JP2922980B2 - Manufacturing method of ceramics sintered body with honeycomb structure - Google Patents

Manufacturing method of ceramics sintered body with honeycomb structure

Info

Publication number
JP2922980B2
JP2922980B2 JP2133335A JP13333590A JP2922980B2 JP 2922980 B2 JP2922980 B2 JP 2922980B2 JP 2133335 A JP2133335 A JP 2133335A JP 13333590 A JP13333590 A JP 13333590A JP 2922980 B2 JP2922980 B2 JP 2922980B2
Authority
JP
Japan
Prior art keywords
drying
sintered body
molded body
honeycomb structure
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2133335A
Other languages
Japanese (ja)
Other versions
JPH0431372A (en
Inventor
義美 大橋
淳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2133335A priority Critical patent/JP2922980B2/en
Publication of JPH0431372A publication Critical patent/JPH0431372A/en
Application granted granted Critical
Publication of JP2922980B2 publication Critical patent/JP2922980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミックス焼結体の製造方法に関し、特
に排気ガス浄化装置のフィルターとして使用されるハニ
カム構造のセラミックス焼結体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a ceramic sintered body, and more particularly to a method for producing a ceramic sintered body having a honeycomb structure used as a filter of an exhaust gas purification device.

[従来の技術及び発明が解決しようとする課題] 例えば、ディーゼルエンジン等の内燃機関における排
気ガス浄化装置においては、排気ガス中のカーボン煤等
を濾過すると共に、これらを酸化分解する触媒を担持す
るフィルターが設けられている。第1,2図に示すよう
に、このフィルターは、微細な開放気孔を多数有する多
孔性材料を使用して形成され、円柱形状で、かつその軸
方向に延びる貫通孔(セル)2が1平方インチあたり10
0〜200個程度形成されてなるハニカム構造体1である。
[Problems to be Solved by the Related Art and the Invention] For example, an exhaust gas purifying apparatus for an internal combustion engine such as a diesel engine filters a carbon soot or the like in the exhaust gas and carries a catalyst for oxidatively decomposing them. A filter is provided. As shown in FIGS. 1 and 2, this filter is formed using a porous material having a large number of fine open pores, and has a cylindrical shape and a through-hole (cell) 2 extending in the axial direction having a square shape. 10 per inch
The honeycomb structure 1 includes about 0 to 200 honeycomb structures.

従来、かかるハニカム構造体は、ムライト、コージュ
ライト、炭化珪素等のセラミックス粉末に有機樹脂バイ
ンダー及び分散溶媒としての水を配合してなる原料組成
物をハニカム状に成形し、この成形体に加熱乾燥を施す
ことにより成形体中から水分を除去し、その後、セラミ
ックス粉末を焼結させて製造されている。
Conventionally, such a honeycomb structure is formed by mixing a ceramic powder such as mullite, cordierite, and silicon carbide with an organic resin binder and water as a dispersion solvent into a honeycomb-shaped raw material composition, and heating and drying the formed body. Is performed to remove water from the molded body, and then the ceramic powder is sintered.

ところが、含水状態にある成形体を乾燥機内に装入
し、急激な加熱や除湿を施すと、成形体の表面と内部と
における水分蒸発速度のアンバランスから乾燥収縮によ
る歪みが生じ、成形体の表面には、第3図に示すような
粗大な亀裂(マクロクラック)3が生ずるという問題が
あった。
However, when a molded body in a water-containing state is charged into a dryer and subjected to rapid heating and dehumidification, distortion due to drying shrinkage occurs due to an imbalance in water evaporation rate between the surface and the interior of the molded body, and the molded body is deformed. On the surface, there was a problem that a coarse crack (macrocrack) 3 as shown in FIG. 3 was formed.

一方、含水状態にある成形体を予め−20℃程度に冷却
された冷凍庫内に装入して、成形体を一旦凍結させ、そ
の後、減圧乾燥を施して凍結された水分を昇華させて除
去することにより、成形体の乾燥収縮を回避してクラッ
クの発生を防止する方法が知られている。しかし、この
方法で前記ハニカム成形体を乾燥すると、前述のような
マクロクラック3の発生は見られないものの、第4図に
示すように、ハニカム構造体1の格子状に形成されたセ
ル壁4に、その格子点付近において星型の微細な亀裂
(ミクロクラック)5を生ずるという問題があった。た
とえ、このように微細な亀裂であっても、その後の焼成
によってそれが治癒されるということはなく、焼結体の
機械的強度、ひいては排気ガス浄化フィルターとしての
耐久性を著しく低下させる原因となっていた。
On the other hand, the molded body in a water-containing state is placed in a freezer previously cooled to about −20 ° C., the molded body is temporarily frozen, and then subjected to vacuum drying to sublimate and remove the frozen water. Thus, there is known a method of avoiding the occurrence of cracks by avoiding drying shrinkage of a molded article. However, when the honeycomb formed body is dried by this method, although the generation of the macro crack 3 as described above is not observed, as shown in FIG. 4, the cell walls 4 formed in a lattice shape of the honeycomb structure 1 are formed. In addition, there is a problem that a star-shaped fine crack (microcrack) 5 occurs near the lattice point. Even if such a fine crack is formed, it will not be cured by the subsequent sintering, and will significantly reduce the mechanical strength of the sintered body and, consequently, the durability as an exhaust gas purification filter. Had become.

本発明は上記事情に鑑みなされたものであり、その目
的は、含水状態にあるハニカム構造成形体の乾燥工程に
おけるクラックの発生を未然に防止することにより、焼
成後の焼結体の機械的強度等を低下させることなく、堅
牢な焼結体を得ることができるハニカム構造のセラミッ
クス焼結体の製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to prevent the occurrence of cracks in a drying step of a honeycomb structure in a water-containing state beforehand, thereby improving the mechanical strength of a sintered body after firing. It is an object of the present invention to provide a method for manufacturing a ceramic sintered body having a honeycomb structure, which can obtain a robust sintered body without lowering the performance.

