JP3015402B2 - Freeze-drying method of ceramic molded body - Google Patents

Freeze-drying method of ceramic molded body

Info

Publication number
JP3015402B2
JP3015402B2 JP2070977A JP7097790A JP3015402B2 JP 3015402 B2 JP3015402 B2 JP 3015402B2 JP 2070977 A JP2070977 A JP 2070977A JP 7097790 A JP7097790 A JP 7097790A JP 3015402 B2 JP3015402 B2 JP 3015402B2
Authority
JP
Japan
Prior art keywords
molded body
temperature
dispersion solvent
freeze
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2070977A
Other languages
Japanese (ja)
Other versions
JPH03271150A (en
Inventor
英俊 山内
義美 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2070977A priority Critical patent/JP3015402B2/en
Publication of JPH03271150A publication Critical patent/JPH03271150A/en
Application granted granted Critical
Publication of JP3015402B2 publication Critical patent/JP3015402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミックス成形体の凍結乾燥方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for freeze-drying a ceramic molded body.

[従来の技術及び発明が解決しようとする課題] 冷えば、ディーゼルエンジン等の内燃機関における排
気ガス浄化装置においては、排気ガス中のカーボン煤等
を濾過すると共に、これらを酸化分解する触媒を坦持す
るフィルターが設けられている。第1,2図に示すよう
に、このフィルターは、微細な開放気孔を多数有する多
孔性材料を使用して形成され、円柱形状で、かつその軸
方向に延びる貫通孔(セル)2が1平方インチあたり10
0〜200個程度形成されてなるハニカム構造体1である。
[Problems to be Solved by the Related Art and the Invention] When cooled, an exhaust gas purifying apparatus for an internal combustion engine such as a diesel engine filters a carbon soot and the like in the exhaust gas and carries a catalyst for oxidatively decomposing them. There is a filter to carry. As shown in FIGS. 1 and 2, this filter is formed using a porous material having a large number of fine open pores, and has a cylindrical shape and a through-hole (cell) 2 extending in the axial direction having a square shape. 10 per inch
The honeycomb structure 1 includes about 0 to 200 honeycomb structures.

従来、係るハニカム構造体は、ムライト、コージェラ
イト、炭化珪素等のセラミックス粉末に有機樹脂バイン
ダー及び分散溶媒としての水を配合してなる原料組成物
をハニカム状に成形し、この成形体に加熱乾燥、又は減
圧乾燥を施すことにより成形体中から水分を除去し、そ
の後、セラミックス粉末を焼結させて製造されている。
Conventionally, such a honeycomb structure is formed by forming a raw material composition obtained by mixing an organic resin binder and water as a dispersion solvent with ceramic powder such as mullite, cordierite, and silicon carbide into a honeycomb shape, and heating and drying the formed body. Alternatively, water is removed from the molded body by performing drying under reduced pressure, and then the ceramic powder is sintered.

ところが、含水状態にある成形体に対し、そのまま加
熱乾燥や減圧乾燥を施すと、成形体の表面と内部とにお
ける水分蒸発速度のアンバランスから乾燥収縮による歪
みが生じ、成形体の表面には、第3図に示すような粗大
な亀裂(マクロクラック)3が生ずるという問題があっ
た。
However, when the molded body in the water-containing state is subjected to heating drying or drying under reduced pressure as it is, distortion due to drying shrinkage occurs due to imbalance in the water evaporation rate between the surface and the inside of the molded body, and the surface of the molded body has There is a problem that a coarse crack (macro crack) 3 as shown in FIG. 3 is generated.

これに対し、含水状態にある成形体を予め−20℃程度
に冷却された冷凍庫内に装入してして、成形体を一旦凍
結させ、その後、減圧乾燥を施して凍結された水分を昇
華させて除去することにより、成形体の乾燥収縮を回避
してクラックの発生を防止する凍結乾燥方法が知られて
いる。しかし、この方法で前記ハニカム成形体を乾燥し
たところ、前述のようなマクロクラックの発生は見られ
なかったものの、第4図に示すように、ハニカム構造体
1の格子状に形成されたセル壁4に、その格子点付近に
おいて星型の微細な亀裂(ミクロクラック)5を生ずる
という新たな問題を生じた。たとえば、このように微細
な亀裂であっても、その後の焼成によってそれが治癒さ
れるということはなく、焼結体の機械的強度、ひいては
排気ガス浄化フィルターとしての耐久性を著しく低下さ
せる原因となっていた。
On the other hand, a molded body in a water-containing state is charged into a freezer cooled in advance to about −20 ° C., the molded body is temporarily frozen, and then dried under reduced pressure to sublimate the frozen water. There is known a freeze-drying method for preventing the molded article from drying and shrinking and preventing the occurrence of cracks by removing the molded article. However, when the honeycomb formed body was dried by this method, the occurrence of macro cracks as described above was not observed. However, as shown in FIG. 4, the cell walls formed in a lattice shape of the honeycomb structure 1 were formed as shown in FIG. 4 has a new problem that a star-shaped fine crack (microcrack) 5 is generated near the lattice point. For example, even such a fine crack is not cured by the subsequent firing, and causes a significant decrease in the mechanical strength of the sintered body and, consequently, the durability as an exhaust gas purification filter. Had become.

