ground fault with a capacitor, we simulate an actual ground fault, that is, a resistance ground fault such as insulation breakdown or contact with a tree, and at this time, the distribution line ground fault protection relays OVG, OCG, DG, etc. It is possible to conduct an artificial ground fault test to comprehensively check whether or not it operates correctly. The conversion formula for the relationship between the ohm number of the resistor and the capacitor that makes the magnitude of the zero-sequence voltage equal in the case of a single line ground fault in the distribution line, and the relationship between the ohm number of the resistor and the capacitor that makes the magnitude of the ground fault current the same is as follows. This will be explained later. Next, a configuration for implementing the test method according to the present invention will be explained. In FIG. 3, a zero-phase current transformer ZCT provided in the distribution line is connected to one input end of a ground fault direction relay DG. The other input end of this DG is connected to terminals a and f provided on the tertiary winding 3N of the voltage transformer PT. Also, this DG
Connected to the other input terminal of the earth fault overvoltage relay OVG, a voltmeter V N for measuring neutral point to ground voltage, and one input terminal of a phase meter. The other input terminal of this phase meter is connected to terminals b and c provided on the secondary winding of the voltage transformer PT, as well as a voltmeter VΔ for measuring line voltage.
connected to. This phase meter measures the phase difference between V〓Δ and V〓N . On the other hand, X is a variable capacitor. This capacitor X is a series type or series-parallel type multistage tap variable capacitor as shown in FIGS. 4a and 4b, and the capacitance is varied by switching switches 41 and 42, respectively. As shown in FIG. 3, one end of this capacitor X is connected to one line of the distribution line at an artificial ground fault point EP via a switch SW and a conductor L, and the other end is grounded. An ammeter I g for measuring ground fault current is provided at the other end of the capacitor X via a current transformer CT. In addition, ~ are test personnel. In the above configuration, an artificial ground fault is created using the capacitor X, and the neutral point-to-ground voltage V N and phase difference at this time are measured. From this measured value, the ground constant of the distribution line is equivalently converted and determined, and the sensitivity of the ground fault directional relay DG and the ground fault overvoltage relay OVG is actually measured. Next, the measurement principle will be explained. (1) First, the one-wire ground fault relation equation in a general circuit will be explained. Here, we will consider a three-phase, three-wire, neutral point ungrounded power distribution system as shown in FIG. In Figure 5, each symbol is defined as follows.

【表】【table】

【表】 〓
[Table] 〓

Claims (1)

【特許請求の範囲】[Claims] 1 配電線を人工地絡させて配電線地絡保護継電
器の動作試験や配電線対地線路定数を測定する配
電線用人工地絡試験方法において、前記配電線の
地絡のない常時の線間電圧V〓Δならびに残留零相
電圧V〓NOの大きさ及び位相を測定する第1の工
程と、この第1の工程の後、前記配電線をインピ
ーダンスZ〓gのコンデンサで地絡して零相電圧V〓N
の大きさ及び位相を測定する第2の工程と、この
第2の工程の後、測定された前記線間電圧V〓Δ、
残留零相電圧V〓NO及び零相電圧V〓Nに基づいて、
3線一括対地アドミタンスY00及びその不平衡分
Y〓′00を算出する第3の工程と、この第3の工程の
後、算出された3線一括対地アドミタンスY〓00
びその不平衡分Y〓′00に基づいて、前記配電線を抵
抗を介して地絡させたときに、前記コンデンサに
よる地絡で得られた零相電圧V〓Nと等しい零相電
圧V〓Nを得るための抵抗値を算出する第4の工程
とを備え、前記コンデンサによる地絡を前記抵抗
による地絡に等価的に換算して、前記配電線地絡
保護継電器の動作試験及び配電線対地線路定数を
測定することを特徴とする配電線用人工地絡試験
方法。
1. In the artificial ground fault test method for distribution lines, which tests the operation of distribution line ground fault protective relays and measures the distribution line-to-ground line constant by subjecting the distribution line to an artificial ground fault, the normal line voltage V of the distribution line without a ground fault is measured. The first step is to measure the magnitude and phase of 〓Δ and the residual zero-sequence voltage V〓NO, and after this first step, the distribution line is grounded with a capacitor of impedance Z〓g to measure the zero-sequence voltage. V〓N
After this second step, the measured line voltage V〓Δ,
Based on the residual zero-sequence voltage V〓NO and zero-sequence voltage V〓N,
3-wire collective ground admittance Y 00 and its unbalanced portion
A third step of calculating Y〓′ 00 , and after this third step, the resistance of the distribution line is adjusted based on the calculated three-wire collective ground admittance Y〓 00 and its unbalance Y〓′ 00 . a fourth step of calculating a resistance value to obtain a zero-sequence voltage V〓N equal to the zero-sequence voltage V〓N obtained by the ground fault caused by the capacitor when a ground fault occurs through the capacitor; An artificial ground fault testing method for a distribution line, characterized in that a ground fault caused by the capacitor is equivalently converted into a ground fault caused by the resistor, and an operation test of the distribution line ground fault protection relay and a distribution line-to-ground line constant are measured. .
JP56012105A 1981-01-29 1981-01-29 Artificial ground-fault testing device for distributing wire Granted JPS57126228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56012105A JPS57126228A (en) 1981-01-29 1981-01-29 Artificial ground-fault testing device for distributing wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56012105A JPS57126228A (en) 1981-01-29 1981-01-29 Artificial ground-fault testing device for distributing wire