[発明を解決するための手段及び作用] 上記課題を解決するために本発明においては、セラミ
ックス粉末にバインダー及び水を配合してなる原料組成
物を、複数のセルを有するハニカム形状に成形し、この
成形体を乾燥後、焼成するハニカム構造のセラミックス
焼結体の製造方法において、乾燥工程における雰囲気湿
度を70〜99%としている。
[Means and Actions for Solving the Invention] In order to solve the above problems, in the present invention, a raw material composition obtained by mixing a binder and water with ceramic powder is formed into a honeycomb shape having a plurality of cells, In the method for manufacturing a ceramic sintered body having a honeycomb structure in which the formed body is dried and fired, the atmosphere humidity in the drying step is set to 70 to 99%.

この方法によれば、雰囲気湿度が比較的高いために含
水状態にある成形体からの水分の蒸発が緩慢となり、成
形体の表層部と内部とにおける水分蒸発速度が均一化さ
れる。そのため、成形体の乾燥時に、成形体の表層部と
内部とで歪みを生じることがなく、前記マクロクラック
3(第3図参照)やミクロクラック5(第4図参照)の
発生が未然に防止される。尚、前記雰囲気湿度が70%未
満になると、成形体にマクロクラックが発生し易くな
り、本発明の目的を達成できない。
According to this method, since the atmospheric humidity is relatively high, the evaporation of water from the water-containing compact is slowed down, and the water evaporation rate in the surface layer portion and inside of the compact is uniformized. Therefore, when the molded body is dried, no distortion occurs between the surface layer portion and the inside of the molded body, and the occurrence of the macro crack 3 (see FIG. 3) and the micro crack 5 (see FIG. 4) is prevented. Is done. If the atmospheric humidity is less than 70%, macro cracks are easily generated in the molded product, and the object of the present invention cannot be achieved.

前記乾燥工程において、前記雰囲気湿度を維持しなが
ら雰囲気温度を10〜80℃に上昇させて加熱乾燥を施すこ
とが好ましい。
In the drying step, it is preferable to perform heating and drying while increasing the ambient temperature to 10 to 80 ° C. while maintaining the atmospheric humidity.

この方法によれば、雰囲気温度の上昇に伴って成形体
からの水分の蒸発が促進されても、成形体の表層部と内
部とで水分蒸発速度に急激な差を生ずることなく、成形
体全体が均一に昇温されて成形体から水分が迅速に除去
される。
According to this method, even if the evaporation of moisture from the molded body is promoted with an increase in the ambient temperature, there is no sudden difference in the moisture evaporation rate between the surface layer portion and the inside of the molded body, and the entire molded body is formed. Is uniformly heated, and moisture is quickly removed from the molded body.

ここで、前記雰囲気温度が10℃未満では、成形体の乾
燥に長大な時間を要して生産性が低下する。一方、雰囲
気温度が80℃を超えると、水分の蒸発速度が大きくな
り、成形体が急激に乾燥収縮してクラックを生じ易くな
る。
Here, when the ambient temperature is lower than 10 ° C., it takes a long time to dry the molded body, and the productivity is reduced. On the other hand, when the ambient temperature exceeds 80 ° C., the evaporation rate of water increases, and the molded body rapidly dries and shrinks, which easily causes cracks.

前記の場合における雰囲気温度の昇温速度は、0.1〜
1.0℃/min.の範囲が好ましい。該昇温速度が0.1℃/min.
未満では乾燥工程における生産性が低下し、1.0℃/min.
を超えると成形体の表層部と内部とで温度差が生じ、ク
ラックを生ずる原因となる。
The temperature rise rate of the ambient temperature in the above case is 0.1 to
A range of 1.0 ° C./min. Is preferable. The heating rate is 0.1 ° C / min.
If less than, the productivity in the drying step is reduced, 1.0 ° C. / min.
If the temperature exceeds the range, a temperature difference occurs between the surface layer portion and the inside of the molded body, which causes a crack.

また、前記乾燥工程において、成形体の水分含有率が
5重量%以上の場合には雰囲気湿度を90〜99%に維持し
て乾燥を行い、成形体の水分含有率が5重量%未満にな
ったところで雰囲気湿度を70〜90%にして乾燥を行うこ
とが望ましい。
In the drying step, when the moisture content of the molded body is 5% by weight or more, drying is performed while maintaining the atmospheric humidity at 90 to 99%, and the moisture content of the molded body becomes less than 5% by weight. It is desirable to perform drying at an atmosphere humidity of 70 to 90%.

この方法によれば、成形体の水分含有率が比較的高く
(5重量%以上)、急激な乾燥に伴う収縮によって成形
体に歪みが生ずる虞れが高い場合には、雰囲気湿度を許
容範囲の上限寄りに設定して極力緩慢な乾燥を行うこと
により、確実にクラックの発生が防止される。そして、
成形体の水分含有率が比較的低く(5重量%未満)、乾
燥に伴う成形体の収縮が非常に小さくなったところで、
雰囲気湿度を許容範囲の下限寄りに設定して乾燥を促進
することにより、クラックの発生を回避しつつ、成形体
から残存水分が迅速に除去される。
According to this method, when the moisture content of the molded body is relatively high (5% by weight or more) and there is a high possibility that the molded body will be distorted due to shrinkage due to rapid drying, the atmospheric humidity is set to an allowable range. By performing the drying as slowly as possible near the upper limit, the occurrence of cracks is reliably prevented. And
When the moisture content of the molded body is relatively low (less than 5% by weight) and the shrinkage of the molded body due to drying becomes very small,
By setting the atmospheric humidity near the lower limit of the allowable range and promoting drying, the residual moisture is quickly removed from the molded body while avoiding the occurrence of cracks.