本発明者らは、係るミクロクラックの発生を、冷凍庫
の冷却能力の限界から成形体が均一に凍結されないため
と考えた。即ち、冷気と直接接触するセル壁4の表層部
は凍結されて体積変化(膨張)を生ずるのに対し、冷気
と直接接触しないセル壁4の内部は即座に凍結されず、
表層部と内部との間に歪みが生ずるという推測である。
そこで、成形体全体を即座に凍結させるべく、含水状態
のハニカム成形体を液体窒素中に浸漬することを試み
た。しかし、凍結後のセル壁4には第4図に示すような
ミクロクラック5の発生は見られなかったものの、成形
体全体に第3図に示すようなマクロクラック3を生じて
しまい、問題の解決には至らなかった。
The present inventors considered that the generation of such microcracks was because the compact was not uniformly frozen due to the limit of the cooling capacity of the freezer. In other words, the surface layer of the cell wall 4 that is in direct contact with the cool air is frozen to cause a volume change (expansion), whereas the inside of the cell wall 4 that does not directly contact the cool air is not immediately frozen,
It is speculation that distortion occurs between the surface layer portion and the inside.
Therefore, in order to immediately freeze the entire molded body, an attempt was made to immerse the water-containing honeycomb molded body in liquid nitrogen. However, although no microcracks 5 as shown in FIG. 4 were found on the cell wall 4 after freezing, macrocracks 3 as shown in FIG. The solution was not reached.

本発明は上記事情に鑑みなされたものであり、その目
的は、成形体の形状の如何にかかわらず、クラックを発
生させる等の不都合を生じることなく、分散溶媒を含ん
だ状態にある成形体を迅速、かつ確実に乾燥することが
できるセラミックス成形体の凍結乾燥方法を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and its object is to provide a molded article in a state containing a dispersion solvent without causing inconvenience such as generation of cracks, regardless of the shape of the molded article. An object of the present invention is to provide a freeze-drying method for a ceramic molded body that can be dried quickly and reliably.

[課題を解決するための手段及び作用] 上記課題を解決するために、本発明者らは鋭意研究を
積み重ね、成形体の冷却過程におけるクラックの発生メ
カニズムを解明して本発明を完成した。即ち、本発明に
おいては、 原料セラミックス粉末と分散溶媒とを含む原料組成物
を成形してなる成形体を、分散溶媒の凝固点T℃よりも
所定温度だけ高い一次冷却温度にまで、成形体全体にわ
たって均一に冷却した後、この成形体を前記凝固点T℃
よりも低い二次冷却温度にまで急冷することにより、成
形体中の分散溶媒を凍結させ、その後、減圧乾燥によっ
て凍結した分散溶媒を昇華させて成形体中から除去する
ことによりセラミックス成形体を乾燥している。
[Means and Actions for Solving the Problems] In order to solve the above problems, the present inventors have intensively studied and elucidated the mechanism of generation of cracks in the process of cooling the formed body, thereby completing the present invention. That is, in the present invention, the molded body obtained by molding the raw material composition containing the raw ceramic powder and the dispersion solvent is cooled to a primary cooling temperature higher by a predetermined temperature than the solidification point T ° C. of the dispersion solvent over the entire molded body. After cooling uniformly, the molded body was cooled to the freezing point T ° C.
By rapidly cooling to a lower secondary cooling temperature, the dispersion solvent in the molded body is frozen, and then the ceramic dispersion is dried by sublimating the frozen dispersion solvent by vacuum drying and removing it from the molded body. are doing.

この方法によれば、成形体を一次冷却温度にまで冷却
する予備冷却によって、成形体がその全体にわたり、分
散溶媒の凝固点T℃よりも所定温度だけ高い温度に冷却
される。そのため、成形体は凍結直前の状態に至り、未
凍結の成形体を凍結させる場合に該成形体から除去すべ
き熱量が極力少なくされる。
According to this method, the preform is cooled to a primary cooling temperature, and the entire preform is cooled to a temperature higher than the freezing point T ° C of the dispersion solvent by a predetermined temperature. For this reason, the compact comes to a state immediately before freezing, and the amount of heat to be removed from the compact when the unfrozen compact is frozen is reduced as much as possible.

続いて、この成形体を二次冷却温度へ急冷することに
よって、未凍結の成形体から更に熱が奪われる。この
時、既に成形体は分散溶媒の凝固点Tの近傍まで冷却さ
れているため、僅かな熱量の放出によって成形体がその
全体にわたって均一に、かつ比較的短時間に凍結され
る。係る場合、成形体の内部と外層部との間において極
度な凍結速度差を生じることはなく、成形体の各部位に
歪みが生じてクラックが発生するという事態が未然に回
避される。
Subsequently, the molded body is rapidly cooled to the secondary cooling temperature, thereby further removing heat from the unfrozen molded body. At this time, since the molded body has already been cooled to the vicinity of the freezing point T of the dispersion solvent, the molded body is uniformly frozen over the entire body by a small amount of heat release in a relatively short time. In such a case, no extreme freezing speed difference occurs between the inside and the outer layer of the molded body, and a situation in which cracks occur due to distortion in each part of the molded body is avoided.

その後、この凍結成形体に減圧乾燥を施こすことによ
り、凍結した分散溶媒が昇華されて成形体中から除去さ
れる。その際、成形体は急激な収縮等の体積変化を起こ
すことがないため、それに由来するクラックを生ずるこ
となく、成形時の形状を保持したまま乾燥される。
Thereafter, the frozen molded body is dried under reduced pressure, whereby the frozen dispersion solvent is sublimated and removed from the molded body. At this time, since the molded body does not cause a volume change such as a sudden shrinkage, the molded body is dried while maintaining the shape at the time of molding without generating a crack due to the sudden change.

さて、本発明における原料組成物は、原料セラミック
ス粉末に少なくとも分散溶媒を配合してなるものであ
る。
The raw material composition according to the present invention is obtained by mixing at least a dispersion solvent with the raw ceramic powder.