Publications (2)

Publication Number Publication Date
JPS57126228A JPS57126228A (en) 1982-08-05
JPH0152972B2 true JPH0152972B2 (en) 1989-11-10

Family

ID=11796280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56012105A Granted JPS57126228A (en) 1981-01-29 1981-01-29 Artificial ground-fault testing device for distributing wire

Country Status (1)

Country Link
JP (1) JPS57126228A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770403B2 (en) * 2005-11-08 2011-09-14 株式会社明電舎 Operation test method for ground fault direction relay

Also Published As

Publication number Publication date
JPS57126228A (en) 1982-08-05

Similar Documents

Publication Publication Date Title
Dāsa Determining the locations of faults in distribution systems
Kliman et al. A new approach to on-line turn fault detection in AC motors
EP1089081B1 (en) Method for computational determination of ground fault distance in an electrical power distribution network having a ring configuration
US4626772A (en) Process and device for determining a parameter associated with a faulty electric conductor, using a composite monitoring signal
Ryder Transformer diagnosis using frequency response analysis: results from fault simulations
CN109782070A (en) A kind of method of PT test short-circuit impedance
Wu et al. On-site voltage measurement with capacitive sensors on high voltage systems
Arkan et al. Stator fault diagnosis in induction motors using power decomposition
JP3312172B2 (en) Distribution line ground fault protection relay test method and apparatus
Nikander et al. Methods for earth fault identification and distance estimation in a compensated medium voltage distribution network
JPH0152972B2 (en)
CN113156276A (en) Method for checking and debugging secondary voltage loop in AC withstand voltage test of switchgear bus
JP5501820B2 (en) Line characteristic calculation device and line characteristic calculation method
JPH02105073A (en) Artificial ground-fault testing device for distribution line
JPH0692997B2 (en) Measuring device for ground capacitance of power system
Hart Characterising the power system at a load busbar by measurement
Langkowski et al. Grid impedance identification considering the influence of coupling impedances
CN115792504B (en) Power distribution network single-phase earth fault positioning method and system based on phase current abrupt change
Treider et al. Steady-state, iterative method for locating and clearing permanent high impedance earth faults in compensated networks
Rosselli Transformer test to calculate Z/sub 0/for interconnected windings transformers using symmetrical sequence components
CN107132433B (en) Test method for determining accumulated deformation of transformer winding
Balla et al. Extended wing technique approach for the detection of winding interturn faults in three-phase transformers
Junior et al. Evaluation of High Impedance Faults in Delta 13.8 kV Distribution Network
Estima et al. Real-time Condition Monitoring of Grounding Transformers
Chandrasekar et al. Optimal Design, Re-engineering and Testing of a 50: 5A Current Transformer for Medium Voltage Industrial Requirements