尚、前記の場合において、雰囲気湿度を設定変更する
際に、成形体中の水分含有率が5重量%に達したか否か
を目安としたが、これは一般的な大きさのハニカム成形
体(重量500〜3000g)に適用する場合の目安であり、本
発明を適用する成形体の形状、大きさ等によって前記目
安が変化することが考えられる。
In the above case, when the setting of the atmospheric humidity was changed, it was determined whether or not the moisture content in the molded body reached 5% by weight. (Weight: 500 to 3000 g), which may vary depending on the shape, size, etc. of the molded article to which the present invention is applied.

さて、本発明における原料組成物は、セラミックス粉
末にバインダー及び水を配合してなるものである。
The raw material composition according to the present invention is obtained by blending a binder and water with ceramic powder.

本発明を適用可能なセラミックスとしては、炭化珪
素、炭化ホウ素、窒化珪素、窒化ホウ素、窒化アルミニ
ウム、酸化アルミニウム、酸化ジルコニウム、ムライ
ト、コージェライト、チタン酸アルミニウム、ホウ化ジ
ルコニウム、サイアロン等があげられ、各セラミックス
は粉末状にて、単独又は二種以上混合して使用される。
Examples of ceramics to which the present invention can be applied include silicon carbide, boron carbide, silicon nitride, boron nitride, aluminum nitride, aluminum oxide, zirconium oxide, mullite, cordierite, aluminum titanate, zirconium boride, sialon, and the like. Each ceramic is used alone or in combination of two or more in powder form.

特に、本発明を適用するセラミックスが、例えば気相
中で焼結される炭化珪素のように、焼成前の成形体の良
否が焼成後の焼結体の機械的強度等の物性に多大な影響
を及ぼすものである場合には、極めて有益である。
In particular, the quality of a molded body before firing, such as silicon carbide sintered in a gas phase, is greatly affected by the quality of a ceramic to which the present invention is applied, such as the mechanical strength of a sintered body after firing. Is very beneficial.

前記バインダーとしては、例えば、フェノール樹脂、
リグニンスルホン酸塩、ポリビニルアルコール、メチル
セルロース、カルボキシメチルセルロース、プロピレン
グリコール、コンスターチ、糖密、コールタールピッ
チ、アルギン酸塩等の各種有機物質があげられ、単独又
は二種以上混合して使用される。
As the binder, for example, a phenol resin,
Various organic substances such as lignin sulfonate, polyvinyl alcohol, methylcellulose, carboxymethylcellulose, propylene glycol, constarch, molasses, coal tar pitch, and alginate can be used, and these can be used alone or in combination of two or more.

バインダーの配合割合は、一般にセラミックス粉末10
0重量部に対し、5〜50重量部の範囲が好適である。こ
の配合割合が5重量部未満では成形体を成形することが
できず、50重量部を超えると焼結体の機械的強度を低下
させる等の不都合を生じる。
The mixing ratio of the binder is generally 10
The range of 5 to 50 parts by weight relative to 0 parts by weight is suitable. If the blending ratio is less than 5 parts by weight, the molded body cannot be formed, and if it exceeds 50 parts by weight, disadvantages such as a decrease in mechanical strength of the sintered body occur.

前記水の配合割合は、一般にセラミックス粉末100重
量部に対し、20〜50重量部の範囲が好適である。この配
合割合が20重量部未満では、セラミックス粉末を均一に
分散して原料組成物を混練することができず、一方、50
重量部を超えると、原料組成物の粘度を必要以上に低下
させ成形に支障を来す。
Generally, the mixing ratio of the water is preferably in the range of 20 to 50 parts by weight based on 100 parts by weight of the ceramic powder. If the mixing ratio is less than 20 parts by weight, the ceramic powder cannot be uniformly dispersed and the raw material composition cannot be kneaded.
If the amount is more than 10 parts by weight, the viscosity of the raw material composition is unnecessarily reduced, which hinders molding.

上記原料組成物は、ヘンシェルミキサー、ニーダー等
で十分に混練して調整され、押し出し成形等によって第
1,2図に示すようなハニカム状の成形体1に成形され
る。かかるハニカム成形体1は、円柱形状でその軸方向
に多数の貫通孔(セル)2が形成されたものであり、本
発明が極めて効果的に適用されるハニカム成形体1の大
きさの範囲は、直径が80〜200mm、長さが50〜200mm、セ
ル壁4の厚さが0.15〜0.5mm、セルピッチが1.15〜2.5m
m、セル数が1平方インチあたり100〜500個である。
The raw material composition is adjusted by sufficiently kneading with a Henschel mixer, a kneader, or the like, and is extruded by extrusion or the like.
It is formed into a honeycomb-shaped formed body 1 as shown in FIGS. Such a honeycomb formed body 1 has a cylindrical shape and a large number of through-holes (cells) 2 formed in the axial direction thereof. The size range of the honeycomb formed body 1 to which the present invention is extremely effectively applied is as follows. , Diameter 80-200mm, length 50-200mm, cell wall 4 thickness 0.15-0.5mm, cell pitch 1.15-2.5m
m, the number of cells is 100 to 500 per square inch.

このようにして得られたハニカム成形体1は、前述し
たように乾燥条件のもとで、その水分含有率が3〜4重
量%程度になるまで乾燥される。
The honeycomb formed body 1 thus obtained is dried under the drying conditions until the water content becomes about 3 to 4% by weight as described above.

この乾燥工程において、ハニカム成形体1のセル2中
に気流を流通させることは好ましい。
In this drying step, it is preferable to flow an air stream through the cells 2 of the honeycomb formed body 1.

その理由は、セル2を通じて成形体内外の温度及び湿
度を常に均一な状態とすることが容易となるからであ
る。
The reason is that it is easy to make the temperature and humidity inside and outside the molded body always uniform through the cell 2.

ここで、ハニカム成形体1のセル2中に気流を流通さ
せる方法としては、例えば第6図に示すように、複数の
脚台8上に目の粗い疎水性のメッシュ9及びダミー成形
体6を置き、その上にハニカム成形体1を立て置きし
て、図示しないファンモータを駆動させることによって
気流を流通させる方法が考えられる。
Here, as a method of flowing an airflow through the cells 2 of the honeycomb formed body 1, for example, as shown in FIG. A method is conceivable in which the honeycomb formed body 1 is placed on the stand, and the honeycomb formed body 1 is placed on the stand, and a fan motor (not shown) is driven to flow an air flow.