本発明を適用可能なセラミックスとしては、炭素珪
素、炭化ホウ素、窒化珪素、窒化ホウ素、窒化アルミニ
ウム、酸化アルミニウム、酸化ジルコニウム、ムライ
ト、コージェライト、チタン酸アルミニウム、ホウ化ジ
ルコニウム、サイアロン等があげられ、各セラミックス
は粉末状にて、単独又は二種以上混合し使用される。
Examples of ceramics to which the present invention can be applied include carbon silicon, boron carbide, silicon nitride, boron nitride, aluminum nitride, aluminum oxide, zirconium oxide, mullite, cordierite, aluminum titanate, zirconium boride, sialon, and the like. Each ceramic is used alone or in a mixture of two or more kinds in powder form.

特に、本発明を適用するセラミックスが、例えば気相
中で焼結される炭化珪素のように、焼成前の成形体の良
否が焼成後の焼結体の機械的強度等の物性に多大な影響
を及ぼすものである場合には、極めて有益である。
In particular, the quality of a molded body before firing, such as silicon carbide sintered in a gas phase, is greatly affected by the quality of a ceramic to which the present invention is applied, such as the mechanical strength of a sintered body after firing. Is very beneficial.

前記分散溶媒としては、水(凝固点0℃)の他、ベン
ゼン(凝固点5℃)等の有機溶剤があげられるが、極度
に凝固点の低いものは凍結が困難となり、一方、極度に
沸点の高いものは減圧乾燥が困難となるため好ましくな
い。その点で、分散溶媒として水を使用することは好ま
しく、その場合の水の配合割合は、セラミックス粉末10
0重量部に対し、20〜50重量部の範囲が好適である。こ
の配合割合が20重量部未満では、セラミックス粉末を均
一に分散して原料組成物を混練することができず、一
方、50重量部を超えると、原料組成物の粘度を必要以上
に低下させ成形に支障を来す。また、凍結による水の体
積膨張によって、セラミックス粒子の間隔が必要以上に
広げられ、減圧乾燥により凍結水分が粒子間に介在しな
くなった時に、成形体が型崩れを起こす虞れか生ずる。
Examples of the dispersing solvent include water (freezing point: 0 ° C.) and organic solvents such as benzene (freezing point: 5 ° C.). Those having an extremely low freezing point are difficult to freeze, while those having an extremely high boiling point. Is not preferred because drying under reduced pressure becomes difficult. In that regard, it is preferable to use water as the dispersion solvent, and in this case, the mixing ratio of water is 10% or less.
The range of 20 to 50 parts by weight relative to 0 parts by weight is suitable. When the mixing ratio is less than 20 parts by weight, the ceramic powder cannot be uniformly dispersed and the raw material composition cannot be kneaded. On the other hand, when the mixing ratio is more than 50 parts by weight, the viscosity of the raw material composition is unnecessarily reduced and molding is performed. Cause trouble. Further, the space between the ceramic particles is expanded more than necessary due to the volume expansion of the water due to the freezing, and when the frozen water no longer intervenes between the particles due to the drying under reduced pressure, there is a possibility that the molded product may lose its shape.

一方、前記原料組成物には、必要に応じて成形用バイ
ンダーを配合してもよい。この成形用バインダーとして
は、例えば、フェノール樹脂、リグニンスルホン酸塩、
ポリビニルアルコール、メチルセルロース、カルボキシ
メチルセルロース、プロピレングリコール、コンスター
チ、糖蜜、コールタールピッチ、アルギン酸塩等の各種
有機物質があげられ、単独又は二種以上混合して使用さ
れる。
On the other hand, the raw material composition may optionally contain a molding binder. As the molding binder, for example, phenol resin, lignin sulfonate,
Various organic substances such as polyvinyl alcohol, methylcellulose, carboxymethylcellulose, propylene glycol, constarch, molasses, coal tar pitch, and alginate are used, and these substances are used alone or as a mixture of two or more kinds.

上記原料組成物は、ヘンシェルミキサー等で十分に混
練して調整され、押し出し成形等によって所望形状に成
形される。
The raw material composition is kneaded and adjusted sufficiently with a Henschel mixer or the like, and formed into a desired shape by extrusion or the like.

このようにして得られた成形体は、分散溶媒の凝固点
T℃よりも所定温度だけ高い一次冷却温度にまで冷却さ
れる。本発明によれば、この一次冷却温度を分散溶媒の
凝固点T〜(T+2)℃の範囲に設定することが望まし
い。
The compact obtained in this way is cooled to a primary cooling temperature higher by a predetermined temperature than the freezing point T ° C. of the dispersion solvent. According to the present invention, it is desirable to set the primary cooling temperature in the range of the freezing point of the dispersion solvent T to (T + 2) ° C.

この一次冷却温度は、成形体をできる限り凍結直前の
状態に至らしめる意味から、分散溶媒の凝固点Tに限り
なく近いことが理想的であるが、局部的な凍結を避ける
必要があるため、凝固点Tよりも僅かに高くする必要が
ある。その一方で、成形体には一定の重量があり、成形
体を凍結するために除去すべき熱量も成形体の重量に比
例する。これらの点に鑑み、前記一次冷却温度範囲の上
限(T+2)℃は、本発明を一般的な大きさの成形体
(ハニカム構造体の場合には、直径140mm、長さ50〜200
mm、重量約500〜3000gの成形体)に適用した場合に、本
発明が想定する急冷手段によって、極めて短時間に該成
形体から熱を奪い取り、クラック等を生じることなく成
形体を短時間に凍結させることが可能な二次冷却開始温
度の上限を示すものである。
The primary cooling temperature is ideally as close as possible to the freezing point T of the dispersion solvent in order to bring the molded body to a state immediately before freezing as much as possible. However, since it is necessary to avoid local freezing, the freezing point It needs to be slightly higher than T. On the other hand, the compact has a certain weight, and the amount of heat to be removed to freeze the compact is also proportional to the weight of the compact. In view of these points, the upper limit (T + 2) ° C. of the primary cooling temperature range is determined by setting the present invention to a molded article having a general size (in the case of a honeycomb structure, a diameter of 140 mm and a length of 50 to 200 mm).
mm, a molded body having a weight of about 500 to 3000 g), the rapid cooling means assumed in the present invention removes heat from the molded body in a very short time, and quickly removes the molded body without generating cracks or the like. It shows the upper limit of the secondary cooling start temperature that can be frozen.

また、成形体全体を均一に一次冷却温度に冷却する意
味から、一次冷却温度にて所定時間保持することが好ま
しい。この保持時間は、一般的な大きさの成形体(重量
約500〜3000g)においては、10〜30時間程度が適当であ
る。
Further, from the viewpoint of uniformly cooling the entire molded body to the primary cooling temperature, it is preferable to hold the molded body at the primary cooling temperature for a predetermined time. The holding time is suitably about 10 to 30 hours for a molded article having a general size (weight of about 500 to 3000 g).

続いて、前記成形体を分散溶媒の凝固点T℃よりも低
い二次冷却温度にまで急冷することにより、成形体中の
分散溶媒が成形体の全体にわたり均一に、かつ短時間に
凍結される。この二次冷却温度への急冷に際しては、該
温度以下に冷却されたガス状、又は液状の冷媒が使用さ
れる。
Subsequently, by rapidly cooling the molded body to a secondary cooling temperature lower than the freezing point T ° C. of the dispersion solvent, the dispersion solvent in the molded body is uniformly and quickly frozen throughout the molded body. When quenching to the secondary cooling temperature, a gaseous or liquid refrigerant cooled to or below the secondary cooling temperature is used.

前記冷媒が二次冷却温度においてガス状の冷媒である
場合、該冷媒を成形体の周囲又は内部に流通させること
により、成形体が急冷される。使用可能なガス状冷媒と
しては、フロンガス、炭酸ガス、アルゴンガス等があげ
られるが、十分に冷却した窒素ガスや空気であっても支
障はない。
When the refrigerant is a gaseous refrigerant at the secondary cooling temperature, the molded body is rapidly cooled by flowing the refrigerant around or inside the molded body. Usable gaseous refrigerants include chlorofluorocarbon gas, carbon dioxide gas, argon gas and the like, but there is no problem even if sufficiently cooled nitrogen gas or air is used.

また、成形体を二次冷却温度にまで急冷する手段とし
て、液状の冷媒を使用することが好ましい。
Further, it is preferable to use a liquid refrigerant as a means for rapidly cooling the molded body to the secondary cooling temperature.

係る液状の冷媒としては、ジクロロエタン、フロン等
のハロゲン化炭化水素、トルエン、キシレン等の芳香族
炭化水素の他、シリコーンオイル等があげられる。
Examples of such a liquid refrigerant include halogenated hydrocarbons such as dichloroethane and chlorofluorocarbon, aromatic hydrocarbons such as toluene and xylene, and silicone oil.

液状の冷媒は、一般にガス状冷媒に比較して吸熱容量
が大きく、液温が上昇し難いという利点がある。また、
成形体を冷媒中に浸漬させることにより、成形体全体に
均一に接触させることができるため、短時間のうちに比
較的均一に成形体から熱を奪うことができる。前記一般
的な大きさの成形体の場合、ガス状冷媒による二次冷却
時間は、1〜2時間であるのに対し、液状冷媒を使用す
れば、二次冷却時間を30分以内とすることができる。
Liquid refrigerants have the advantage that they generally have a higher heat absorption capacity than gaseous refrigerants and are less likely to rise in liquid temperature. Also,
By immersing the molded body in the refrigerant, the molded body can be uniformly contacted with the entire molded body, so that heat can be relatively uniformly removed from the molded body in a short time. In the case of the molded article of the general size, the secondary cooling time by the gaseous refrigerant is 1 to 2 hours, whereas if a liquid refrigerant is used, the secondary cooling time is within 30 minutes. Can be.

また、前記液状の冷媒は分散溶媒との親和性に乏しい
ものであることが望ましい。
Further, it is desirable that the liquid refrigerant has poor affinity with the dispersion solvent.

その理由は、成形体を分散溶媒中に浸漬した場合で
も、成形体中に冷媒が浸透するのを極力防止することが
できるからである。
The reason is that even when the molded body is immersed in the dispersion solvent, it is possible to prevent the refrigerant from penetrating the molded body as much as possible.

更に、分散溶媒として水を使用する場合、二次冷却温
度を−20〜−5℃の温度範囲内に設定することが好まし
い。
Furthermore, when water is used as the dispersion solvent, the secondary cooling temperature is preferably set within a temperature range of -20 to -5C.

二次冷却温度が−20℃未満であると、一次冷却温度と
の差が大きくなり、特に前述したハニカム構造体のよう
に形状の複雑な成形体において、マクロクラックが発生
し易くなる。一方、二次冷却温度が−5℃を超えると、
一次冷却温度との差が小さくなって成形体の迅速な凍結
が困難となり、特に形状の複雑な成形体において、ミク
ロクラックが発生する虞れが生ずる。
If the secondary cooling temperature is lower than −20 ° C., the difference from the primary cooling temperature becomes large, and macro cracks are likely to occur particularly in a molded article having a complicated shape such as the honeycomb structure described above. On the other hand, when the secondary cooling temperature exceeds -5 ° C,
The difference from the primary cooling temperature becomes small and it becomes difficult to quickly freeze the molded body, and there is a possibility that micro cracks may occur particularly in a molded body having a complicated shape.