ハニカム成形体の乾燥に際し、該成形体は、疎水性の
クッション材、又は該成形体と同一ハニカム構造のダミ
ー成形体上に載置されて乾燥されることが好ましい。
In drying the honeycomb formed body, it is preferable that the formed body be placed on a hydrophobic cushion material or a dummy formed body having the same honeycomb structure as the formed body and dried.

前記疎水性のクッション材とは、乾燥する成形体(被
乾燥成形体)と、その成形体が配置される乾燥容器と壁
面との間に介在され、両者の摩擦抵抗を低減させる疎水
性部材をいい、例えば、テフロンシートや、疎水性樹脂
によって形成されたボール等があげられる。
The hydrophobic cushion material includes a molded article to be dried (a molded article to be dried) and a hydrophobic member that is interposed between a drying container in which the molded article is placed and a wall surface and reduces frictional resistance therebetween. Good examples include a Teflon sheet and a ball formed of a hydrophobic resin.

このクッション材によって、成形体のクッション材と
の接触部分の摩擦抵抗が低減されるために、乾燥収縮に
伴う接触摺動が阻害される事態が回避され、乾燥収縮に
伴う該部位におけるクラックの発生が防止される。尚、
クッション材を疎水性としたのは、親水性であると該部
材との間で水分の授受を生じ、成形体の均一な乾燥を阻
害する虞れがあるからである。
This cushioning material reduces frictional resistance of the molded body in contact with the cushioning material, so that contact sliding due to drying shrinkage is prevented from being obstructed, and cracks are generated at the site due to drying shrinkage. Is prevented. still,
The reason why the cushion material is made hydrophobic is that if the cushion material is hydrophilic, water may be exchanged with the member, which may hinder uniform drying of the molded body.

前記ダミー成形体とは、被乾燥成形体とほぼ同形状に
成形されると共に、乾燥容器内に配置されて、被乾燥成
形体を載置するための成形体をいう。
The dummy molded body refers to a molded body that is formed in substantially the same shape as the molded body to be dried and is arranged in a drying container and on which the molded body to be dried is placed.

このダミー成形体は、被乾燥成形体と同程度の乾燥収
縮率を有するため、乾燥時において、たとえダミー成形
体が乾燥容器の壁面との接触部位で乾燥収縮に伴う歪み
を生ずることがあっても、被乾燥成形体がダミー成形体
との接触部位において乾燥収縮に伴う歪みを生ずること
がない。そのため、被乾燥成形体はダミー成形体との接
触部位においてクラックを生ずることなく乾燥される。
Since this dummy molded body has the same drying shrinkage as the molded body to be dried, during drying, for example, the dummy molded body may cause distortion due to drying shrinkage at a contact portion with the wall surface of the drying container. Also, distortion due to drying shrinkage does not occur at the portion where the molded article contacts the dummy molded article. For this reason, the dried article is dried without cracks in the contact area with the dummy article.

以上のようにして、ハニカム成形体はクラックのない
理想的な状態で乾燥される。
As described above, the honeycomb formed body is dried in an ideal state without cracks.

乾燥終了後の成形体は、必要に応じて脱脂された後、
使用したセラミックスの焼成条件に応じて焼成される。
仮に、セラミックスが炭化珪素の場合、300〜700℃の温
度にて成形体中に残留する溶剤及びバインダーを十分に
分解脱脂し、その後、2000℃以上の温度にて焼成するこ
とが好ましい。
After drying, the molded body is degreased as necessary,
It is fired according to the firing conditions of the ceramics used.
If the ceramic is silicon carbide, it is preferable that the solvent and the binder remaining in the molded body are sufficiently decomposed and degreased at a temperature of 300 to 700 ° C., and then fired at a temperature of 2000 ° C. or more.

このようにして、クラックがなく、機械的強度に優れ
たハニカム構造のセラミックス焼結体が得られる。
In this way, a ceramic sintered body having no cracks and having excellent mechanical strength can be obtained.

仮に、本発明を内燃機関の排気ガス浄化装置に使用す
るハニカムフィルターに具体化した場合、第7図に示す
ように使用態様が考えられる。即ち、排気ガスの流通経
路10の中に断熱材14に包まれたハニカムフィルター11を
配置し、その一方の端面付近に該フィルター11を加熱す
るヒータ12を配設すると共に、その外側にシリカ・アル
ミナ等の耐熱性繊維によって網目状に形成された熱輻射
遮蔽部材13を配設する。これにより、流通経路10の上流
側から流れてくる排気ガス中のカーボン煤等がハニカム
フィルター11によって捕集される。ここで、ハニカムフ
ィルター11は、ヒータ12によって加熱されるが、ヒータ
12の熱輻射は前記遮蔽部材13の存在によってフィルター
11側に向けられるため、フィルター11が効率的に加熱さ
れる。
If the present invention is embodied in a honeycomb filter used in an exhaust gas purifying apparatus for an internal combustion engine, a use mode is conceivable as shown in FIG. That is, the honeycomb filter 11 wrapped in the heat insulating material 14 is disposed in the exhaust gas flow path 10, the heater 12 for heating the filter 11 is disposed near one end face thereof, and silica A heat radiation shielding member 13 formed in a mesh shape with a heat-resistant fiber such as alumina is provided. As a result, carbon soot and the like in the exhaust gas flowing from the upstream side of the circulation path 10 are collected by the honeycomb filter 11. Here, the honeycomb filter 11 is heated by the heater 12,
The heat radiation of 12 is filtered by the presence of the shielding member 13.
Since the filter 11 is directed to the side, the filter 11 is efficiently heated.