尚、分散溶媒として水を使用する場合、凝固点が−20
℃以下の冷媒を使用することが好ましい。その理由は、
成形体中の水分を迅速に凍結させるためには、冷媒の吸
熱容量を大きくする必要があるが、凝固点が高いと冷媒
の温度を低くすることができなくなるため、多量の冷媒
が必要となるからである。
When water is used as the dispersion solvent, the freezing point is −20.
It is preferable to use a refrigerant having a temperature of not more than ° C. The reason is,
In order to quickly freeze the moisture in the compact, it is necessary to increase the heat absorption capacity of the refrigerant, but if the freezing point is high, the temperature of the refrigerant cannot be lowered, so a large amount of refrigerant is required. It is.

成形体の凍結完了後、凍結した分散溶媒を減圧乾燥に
よって昇華させて成形体中から除去することによりセラ
ミックス成形体が乾燥される。
After the freezing of the compact is completed, the frozen dispersion solvent is sublimated by drying under reduced pressure and removed from the compact, whereby the ceramic compact is dried.

減圧乾燥は通常、常温にてなされるが、50℃以下であ
れば、成形体にクラックが発生する虞れがないため、加
熱して乾燥を促進してもよい。
Drying under reduced pressure is usually performed at room temperature. However, if the temperature is 50 ° C. or lower, there is no possibility that cracks will occur in the molded body. Therefore, drying may be promoted by heating.

凍結された分散溶媒は、昇華によって除去されるた
め、成形体内における分散溶媒の流動が一切生じない。
それ故、成形体を構成するセラミックス粒子は、その成
形時における位置を保持したまま乾燥されるため、これ
を焼成した場合でも、セラミックス粒子の粒度配合等を
そのまま反映して、所定の気孔径、気孔分布を有する多
孔質焼結体を得ることができる。
Since the frozen dispersion solvent is removed by sublimation, no flow of the dispersion solvent in the molded body occurs.
Therefore, since the ceramic particles constituting the molded body are dried while maintaining the position at the time of molding, even when this is fired, the predetermined pore diameter, reflecting the particle size composition of the ceramic particles, etc. A porous sintered body having a pore distribution can be obtained.

このようにして、クラックのない理想的な成形体が形
成される。
In this way, an ideal compact without cracks is formed.

尚、本発明によれば、形状の複雑な成形体であって
も、マクロ及びミクロクラックを生ずることなく乾燥す
ることができるため、排気ガス浄化装置のフィルターと
して使用するハニカム構造体に適用することは好まし
い。仮に、第1,2図に示すように、ハニカム成形体1が
円柱形状でその軸方向に多数の貫通孔(セル)2が形成
されたものである場合、本発明によって有効に乾燥可能
なハニカム成形体1の大きさの範囲は、直径が80〜200m
m、長さが50〜200mm、セル壁4の厚さが0.15〜0.5mm、
セルピッチが1.15〜2.5mm、セル数が1平行インチあた
り100〜500個である。
According to the present invention, even a molded article having a complicated shape can be dried without generating macro and micro cracks. Therefore, the present invention can be applied to a honeycomb structure used as a filter of an exhaust gas purification device. Is preferred. As shown in FIGS. 1 and 2, if the honeycomb formed body 1 has a cylindrical shape and a large number of through holes (cells) 2 formed in the axial direction, the honeycomb that can be effectively dried by the present invention is used. The range of the size of the molded body 1 is 80 to 200 m in diameter.
m, length is 50-200mm, thickness of cell wall 4 is 0.15-0.5mm,
The cell pitch is 1.15 to 2.5 mm, and the number of cells is 100 to 500 per parallel inch.

[実施例1及び2並びに比較例1〜3] 以下に、本発明を内燃機関の排気ガス浄化装置に使用
するハニカムフィルターに具体化した実施例1及び2を
比較例1〜3と対比させて説明する。
[Examples 1 and 2 and Comparative Examples 1 to 3] Hereinafter, Examples 1 and 2 in which the present invention is embodied in a honeycomb filter used in an exhaust gas purification device for an internal combustion engine will be compared with Comparative Examples 1 to 3. explain.

(実施例1) <成形体の作製> 平均粒径が0.28μmであって、96.2%がβ型結晶から
なる炭化珪素微粉末100重量部に対し、メチルセルロー
ス10重量部、及び水25重量部を配合し、ヘンシェルミキ
サーで均一に混合して原料組成物を調製した。そして、
真空押出機を使用し、第1,2図に示すように、円柱形状
でかつ軸方向に多数の貫通孔(セル)2が形成されたハ
ニカム成形体1を成形した。このハニカム成形体1は、
直径140mm、長さ140mm、セル壁4の厚さ0.45mm、セルピ
ッチ1.95mm、セル数170セル/平方インチのものであ
り、その重量は約2200g、水分含有率は約18〜20重量%
であった。
(Example 1) <Preparation of molded article> 10 parts by weight of methylcellulose and 25 parts by weight of water were added to 100 parts by weight of silicon carbide fine powder having an average particle diameter of 0.28 μm and 96.2% of β-type crystal. They were blended and uniformly mixed with a Henschel mixer to prepare a raw material composition. And
Using a vacuum extruder, as shown in FIGS. 1 and 2, a honeycomb formed body 1 having a cylindrical shape and formed with a large number of through holes (cells) 2 in an axial direction was formed. This honeycomb formed body 1 is
It has a diameter of 140 mm, a length of 140 mm, a thickness of the cell wall 4 of 0.45 mm, a cell pitch of 1.95 mm, a number of cells of 170 cells / square inch, a weight of about 2200 g, and a water content of about 18 to 20% by weight.
Met.

<一次冷却工程> 次いで、この成形体を冷蔵庫に装入し、常圧下、冷却
速度1℃/hrにて常温(15℃)から冷却を開始して1℃
に至らして、その後、この温度に30時間保持した。
<Primary Cooling Step> Next, the compact was placed in a refrigerator, and cooling was started at room temperature (15 ° C.) at a cooling rate of 1 ° C./hr under normal pressure to 1 ° C.
, And then kept at this temperature for 30 hours.

<二次冷却工程> 一次冷却された成形体を冷蔵庫内にて直ちに、−20℃
のフロン約10中に浸漬することによりこれを凍結さ
せ、そのまま約30分間冷媒中に保持した。
<Secondary cooling step> Immediately cool the primary-cooled compact in a refrigerator at -20 ° C.
This was frozen by immersion in about 10 CFCs and kept in the refrigerant for about 30 minutes.

<減圧乾燥工程> 続いて、二次冷却された成形体をフロン中から取り出
し、高圧空気を吹きつけてセル中に残留しているフロン
を除去した。そして、この成形体を真空乾燥機に装入
し、0.1〜1Tollの減圧状態を20時間保持して乾燥を行っ
た。尚、この間、真空乾燥機内の温度を約40℃に制御し
た。
<Decompression Drying Step> Subsequently, the secondary-cooled molded body was taken out of the fluorocarbon, and high-pressure air was blown to remove fluorocarbon remaining in the cell. Then, the formed body was placed in a vacuum dryer, and dried under a reduced pressure of 0.1 to 1 Toll for 20 hours. During this time, the temperature inside the vacuum dryer was controlled at about 40 ° C.

この減圧乾燥によって水分含有率が0.9重量%の乾燥
成形体を得た。尚、成形体表面には、マクロクラックは
一切見られず、またセル壁4においてもミクロクラック
は一切観察されなかった。
By drying under reduced pressure, a dried molded article having a water content of 0.9% by weight was obtained. No macro cracks were observed on the surface of the molded product, and no micro cracks were observed on the cell walls 4.

<焼結体の作製> 更に、減圧乾燥された成形体をタンマン型焼成炉に挿
入し、アルゴンガス雰囲気下、2200℃にて4時間焼成を
施してハニカム状の多孔質炭化珪素焼結体を得た。この
焼結体の表面、内部共に、マクロクラック、ミクロクラ
ック等は観察されなかった。また、この焼結体の三点曲
げ強度は、6.0kgf/mm2であった。
<Preparation of Sintered Body> Further, the compact dried under reduced pressure was inserted into a tanman type firing furnace, and fired at 2200 ° C. for 4 hours in an argon gas atmosphere to obtain a honeycomb-shaped porous silicon carbide sintered body. Obtained. Macrocracks, microcracks, etc. were not observed on the surface or inside of the sintered body. The three-point bending strength of this sintered body was 6.0 kgf / mm 2 .

(実施例2) 前記実施例1と同様にして成形体を作製し、かつ該成
形体に同様の一次冷却を施した。そして、一次冷却完了
後、冷蔵庫内に−20℃のフロンガスを循環させることに
より成形体を凍結させた。尚、フロンガスの循環を約2
時間続行した。その後、前記実施例1と同様して減圧乾
燥を施したところ、水分含有率が1.1重量%で、クラッ
クが一切見られない乾燥成形体が得られた。
(Example 2) A molded article was produced in the same manner as in Example 1, and the molded article was subjected to the same primary cooling. After completion of the primary cooling, the compact was frozen by circulating -20 ° C. gas in the refrigerator. In addition, the circulation of Freon gas is
Time continued. Thereafter, drying under reduced pressure was performed in the same manner as in Example 1 to obtain a dried molded product having a moisture content of 1.1% by weight and showing no cracks.

更に、前記実施例1と同様にして該乾燥成形体を焼成
したところ、クラックの全くない、三点曲げ強度が5.3k
gf/mm2のハニカム状多孔質炭化珪素焼結体を得た。
Further, when the dried molded body was fired in the same manner as in Example 1, there was no crack and the three-point bending strength was 5.3 kN.
A gf / mm 2 honeycomb-shaped porous silicon carbide sintered body was obtained.

(比較例1) 前記実施例1と同様にして成形体を作製した後、前記
一次冷却工程を経ることなく、前記実施例1と同様にし
て、該成形体を直接に−20℃のフロン約10中に浸漬し
て、そのまま約30分間冷媒中に保持した。
(Comparative Example 1) After forming a molded body in the same manner as in the above-mentioned Example 1, without passing through the primary cooling step, in the same manner as in the above-mentioned Example 1, the molded body was directly cooled to about −20 ° C. fluorocarbon. It was immersed in 10 and kept in the refrigerant for about 30 minutes.

30分経過後、冷媒中から成形体を取り出したところ、
その表面には多数のマクロクラック3が、またセル壁4
にはミクロクラック5が観察された(第3,4図参照)。
After 30 minutes, when the molded body was removed from the refrigerant,
Many macro cracks 3 are formed on the surface, and cell walls 4
, Microcracks 5 were observed (see FIGS. 3 and 4).