尚、前記遮蔽部材13としては、例えば太さが0.5〜1.0
mmの耐熱性の糸を目開き1.0〜2.0mm、開口率40〜60%の
網目状に形成したものを使用することができる。また、
前記ヒータ12及び遮蔽部材13は流通経路の上流側あるい
は下流側のいずれの側に設けてもよい。
The shielding member 13 has a thickness of, for example, 0.5 to 1.0.
A heat-resistant thread having a mesh size of 1.0 to 2.0 mm and an opening ratio of 40 to 60% may be used. Also,
The heater 12 and the shielding member 13 may be provided on either the upstream side or the downstream side of the flow path.

[実施例1〜3及び比較例1〜3] 以下に、本発明を内燃機関の排気ガス浄化装置に使用
するハニカムフイルターに具体化した実施例1〜3を比
較例1〜3と対比させて説明する。
[Examples 1 to 3 and Comparative Examples 1 to 3] Hereinafter, Examples 1 to 3 in which the present invention is embodied in a honeycomb filter used for an exhaust gas purification device for an internal combustion engine will be compared with Comparative Examples 1 to 3. explain.

(実施例1) <成形体の作製> 平均粒径が0.28μmであって、96.2%がβ型結晶から
なる炭化珪素微粉末100重量部に対し、メチルセルロー
ス5重量部,プロピレングリコール5重量部および水25
重量部を配合し、ヘンシェルミキサーで均一に混合して
原料組成物を調製した。そして、真空押出機を使用し、
第1,2図に示すように、円柱形状でかつ軸方向に多数の
貫通孔(セル)2が形成されたハニカム成形体1を成形
した。このハニカム成形体1は、直径140mm、長さ140m
m、セル壁4の厚さ0.45mm、セルピッチ1.95mm、セル数1
70セル/平方インチのものであり、その重量は約2200
g、水分含有率は約18〜20重量%であった。
(Example 1) <Preparation of molded article> 5 parts by weight of methylcellulose, 5 parts by weight of propylene glycol and 100 parts by weight of silicon carbide fine powder having an average particle diameter of 0.28 μm and 96.2% of β-type crystal Water 25
Parts by weight were blended and uniformly mixed with a Henschel mixer to prepare a raw material composition. And using a vacuum extruder,
As shown in FIGS. 1 and 2, a honeycomb formed body 1 having a cylindrical shape and having a large number of through holes (cells) 2 formed in an axial direction was formed. This honeycomb formed body 1 has a diameter of 140 mm and a length of 140 m.
m, cell wall 4 thickness 0.45mm, cell pitch 1.95mm, number of cells 1
70 cells per square inch and weighs about 2200
g, water content was about 18-20% by weight.

<乾燥工程> 次いで、この成形体を温度15℃、湿度90%に設定され
た乾燥容器内に装入すると共に、容器内に敷き詰められ
たテフロンシート上に載置した。そして、この容器内に
加湿空気を流通させながら容器内の温度を1℃/min.の
割合で80℃まで昇温し、この温度で30時間保持して成形
体に乾燥を施した。尚、乾燥容器内の湿度については、
容器内へ送入される加湿空気の入口側の湿度を90〜95%
とし、容器から排出される出口側の空気の湿度を容器内
へ送入される加湿空気の湿度との差が3〜10%以内とな
るように、加湿空気の流量を調整することにより制御し
た。
<Drying Step> Next, the formed body was placed in a drying container set at a temperature of 15 ° C. and a humidity of 90%, and was placed on a Teflon sheet spread in the container. Then, the temperature in the container was raised to 80 ° C. at a rate of 1 ° C./min. While flowing humidified air through the container, and the molded body was dried at this temperature for 30 hours. In addition, about the humidity in the drying container,
90% to 95% humidity on the inlet side of humidified air sent into the container
The humidity of the outlet air discharged from the container was controlled by adjusting the flow rate of the humidified air so that the difference from the humidity of the humidified air fed into the container was within 3 to 10%. .

乾燥後の成形体の水分含有率は約3重量%であり、そ
の表面、内部共に、マクロクラック、ミクロクラック等
は観察されなかった。
The moisture content of the dried compact was about 3% by weight, and no macro cracks, micro cracks, etc. were observed on both the surface and the inside.

<焼結工程> 乾燥された成形体をタンマン型焼成炉に挿入し、アル
ゴンガス雰囲気下、2200℃にて4時間焼成を施してハニ
カム状の多孔質炭化珪素焼結体を得た。この焼結体は、
直径140mm、長さ140mm、セル壁厚さ0.45mm、セルピッチ
1.95mm、セル数170セル/平方インチのハニカム形状を
維持しており、その表面、内部共に、マクロクラック、
ミクロクラック等は観察されなかった。また、この焼結
体の三点曲げ強度は、5.3kgf/mm2であった。
<Sintering Step> The dried compact was inserted into a tanman-type firing furnace and fired at 2200 ° C. for 4 hours in an argon gas atmosphere to obtain a honeycomb-shaped porous silicon carbide sintered body. This sintered body
Diameter 140mm, length 140mm, cell wall thickness 0.45mm, cell pitch
Maintains honeycomb shape of 1.95mm, 170 cells / square inch, macro crack, surface and inside
Microcracks and the like were not observed. Further, the three-point bending strength of this sintered body was 5.3 kgf / mm 2 .

(実施例2) 前記実施例1における乾燥手順を下記の如く変更し、
その他は実施例1に準じた。
(Example 2) The drying procedure in Example 1 was changed as follows,
Others were the same as in Example 1.