(比較例2) 前記実施例1と同様にして成形体を作製した後、この
成形体を冷蔵庫に装入し、常圧下、冷却速度1℃/hrに
て常温(15℃)から冷却を開始して4℃に至らしめ、こ
の温度にて30時間保持した。その後、前記実施例1と同
様にして二次冷却及び減圧乾燥を施した。得られた乾燥
成形体を観察したところ、セル壁4には星型のミクロク
ラック5が多数観察された(第4図参照)。
(Comparative Example 2) After forming a molded body in the same manner as in Example 1, the molded body was placed in a refrigerator, and cooling was started at normal temperature (15 ° C) at a cooling rate of 1 ° C / hr under normal pressure. The temperature was raised to 4 ° C. and maintained at this temperature for 30 hours. Thereafter, secondary cooling and drying under reduced pressure were performed in the same manner as in Example 1. Observation of the obtained dried molded body revealed that many star-shaped microcracks 5 were observed on the cell wall 4 (see FIG. 4).

(比較例3) 前記実施例1と同様にして成形体を作製し、かつ該成
形体に同様の一次冷却を施した。その後、この成形体を
冷蔵庫内にて直ちに−40℃のフロン約10中に浸漬する
ことによりこれを凍結させ、そのまま約30分間冷媒中に
保持した。
(Comparative Example 3) A molded article was produced in the same manner as in Example 1, and the molded article was subjected to the same primary cooling. Thereafter, the molded body was immediately immersed in about 10 ° C. of -40 ° C. in a refrigerator to freeze it, and kept in a refrigerant for about 30 minutes.

30分経過後、冷媒中から成形体を取り出したところ、
その表面には多数のマクロクラック3が観察された(第
3図参照)。
After 30 minutes, when the molded body was removed from the refrigerant,
Many macro cracks 3 were observed on the surface (see FIG. 3).

(結果の考察) 前記実施例1,2と比較例1の結果から、成形体にクラ
ックを生じさせないためには、一次冷却工程が必要であ
ることがわかる。尚、比較例1については、凍結温度に
まで冷却する際に成形体の内部と外層部とで温度差が大
きいためにマクロクラック3を生じ、また凍結速度が小
さいためにセル壁4においてミクロクラック5を生じた
ものと思われる。
(Consideration of Results) From the results of Examples 1 and 2 and Comparative Example 1, it can be seen that a primary cooling step is necessary in order not to cause cracks in the molded body. In Comparative Example 1, a macro-crack 3 was generated due to a large temperature difference between the inside and the outer layer of the molded body when cooled to the freezing temperature, and a micro-crack was generated in the cell wall 4 due to a low freezing rate. 5 appears to have occurred.

前記実施例1,2と比較例2の結果から、一次冷却温度
が前述の範囲を外れるとクラックを生じることがわか
る。
From the results of Examples 1 and 2 and Comparative Example 2, it can be seen that cracks occur when the primary cooling temperature is out of the aforementioned range.

前記実施例1,2と比較例3の結果から、二次冷却温度
が、分散溶媒が水の場合の好適範囲を外れるとクラック
を生じることがわかる。尚、係るクラックは成形体と冷
媒との間で温度差が大きいために、瞬間的に凍結する部
分と凍結しない部分とが生じたものと思われる。
From the results of Examples 1 and 2 and Comparative Example 3, it can be seen that cracks occur when the secondary cooling temperature is out of the preferred range when the dispersion solvent is water. In addition, since the crack has a large temperature difference between the molded body and the refrigerant, it is considered that a portion that instantaneously freezes and a portion that does not freeze occur.

[発明の効果] 以上詳述したように本発明の凍結乾燥方法によれば、
成形体の形状の如何にかかわらず、クラックを発生させ
る等の不都合を生じることなく、分散溶媒を含んだ状態
にある成形体を迅速、かつ確実に乾燥することができる
という優れた効果を奏する。
[Effects of the Invention] As described above in detail, according to the freeze-drying method of the present invention,
Irrespective of the shape of the molded article, there is an excellent effect that the molded article containing the dispersion solvent can be dried quickly and reliably without inconvenience such as generation of cracks.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を具体化したハニカム構造体の正面図、
第2図は第1図のA−A線における部分断面図、第3図
はハニカム構造体の表面にマクロクラックが入った状態
を示す斜視図、第4図はハニカム構造体の内部にミクロ
クラックが入った状態を示すセル壁の部分拡大図であ
る。
FIG. 1 is a front view of a honeycomb structure embodying the present invention,
FIG. 2 is a partial cross-sectional view taken along line AA of FIG. 1, FIG. 3 is a perspective view showing a state in which macrocracks have entered the surface of the honeycomb structure, and FIG. 4 is a microcrack inside the honeycomb structure. FIG. 4 is a partially enlarged view of a cell wall showing a state in which is inserted.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料セラミックス粉末と分散溶媒とを含む
原料組成物を成形してなる成形体を、分散溶媒の凝固点
T℃よりも所定温度だけ高い一次冷却温度にまで、成形
体全体にわたって均一に冷却した後、この成形体を前記
凝固点T℃よりも低い二次冷却温度にまで急冷すること
により、成形体中の分散溶媒を凍結させ、その後、減圧
乾燥によって凍結した分散溶媒を昇華させて成形体中か
ら除去することを特徴とするセラミックス成形体の凍結
乾燥方法。
1. A molded body obtained by molding a raw material composition containing a raw ceramic powder and a dispersion solvent is uniformly spread over the whole of the molded body to a primary cooling temperature higher by a predetermined temperature than a solidification point T ° C. of the dispersion solvent. After cooling, the molded body is rapidly cooled to a secondary cooling temperature lower than the freezing point T ° C., thereby freezing the dispersion solvent in the molded body. A method for freeze-drying a ceramic molded body, comprising removing the ceramic molded body from the body.
【請求項2】前記一次冷却温度を凝固点T〜(T+2)
℃の範囲に設定することを特徴とする請求項1に記載の
セラミックス成形体の凍結乾燥方法。
2. The method according to claim 1, wherein the primary cooling temperature is set to a freezing point T to (T + 2).
The method according to claim 1, wherein the temperature is set in the range of ° C.
【請求項3】成形体を二次冷却温度まで急冷する手段と
して、液状の冷媒を使用することを特徴とする請求項1
又は2に記載のセラミックス成形体の凍結乾燥方法。
3. A liquid cooling medium is used as means for rapidly cooling the compact to a secondary cooling temperature.
Or the freeze-drying method of the ceramic molded article according to 2.
【請求項4】前記液状の冷媒は分散溶媒との親和性に乏
しいものであることを特徴とする請求項3記載のセラミ
ックス成形体の凍結乾燥方法。
4. The freeze-drying method for a ceramic molded body according to claim 3, wherein the liquid refrigerant has poor affinity with a dispersion solvent.
【請求項5】分散溶媒として水を使用すると共に、二次
冷却温度を−20〜−5℃の温度範囲内に設定することを
特徴とする請求項1乃至4のいずれか一項に記載のセラ
ミックス成形体の凍結乾燥方法。
5. The method according to claim 1, wherein water is used as a dispersion solvent and the secondary cooling temperature is set within a temperature range of -20 to -5 ° C. A method for freeze-drying ceramic molded bodies.
JP2070977A 1990-03-20 1990-03-20 Freeze-drying method of ceramic molded body Expired - Lifetime JP3015402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2070977A JP3015402B2 (en) 1990-03-20 1990-03-20 Freeze-drying method of ceramic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2070977A JP3015402B2 (en) 1990-03-20 1990-03-20 Freeze-drying method of ceramic molded body

Publications (2)

Publication Number Publication Date
JPH03271150A JPH03271150A (en) 1991-12-03
JP3015402B2 true JP3015402B2 (en) 2000-03-06

Family

ID=13447095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2070977A Expired - Lifetime JP3015402B2 (en) 1990-03-20 1990-03-20 Freeze-drying method of ceramic molded body

Country Status (1)

Country Link
JP (1) JP3015402B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320183B2 (en) 2003-09-04 2008-01-22 Ngk Insulators, Ltd. Method for drying honeycomb formed structure
US8794373B1 (en) * 2013-03-15 2014-08-05 Bose Corporation Three-dimensional air-adsorbing structure
CN103396123B (en) * 2013-07-30 2014-07-16 东北大学 Method for preparing large-aperture three-dimensional network SiC ceramic material
JP6357020B2 (en) * 2014-05-30 2018-07-11 三井金属鉱業株式会社 Method for producing porous ceramics
JP6463973B2 (en) * 2015-01-16 2019-02-06 イビデン株式会社 Manufacturing method of honeycomb structure
CN113044816B (en) * 2021-04-19 2022-11-29 哈尔滨科友半导体产业装备与技术研究院有限公司 Preparation method of porous aluminum nitride raw material for aluminum nitride crystal growth
CN114055910B (en) * 2021-11-01 2023-03-21 浙江时空道宇科技有限公司 Honeycomb panel preparation device and method
CN114262217B (en) * 2022-01-13 2023-05-30 国网智能电网研究院有限公司 Sound-absorbing ceramic material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH03271150A (en) 1991-12-03

Similar Documents

Publication Publication Date Title
US4871495A (en) Process for producing porous ceramic filter for filtering of particulates from diesel exhaust gases
US6849181B2 (en) Mullite-aluminum titanate diesel exhaust filter
JP2938740B2 (en) Cordierite-based ceramic filter and method of manufacturing the same
US4814300A (en) Porous ceramic shapes, compositions for the preparation thereof, and method for producing same
US20030024219A1 (en) Filter and exhaust gas purification
EP2133317A1 (en) Ceramic porous body with communication macropores and process for producing the ceramic porous body
US20040051196A1 (en) Method for producing porous ceramic article
EP1245262A1 (en) Exhaust gas purifying filter and method of manufacturing the same
US9085091B2 (en) Production method of ceramic honeycomb structure
WO2003067041A1 (en) Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination
JP3015402B2 (en) Freeze-drying method of ceramic molded body
KR20030059169A (en) Lithium aluminosilicate ceramic
US20070254798A1 (en) Peroxide containing compounds as pore formers in the manufacture of ceramic articles
WO2009122538A1 (en) Honeycomb structure
US8097203B2 (en) Crosslinked green body articles and method of manufacturing porous ceramic articles therefrom
GB2213141A (en) Porous ceramic shapes
JP2922980B2 (en) Manufacturing method of ceramics sintered body with honeycomb structure
JP4455786B2 (en) Method for producing porous material and method for producing hollow granules used therefor
KR101360630B1 (en) Improved method for debindering ceramic honeycombs
JP2851106B2 (en) Method for producing porous silicon carbide sintered body
KR950007708B1 (en) Composite refractory materials
RU2233700C2 (en) Composition of charge for high-porous cellular- structure material for catalyst carriers
JP7304147B2 (en) honeycomb structure
JP3587365B2 (en) Cordierite-based ceramic honeycomb catalyst carrier and method for producing the same
JPH01192765A (en) Production of silicon carbide honeycomb structural body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11