即ち、ハニカム成形体1を温度15℃、湿度90%に設定
された乾燥容器内に装入すると共に、容器内に敷き詰め
られたテフロンシート上に載置した。そして、この容器
内に加湿空気を流通させながら容器内の温度を1℃/mi
n.の割合で80℃まで昇温し、この温度で20時間保持し
た。この時の成形体の水分含有率は4重量%であった。
続いて、容器内温度を80℃に維持したまま、容器内湿度
を徐々に低下させて75%とし、この湿度で10時間保持し
て成形体に乾燥を施した。
That is, the honeycomb formed body 1 was placed in a drying container set at a temperature of 15 ° C. and a humidity of 90%, and was placed on a Teflon sheet spread in the container. Then, while humidifying air is passed through the container, the temperature in the container is set to 1 ° C / mi.
The temperature was raised to 80 ° C. at the rate of n. and maintained at this temperature for 20 hours. At this time, the moisture content of the molded body was 4% by weight.
Subsequently, while the temperature in the container was maintained at 80 ° C., the humidity in the container was gradually reduced to 75%, and the molded body was dried at this humidity for 10 hours.

乾燥後の成形体の水分含有率は約3重量%であり、そ
の表面、内部共に、マクロクラック、ミクロクラック等
は観察されなかった。また、焼成によってクラックの全
くない、三点曲げ強度が5.0kgf/mm2のハニカム状多孔質
炭化珪素焼結体が得られた。
The moisture content of the dried compact was about 3% by weight, and no macro cracks, micro cracks, etc. were observed on both the surface and the inside. In addition, a honeycomb-shaped porous silicon carbide sintered body having no cracks and a three-point bending strength of 5.0 kgf / mm 2 was obtained by firing.

(実施例3) 前記実施例1において、乾燥容器内に敷き詰められた
テフロンシートに代えて、第5図に示すように、乾燥す
る成形体と全く同様にして成形されたダミー成形体6
(直径140mm、長さ50mm、セル壁の厚さ0.45mm、セルピ
ッチ1.95mm、セル数170セル/平方インチ、水分含有率
は約18〜20重量%)を乾燥容器7内に配置し、乾燥する
成形体1をこのダミー成形体6上に載置して乾燥を施し
た。その他は実施例1に準じた。
(Example 3) In Example 1, in place of the Teflon sheet spread in the drying container, as shown in FIG. 5, a dummy molded body 6 molded in exactly the same manner as the molded body to be dried, as shown in FIG.
(Diameter 140 mm, length 50 mm, cell wall thickness 0.45 mm, cell pitch 1.95 mm, number of cells 170 cells / square inch, water content about 18 to 20% by weight) are placed in the drying container 7 and dried. The compact 1 was placed on the dummy compact 6 and dried. Others were the same as in Example 1.

乾燥終了後の成形体1の水分含有率は約3重量%であ
った。また、ダミー成形体6にはマクロクラック等が観
察されたが、成形体1にはその表面、内部共にマクロク
ラック、ミクロクラック等は観察されなかった。また、
焼成によって、クラックの全くない、三点曲げ強度が5.
2kgf/mm2のハニカム状多孔質炭化珪素焼結体が得られ
た。
After the drying was completed, the moisture content of the molded body 1 was about 3% by weight. Although macro cracks and the like were observed in the dummy molded body 6, macro cracks, micro cracks and the like were not observed in the molded body 1 both on the surface and inside. Also,
By firing, no cracks, three-point bending strength 5.
A honeycomb-shaped porous silicon carbide sintered body of 2 kgf / mm 2 was obtained.

(比較例1) 前記実施例1の乾燥工程において、乾燥容器内の湿度
を終始30%に維持してハニカム成形体に乾燥を施した。
その他は実施例1に準じた。
(Comparative Example 1) In the drying step of Example 1, the honeycomb formed body was dried while maintaining the humidity in the drying container at 30% throughout.
Others were the same as in Example 1.

乾燥後、成形体の表面には、マクロクラックが観察さ
れ、焼成時に成形体は崩壊した。
After drying, macrocracks were observed on the surface of the molded body, and the molded body collapsed during firing.

この結果と前記実施例1〜3の結果から、乾燥容器内
の湿度が本発明の好適範囲を外れて非常に低くなると、
ハニカム成形体の内部の乾燥速度に比べて表層部分の乾
燥速度が非常に早くなり、乾燥のバランスが崩れて、成
形体表面にマクロクラックが生じるものと考えられる。
From the results and the results of Examples 1 to 3, when the humidity in the drying container becomes extremely low outside the preferred range of the present invention,
It is considered that the drying speed of the surface layer portion is much faster than the drying speed inside the honeycomb formed body, the drying balance is lost, and macro cracks are generated on the surface of the formed body.

(比較例2) 前記実施例1の乾燥工程において、ハニカム成形体を
温度15℃、湿度90%に設定された乾燥容器内を装入した
後、容器内の湿度を90%に維持したまま容器内の温度を
5℃/min.の割合で80℃まで昇温し、この温度で30時間
保持してハニカム成形体に乾燥を施した。その他は実施
例1に準じた。
(Comparative Example 2) In the drying step of Example 1, after the honeycomb formed body was charged into a drying container set at a temperature of 15 ° C and a humidity of 90%, the container was kept at 90% humidity. The inside temperature was raised to 80 ° C. at a rate of 5 ° C./min., And maintained at this temperature for 30 hours to dry the honeycomb formed body. Others were the same as in Example 1.

乾燥後、成形体の表面には、マクロクラックが観察さ
れ、焼成時に成形体は崩壊した。
After drying, macrocracks were observed on the surface of the molded body, and the molded body collapsed during firing.

この結果と前記実施例1〜3の結果から、乾燥時の昇
温速度が早すぎても、ハニカム成形体の内部の乾燥速度
に比べて表層部分の乾燥速度が非常に早くなり、乾燥の
バランスが崩れて、成形体表面にマクロクラックが生じ
るものと考えられる。
From this result and the results of Examples 1 to 3, even if the temperature rise rate during drying is too fast, the drying rate of the surface layer becomes extremely faster than the drying rate inside the honeycomb formed body, and the balance of drying It is considered that the microstructure collapses and macro cracks occur on the surface of the molded body.

(比較例3) 前記実施例1の乾燥工程において、乾燥容器内にテフ
ロンシートを敷き詰めることなく、直接にハニカム成形
体を乾燥容器の底面上に載置した。その他は実施例1に
準じた。尚、乾燥容器の底面は、アクリルによって形成
されている。
(Comparative Example 3) In the drying step of Example 1, the honeycomb formed body was directly placed on the bottom surface of the drying container without laying a Teflon sheet in the drying container. Others were the same as in Example 1. The bottom surface of the drying container is made of acrylic.

乾燥後、乾燥容器の底面と接触していた成形体の接触
部位には、マクロクラックが観察された。また、焼成時
によって成形体の一部が崩壊した。
After drying, macrocracks were observed at the contact portions of the molded body that had been in contact with the bottom surface of the drying container. In addition, part of the molded body collapsed due to firing.

この結果から、成形体の接触部位の摩擦抵抗が大きい
と、該成形体の乾燥収縮時に接触部位において歪みを生
じ、該部位においてクラックを生じるものと考えられ
る。
From this result, it is considered that if the frictional resistance at the contact portion of the molded body is large, distortion occurs at the contacted portion during drying and shrinkage of the molded body, and cracks occur at the site.

[発明の効果] 以上詳述したように本発明によれば、含水状態にある
ハニカム構造成形体の乾燥工程におけるクラックの発生
を未然に防止することにより、焼成後の焼結体の機械的
強度等を低下させることなく、堅牢なハニカム構造のセ
ラミックス焼結体を得ることができるという優れた効果
を奏する。
[Effects of the Invention] As described above in detail, according to the present invention, the mechanical strength of a sintered body after firing is prevented by preventing cracks from occurring in a drying step of a honeycomb structure formed in a water-containing state. It is possible to obtain an excellent effect that a ceramic sintered body having a robust honeycomb structure can be obtained without deteriorating the characteristics.

また、成形体の水分含有率が比較的高い(5重量%以
上)場合には、急激な乾燥に伴う収縮によって成形体に
歪みが生ずる虞れが高いため、雰囲気湿度を許容範囲の
上限寄りに設定して極力緩慢な乾燥を行うことにより、
確実にクラックの発生を防止することができる。そし
て、成形体の水分含有率が比較的低い(5重量%未満)
場合には、乾燥に伴う成形体の収縮が非常に小さくなっ
たところで、雰囲気湿度を許容範囲の下限寄りに設定し
て乾燥を促進することにより、クラックの発生を回避し
つつ、成形体からの残存水分が迅速に除去することがで
きるという優れた効果を奏する。
When the moisture content of the molded article is relatively high (5% by weight or more), the molded article is likely to be distorted due to shrinkage due to rapid drying. By setting and drying as slowly as possible,
Cracks can be reliably prevented from occurring. And the moisture content of the molded body is relatively low (less than 5% by weight)
In such a case, when the shrinkage of the molded body due to drying has become extremely small, by setting the atmospheric humidity near the lower limit of the allowable range to promote drying, it is possible to avoid the occurrence of cracks, It has an excellent effect that residual moisture can be quickly removed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を具体化したハニカム構造体の正面図、
第2図は第1図のA−A線における部分断面図、第3図
はハニカム構造体の表面にマクロクラックが入った状態
を示す斜視図、第4図はハニカム構造体の内部にミクロ
クラックが入った状態を示すセル壁の部分拡大図、第5
図は実施例3における成形体の乾燥状態の概略を示す斜
視図、第6図はハニカム成形体のセル中に気流を流通さ
せる一例を示す説明図、第7図はハニカム構造体の一使
用態様を示す断面図である。 1……ハニカム成形体、2……セル、6……ダミー成形
体。
FIG. 1 is a front view of a honeycomb structure embodying the present invention,
FIG. 2 is a partial cross-sectional view taken along line AA of FIG. 1, FIG. 3 is a perspective view showing a state in which macrocracks have entered the surface of the honeycomb structure, and FIG. 4 is a microcrack inside the honeycomb structure. Enlarged view of the cell wall showing the state in which
The figure is a perspective view schematically showing a dried state of the formed body in Example 3, FIG. 6 is an explanatory view showing an example of flowing an air flow through the cells of the honeycomb formed body, and FIG. 7 is a use form of the honeycomb structure. FIG. 1 ... honeycomb formed body, 2 ... cell, 6 ... dummy formed body.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミックス粉末にバインダー及び水を配
合してなる原料組成物を、複数のセル(2)を有するハ
ニカム形状に成形し、この成形体(1)を乾燥後、焼成
するハニカム構造のセラミックス焼結体の製造方法にお
いて、 乾燥工程における雰囲気湿度は70〜99%であり、前記乾
燥工程において、成形体(1)の水分含有率が5重量%
以上の場合には雰囲気湿度を90〜99%に維持して乾燥を
行い、成形体(1)の水分含有率が5重量%未満になっ
たところで雰囲気湿度を70〜90%にして乾燥を行うこと
を特徴とするハニカム構造のセラミックス焼結体の製造
方法。
A raw material composition comprising a ceramic powder and a binder and water is formed into a honeycomb shape having a plurality of cells (2), and the formed body (1) is dried and fired. In the method for producing a ceramic sintered body, the atmospheric humidity in the drying step is 70 to 99%, and in the drying step, the moisture content of the compact (1) is 5% by weight.
In the above case, drying is performed while maintaining the humidity of the atmosphere at 90 to 99%, and when the moisture content of the molded body (1) becomes less than 5% by weight, the drying is performed at the humidity of 70 to 90%. A method for producing a ceramic sintered body having a honeycomb structure, characterized by comprising:
【請求項2】前記乾燥工程において、雰囲気湿度が70〜
99%で、雰囲気温度を0.1〜1.0℃/minの昇温速度にて10
〜80℃に上昇させて加熱乾燥を施すことを特徴とする請
求項1に記載のハニカム構造のセラミックス焼結体の製
造方法。
2. In the drying step, the atmospheric humidity is 70 to
At 99%, the ambient temperature is increased by 10 to 1.0 ° C / min
The method for producing a ceramic sintered body having a honeycomb structure according to claim 1, wherein heating and drying are performed by raising the temperature to about 80 ° C.
【請求項3】前記乾燥工程において、成形体(1)のセ
ル(2)中に気流を流通させることを特徴とする請求項
1又は2に記載のハニカム構造のセラミックス焼結体の
製造方法。
3. The method for manufacturing a ceramics sintered body having a honeycomb structure according to claim 1, wherein in the drying step, an airflow is circulated through the cells (2) of the molded body (1).
【請求項4】前記成形体(1)は、疎水性のクッション
材、又は該成形体(1)と同一ハニカム構造のダミー成
形体(6)上に載置されて乾燥されることを特徴とする
請求項1乃至3の何れか一項に記載のハニカム構造のセ
ラミックス焼結体の製造方法。
4. The molded article (1) is placed on a hydrophobic cushion material or a dummy molded article (6) having the same honeycomb structure as the molded article (1) and dried. The method for manufacturing a ceramic sintered body having a honeycomb structure according to any one of claims 1 to 3.
【請求項5】セラミックス焼結体は炭化珪素焼結体であ
ることを特徴とする請求項1乃至4の何れか一項に記載
のハニカム構造のセラミックス焼結体の製造方法。
5. The method for manufacturing a ceramics sintered body having a honeycomb structure according to claim 1, wherein the ceramics sintered body is a silicon carbide sintered body.
JP2133335A 1990-05-23 1990-05-23 Manufacturing method of ceramics sintered body with honeycomb structure Expired - Fee Related JP2922980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133335A JP2922980B2 (en) 1990-05-23 1990-05-23 Manufacturing method of ceramics sintered body with honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133335A JP2922980B2 (en) 1990-05-23 1990-05-23 Manufacturing method of ceramics sintered body with honeycomb structure

Publications (2)

Publication Number Publication Date
JPH0431372A JPH0431372A (en) 1992-02-03
JP2922980B2 true JP2922980B2 (en) 1999-07-26

Family

ID=15102316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133335A Expired - Fee Related JP2922980B2 (en) 1990-05-23 1990-05-23 Manufacturing method of ceramics sintered body with honeycomb structure

Country Status (1)

Country Link
JP (1) JP2922980B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813127B2 (en) * 1994-03-11 1998-10-22 日本碍子株式会社 Drying method of ceramic molded body
JP4771590B2 (en) * 1997-12-02 2011-09-14 コーニング インコーポレイテッド Method for firing ceramic honeycomb body
JP2002283329A (en) * 2001-01-16 2002-10-03 Denso Corp Manufacturing method of honeycomb formed body and drying equipment thereof
JP5008230B2 (en) * 2001-08-10 2012-08-22 日揮触媒化成株式会社 Drying device for honeycomb-shaped formed body mainly composed of water-containing ceramics
JP2003285312A (en) * 2002-03-28 2003-10-07 Ngk Insulators Ltd Drying method for honeycomb molded object
US20060229476A1 (en) 2005-04-08 2006-10-12 Mitchell Robert L Sr Activated carbon monolith catalyst, methods for making same, and uses thereof
JP2008110541A (en) * 2006-10-31 2008-05-15 Denso Corp Method for manufacturing honeycomb molding and drying apparatus
JP4866889B2 (en) 2008-09-26 2012-02-01 日本碍子株式会社 Method for drying honeycomb formed body
JP2010048256A (en) * 2009-09-16 2010-03-04 Ibiden Co Ltd Method for manufacturing honeycomb filter and honeycomb filter
US20110127699A1 (en) * 2009-11-30 2011-06-02 Michael James Vayansky Method And Apparatus For Thermally Debindering A Cellular Ceramic Green Body
JP5822922B2 (en) * 2010-06-25 2015-11-25 ダウ グローバル テクノロジーズ エルエルシー Drying of ceramic raw materials
US9126869B1 (en) 2013-03-15 2015-09-08 Ibiden Co., Ltd. Method for manufacturing aluminum-titanate-based ceramic honeycomb structure
JP6246645B2 (en) * 2014-03-28 2017-12-13 日本碍子株式会社 Method for drying honeycomb formed body

Also Published As

Publication number Publication date
JPH0431372A (en) 1992-02-03

Similar Documents

Publication Publication Date Title
JP2922980B2 (en) Manufacturing method of ceramics sintered body with honeycomb structure
JP5388916B2 (en) Method for drying honeycomb formed body
US8551579B2 (en) Method for producing ceramic honeycomb structure
US20080241444A1 (en) Honeycomb structure and manufacturing method therefor
JPH05330943A (en) Preparation of porous ceramic being suitable as diesel particle filter
US6593261B2 (en) Silicon nitride porous body and its production process
JP2003238271A (en) Method of producing porous ceramic material
EP1160223A1 (en) Silicon nitride filter and method of manufacture thereof
JP4222600B2 (en) Method for firing ceramic honeycomb structure
WO2009122538A1 (en) Honeycomb structure
US4973566A (en) Cordierite material useful in a heat source retainer and process for making the same
JP2001130973A (en) Method for drying ceramic compact
KR100842058B1 (en) The producing method for porous ceramics
JP5075606B2 (en) Silicon carbide based porous material
US20020043735A1 (en) Method for producing a silicon nitride filter
US11420195B2 (en) Honeycomb structure
JP3983838B2 (en) Method for producing high-strength porous α-SiC sintered body
WO2006103963A1 (en) Honeycomb structure
JPH04187578A (en) Production of sintered compact of porous silicon carbide
JP2002326881A (en) Manufacturing method of porous ceramic
JP6284002B2 (en) Method for manufacturing ceramic honeycomb structure
JP2002160976A (en) Method for manufacturing ceramic honeycomb structure
JP2008238158A (en) Honeycomb filter
JPH03271150A (en) Freeze-drying of ceramic molding
WO2017169104A1 (en) Method for drying honeycomb molded body and method for manufacturing honeycomb structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees